Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2024, Vol. 50 ›› Issue (7): 1658-1668.doi: 10.3724/SP.J.1006.2024.34196

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Establishment of large fragment knockout in pea genome by CRISPR/Cas9 technology

HUANG Shu-Xian1(), LIU Rong1, LI Guan2, SHU Qin1, XU Fei1, ZONG Xu-Xiao1,*(), YANG Tao1,*()   

  1. 1Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
    2Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan 250100, Shandong, China
  • Received:2023-11-19 Accepted:2024-01-31 Online:2024-07-12 Published:2024-06-15
  • Contact: *E-mail: yangtao02@caas.cn; E-mail: zongxuxiao@caas.cn
  • Supported by:
    National Natural Science Foundation of China(32241042);China Agriculture Research System of MOF and MARA(CARS-08-G11);State Key Laboratory of Crop Gene Resources and Breeding

Abstract:

Pea is one of the main food legumes in the world and has been paid more and more attention due to its rich nutritional value and good ecological value. CRISPR/Cas9 as a new biology breeding tool has been widely used in many crops, however, its usage in pea is very limited. In this study, we successfully achieved large fragment deletion of the Psat01G0240600-T1, Psat03G0303300-T1, and Psat03G0304700-T1 genes in “Zhongwan 6” variety by CRISPR/Cas9 technology. The large fragment knockout ratio was 24.1%, 13.0%, and 3.6%, respectively. Further analysis revealed that there were significant differences in editing efficiency among different target sites and large fragment deletion depend on the specific target site with the lower editing efficiency between the two target sites. In this study, we explored the application of CRISPR/Cas9 by using the hairy root system in pea and achieved large fragment knockout for the first time in pea, which is of great significant for the research of peas.

Key words: pea, CRISPR/Cas9, hairy root, large fragment knockout

Table 1

Primers for detecting gene sequence"

引物名称Primer name 引物序列Primer sequences (5′-3′)
Psat01G0240600-T1-FP ATGTCAAGTGGTAGTAGAGACCCTC
Psat01G0240600-T1-RP TCATCGGCATAACCTTCTTCCACC
Psat03G0303300-T1-1-FP ATGCCTAGGAATATGGTCGATCCTC
Psat03G0303300-T1-1-RP GAGAGTGCCTATCTTGACAC
Psat03G0303300-T1-2-FP CGGTGAAAACACTCACGTGTATGTG
Psat03G0303300-T1-2-RP TTAGCATCTCCTTCCACCGCAGCCG
Psat03G0304700-T1-FP ATGGCAGGTAGTAGCAGGAATCCTC
Psat03G0304700-T1-RP TTATCTAAATGTTCTTCCACCAGAGCC

Table 2

Primers used in construction of vectors"

引物名称Primer name 引物序列Primer sequence (5′-3′)
CmYLCV FP TGCTCTTCGCGCTGGCAGACATACTGTCCCAC
Psat01G0240600-T1-gRNA1 RP TCGTCTCCAACCCTTGGTTGCTGCCTATACGGCAGTGAACCTG
Psat01G0240600-T1-gRNA1 FP TCGTCTCAGGTTATTGTTGGGTTTTAGAGCTAGAAATAGC
Psat01G0240600-T1-RNA2 RP TCGTCTCACAGGAATATCAGCTGCCTATACGGCAGTGAAC
Psat01G0240600-T1-RNA2 FP TCGTCTCACCTGCAACTACTGTTTTAGAGCTAGAAATAGC
oCsy-E RP TGCTCTTCTGACCTGCCTATACGGCAGTGAAC
Psat03G0303300-T1-gRNA1 RP TCGTCTCCAACCAACTGAGACTGCCTATACGGCAGTGAACCTG
Psat03G0303300-T1-gRNA1 FP TCGTCTCAGGTTAACCGTCCGTTTTAGAGCTAGAAATAGC
Psat03G0303300-T1-gRNA2 RP TCGTCTCATTGACAGTTGAACTGCCTATACGGCAGTGAAC
Psat03G0303300-T1-gRNA2 FP TCGTCTCATCAAAGAGAGCGGTTTTAGAGCTAGAAATAGC
Psat03G0304700-T1-gRNA1 RP TCGTCTCAGGTGACTCGGAGCTGCCTATACGGCAGTGAAC
Psat03G0304700-T1-gRNA1 FP TCGTCTCACACCTATGGTAGGTTTTAGAGCTAGAAATAGC
Psat03G0304700-T1-gRNA2 RP TCGTCTCAGTCGTGGCCTTTCTGCCTATACGGCAGTGAAC
Psat03G0304700-T1-gRNA2 FP TCGTCTCACGACCCACCTCAGTTTTAGAGCTAGAAATAGC
Check FP CTAGAAGTAGTCAAGGCGGC
MBF GTAAAACGACGGCCAGT

Table 3

Hi-TOM sequencing primers"

引物名称Primer name 引物序列Primer sequence (5′-3′)
Psat01G0240600-T1-1-Hi-FP GGAGTGAGTACGGTGTGCGGCTGTGAATTCAAACCTTCT
Psat01G0240600-T1-1-Hi-RP GAGTTGGATGCTGGATGGGCATCTGGATCCACCATGATC
Psat01G0240600-T1-2-Hi-FP GGAGTGAGTACGGTGTGCGAAAATGCTATGACTATG
Psat01G0240600-T1-2-Hi-RP GAGTTGGATGCTGGATGGCAACATCATCATCACAAGC
Psat03G0303300-T1-1-Hi-FP GGAGTGAGTACGGTGTGCCTGTATCTTTGAGTGTTG
Psat03G0303300-T1-1-Hi-RP GAGTTGGATGCTGGATGGCGTTACTAGGGCTAGGTG
Psat03G0303300-T1-2-Hi-FP GGAGTGAGTACGGTGTGCGGGAAAGAGGCAGTGTTT
Psat03G0303300-T1-2-Hi-RP GAGTTGGATGCTGGATGGTTAGCATCTCCTTCCACC
Psat03G0304700-T1-1-Hi-FP GGAGTGAGTACGGTGTGCAGGAATCCTCTCGCTGTTGG
Psat03G0304700-T1-1-Hi-RP GAGTTGGATGCTGGATGGGATCGTTTCCACCAACATTC
Psat03G0304700-T1-2-Hi-FP GGAGTGAGTACGGTGTGCGGTGACTGATATTCCAGC
Psat03G0304700-T1-2-Hi-RP GAGTTGGATGCTGGATGGTTCTGTCGCCATCCTGGA

Table 4

Large fragment deletion detection primers"

引物名称Primer name 引物序列Primer sequence (5′-3′)
Psat01G0240600-T1dpdFP TGGTCCAACTTACTTGCCTTGA
Psat01G0240600-T1dpdRP GCAGTGATTCCCAATTGAGTGTA
Psat03G0303300-T1dpdFP AGACCAAACGAGGTACGGTT
Psat03G0303300-T1dpdRP TGCAATGAACTAACCCCCGC
Psat03G0304700-T1dpdFP GTCACGGACGTGAGCAAAACGACATGG
Psat03G0304700-T1dpdRP ACGACACACACATGGATAAACACTGC

Fig. 1

Conservative motifs of pea FT gene family proteins"

Fig. 2

Target sites selection Green box: exon; Black solid line: intron; Blue letter: target site; Red letter: PAM."

Fig. 3

Schematic diagrams of editing vector The green box: CmYLCV promoter; the blue box: specific endonuclease Csy4; the gray box: gRNA; the orange box: 35S terminator."

Fig. 4

Editing efficiency of a single target site in three genes"

Fig. 5

Analysis of target mutation A: the mutation analysis of six targets showed that the gray column was the deletion mutation type, and the white column was the other mutation type; B: six target deletion types and their efficiencies; C: the average efficiency of six target deletion types."

Table 5

Large fragment deletion efficiency of three genes"

基因 ID
Gene ID
鉴定的样品数量
Number of samples
identified
大片段缺失的数量
Number of large
fragment deletion
突变频率
Mutation frequency (%)
片段缺失的大小
Size of the missing
fragments (bp)
Psat01G0240600-T1 87 21 24.1 161-967
Psat03G0303300-T1 77 10 13.0 1642-1673
Psat03G0304700-T1 84 3 3.6 228-809

Fig. S1

Edited genes large fragment deletion electrophoresis maps Agarose gel electrophoresis schematic diagram of Psat01G0240600-T1, Psat03G0303300-T1, and Psat03G0304700-T1. The band pointed by the blue arrows indicate the samples with large fragments in sequencing."

Fig. S2

PCR sequencing results of large fragment deletion samples of Psat01G0240600-T1, Psat03G0303300-T1, and Psat03G0304700-T1 The blue highlight represents the target sequence, the red highlight represents the PAM site, the orange highlight represents the insertion sequence, the green highlight represents the base mutation, “—//—” represents the base omission, and “------//------” represents the fragment deletion."

[1] 刘荣, 杨涛, 黄宇宁, 宗绪晓. 豌豆及其野生近缘种种质资源研究进展. 植物遗传资源学报, 2020, 21: 1415-1423.
doi: 10.13430/j.cnki.jpgr.20200629002
Liu R, Yang T, Huang Y N, Zong X X. Research progress of germplasm resources of pea and its wild relatives. J Plant Genet Resour, 2020, 21: 1415-1423 (in Chinese with English abstract).
[2] Yang T, Liu R, Luo Y F, Hu S N, Wang D, Wang C Y, Pandey M K, Ge S, Xu Q L, Li N N, Li G, Huang Y N, Saxena R K, Ji Y S, Li M W, Yan X, He Y H, Liu Y J, Wang X J, Xiang C, Varshney R K, Ding H F, Gao S H, Zong X X. Improved pea reference genome and pan-genome highlight genomic features and evolutionary characteristics. Nat Genet, 2022, 54: 1553-1563.
doi: 10.1038/s41588-022-01172-2 pmid: 36138232
[3] Riehl S, Zeidi M, Conard N J. Emergence of agriculture in the foothills of the Zagros Mountains of Iran. Science, 2013, 341: 65-67.
doi: 10.1126/science.1236743 pmid: 23828939
[4] Rana J C, Rana M, Sharma V, Nag A, Chahota R K, Sharma T R. Genetic diversity and structure of pea (Pisum sativum L.) germplasm based on morphological and SSR markers. Plant Mol Biol Rep, 2017, 35: 118-129.
[5] Smýkal P, Aubert G, Burstin J, Coyne C J, Ellis N T H, Flavell A J, Ford R, Hýbl M, Macas J, Neumann P, McPhee K E, Redden R J, Rubiales D, Weller J L, Warkentin T D. Pea (Pisum sativum L.) in the genomic era. Agronomy, 2012, 2: 74-115.
[6] Tayeh N, Aubert G, Pilet-Nayel M L, Lejeune-Hénaut I, Warkentin T D, Burstin J. Genomic tools in pea breeding programs: status and perspectives. Front Plant Sci, 2015, 6: 1037.
doi: 10.3389/fpls.2015.01037 pmid: 26640470
[7] Li G, Liu R, Xu R F, Varshney R K, Ding H F, Li M W, Yan X, Huang S X, Li J, Wang D, Ji Y S, Wang C Y, He J G, Luo Y F, Gao S H, Wei P C, Zong X X, Yang T. Development of an Agrobacterium-mediated CRISPR/Cas9 system in pea (Pisum sativum L.). Crop J, 2023, 11: 132-139.
[8] 郭丹丽, 黄先忠. 植物开花控制基因FLOWERING LOCUS T (FT)功能多样性的研究进展. 植物学研究, 2014, 11: 218-226.
Guo D L, Huang X Z. Progress on the multifaceted roles of flowering control gene FLOWERING LOCUS T (FT). Bot Res, 2014, 11: 218-226 (in Chinese with English abstract).
[9] 王桢, 杨柳燕, 裴卫忠, 李心, 杨贞, 张永春. 西红花FT同源基因的表达及功能分析. 植物研究, 2022, 42: 224-233.
doi: 10.7525/j.issn.1673-5102.2022.02.007
Wang Z, Yang L Y, Pei W Z, Li X, Yang Z, Zhang Y C. Expression and functional analysis of FT homologous genes in saffron (Crocus sativus L.). Bull Bot Res, 2022, 42: 224-233 (in Chinese with English abstract).
[10] Su Q, Chen L, Cai Y P, Wang L W, Chen Y Y, Zhang J L, Liu L P, Zhang Y, Yuan S, Gao Y, Sun S, Han T F, Hou W S. The FLOWERING LOCUS T 5b positively regulates photoperiodic flowering and improves the geographical adaptation of soybean. Plant Cell Environ, 2024, 47: 246-258.
[11] Cai Y P, Chen L, Liu X J, Guo C, Sun S, Wu C X, Jiang B J, Han T F, Hou W S. CRISPR/Cas9-mediated targeted mutagenesis of GmFT2a delays flowering time in soya bean. Plant Biotechnol J, 2018, 16: 176-185.
[12] Zheng R, Meng X B, Hu Q L, Yang B, Cui G C, Li Y Y, Zhang S J, Zhang Y, Ma X, Song X G, Liang S S, Li Y H, Li J Y, Yu H, Luan W J. OsFTL12, a member of FT-like family, modulates the heading date and plant architecture by florigen repression complex in rice. Plant Biotechnol J, 2023, 21: 1343-1360.
[13] Zhang L, Zhang F, Zhou X, Poh T X, Xie L J, Shen J, Yang L J, Song S Y, Yu H, Chen Y. The tetratricopeptide repeat protein OsTPR075 promotes heading by regulating florigen transport in rice. Plant Cell, 2022, 34: 3632-3646.
[14] Yang H, Ren S L, Yu S Y, Pan H F, Li T D, Ge S X, Zhang J, Xia N S. Methods favoring homology-directed repair choice in response to CRISPR/Cas9 induced-double strand breaks. Int J Mol Sci, 2020, 21: 6461.
[15] Huang S, Yan Y L, Su F, Huang X R, Xia D D, Jiang X X, Dong Y H, Lyu P, Chen F Y, Lyu Y W. Research progress in gene editing technology. Front Biosci, 2021, 26: 916-927.
[16] Zhang C, Quan R F, Wang J F. Development and application of CRISPR/Cas9 technologies in genomic editing. Hum Mol Genet, 2018, 27: R79-R88.
[17] Wen W, Quan Z J, Li S A, Yang Z X, Fu Y W, Zhang F, Li G H, Zhao M, Yin M D, Xu J, Zhang J P, Cheng T, Zhang X B. Effective control of large deletions after double-strand breaks by homology-directed repair and dsODN insertion. Genome Biol, 2021, 22: 236.
doi: 10.1186/s13059-021-02462-4 pmid: 34416913
[18] Song Y N, Liu Z Q, Zhang Y X, Chen M, Sui T T, Lai L X, Li Z J. Large-fragment deletions induced by Cas9 cleavage while not in the BEs system. Mol Ther-Nucleic Acids, 2020, 21: 523-526.
[19] Giannoukos G, Ciulla D M, Marco E, Abdulkerim H S, Barrera L A, Bothmer A, Dhanapal V, Gloskowski S W, Jayaram H, Maeder M L, Skor M N, Wang T Y, Myer V E, Wilson C J. UDiTaS™ a genome editing detection method for indels and genome rearrangements. BMC Genomics, 2018, 19: 212.
doi: 10.1186/s12864-018-4561-9 pmid: 29562890
[20] Huang A X, Cui T T, Zhang Y, Ren X F, Wang M F, Jia L Y, Zhang Y H, Wang G D. CRISPR/Cas9-engineered large fragment deletion mutations in Arabidopsis CEP peptide-encoding genes reveal their role in primary and lateral root formation. Plant Cell Physiol, 2023, 64: 19-26.
[21] Ding Y, Zhou S W, Ding Q, Cai B, Zhao X E, Zhong S, Jin M H, Wang X L, Ma B H, Chen Y L. The CRISPR/Cas9 induces large genomic fragment deletions of MSTN and phenotypic changes in sheep. J Integr Agric, 2021, 19: 1065-1073.
[22] Oo Z M, Adlat S, Sah R K, Myint M Z Z, Hayel F, Chen Y, Htoo H, Bah F B, Bahadar N, Chan M K, Zhang L Q, Feng X C, Zheng Y W. Brain transcriptome study through CRISPR/Cas9 mediated mouse Dip2c gene knock-out. Gene, 2020, 758: 144975.
[23] Wang Y, Geng L Z, Yuan M L, Wei J, Jin C, Li M, Yu K, Zhang Y, Jin H B, Wang E, Chai Z J, Fu X D, Li X G. Deletion of a target gene in indica rice via CRISPR/Cas9. Plant Cell Rep, 2017, 36: 1333-1343.
[24] Zhou H B, Liu B, Weeks D P, Spalding M H, Yang B. Large chromosomal deletions and heritable small genetic changes induced by CRISPR/Cas9 in rice. Nucleic Acids Res, 2014, 42: 10903-10914.
doi: 10.1093/nar/gku806 pmid: 25200087
[25] Gao H R, Gadlage M J, Lafitte H R, Lenderts B, Yang M Z, Schroder M, Farrell J, Snopek K, Peterson D, Feigenbutz L, Jones S, St Clair G, Rahe M, Sanyour-Doyel N, Peng C N, Wang L J, Young J K, Beatty M, Dahlke B, Hazebroek J, Greene T W, Cigan A M, Chilcoat N D, Meeley R B. Superior field performance of waxy corn engineered using CRISPR-Cas9. Nat Biotechnol, 2020, 38: 579-581.
doi: 10.1038/s41587-020-0444-0 pmid: 32152597
[26] Li Y N, Huang B Y, Chen J, Huang L L, Xu J H, Wang Y Y, Cui G H, Zhao H M, Xin B B, Song W B, Zhu J K, Lai J S. Targeted large fragment deletion in plants using paired crRNAs with type I CRISPR system. Plant Biotechnol J, 2023, 21: 2196-2208.
[27] Niu F J, Jiang Q Y, Sun X J, Hu Z, Wang L X, Zhang H. Large DNA fragment deletion in lncRNA77580 regulates neighboring gene expression in soybean (Glycine max). Funct Plant Biol, 2021, 48: 1139-1147.
[28] Duan K X, Cheng Y Y, Ji J, Wang C C, Wei Y S, Wang Y C. Large chromosomal segment deletions by Crispr/Lbcpf1-mediated multiplex gene editing in soybean. J Integr Plant Biol, 2021, 63: 1620-1631.
doi: 10.1111/jipb.13158
[29] Kong F J, Liu B H, Xia Z J, Sato S, Kim B M, Watanabe S, Yamada T, Tabata S, Kanazawa A, Harada K, Abe J. Two coordinately regulated homologs of Flowering Locus T are involved in the control of photoperiodic flowering in soybean. Plant Physiol, 2010, 154: 1220-1231.
[30] Čermák T, Curtin S J, Gil-Humanes J, Čegan R, Kono T J Y, Konečná E, Belanto J J, Starker C G, Mathre J W, Greenstein R L, Voytas D F. A multipurpose toolkit to enable advanced genome engineering in plants. Plant Cell, 2017, 29: 1196-1217.
[31] Liu Q, Wang C, Jiao X Z, Zhang H W, Song L L, Li Y X, Gao C X, Wang K J. Hi-Tom: a platform for high-throughput tracking of mutations induced by Crispr/Cas systems. Sci China Life Sci, 2019, 62: 1-7.
doi: 10.1007/s11427-018-9402-9 pmid: 30446870
[32] Paul J W 3rd, Qi Y P. Crispr/Cas9 for plant genome editing: accomplishments, problems and prospects. Plant Cell Rep, 2016, 35: 1417-1427.
doi: 10.1007/s00299-016-1985-z pmid: 27114166
[33] Bortesi L, Zhu C F, Zischewski J, Perez L, Bassie L, Nadi R, Forni G, Lade S B, Soto E, Jin X, Medina V, Villorbina G, Munoz P, Farre G, Fischer R, Twyman R M, Capell T, Christou P, Schillberg S. Patterns of CRISPR/Cas9 activity in plants, animals and microbes. Plant Biotechnol J, 2016, 14: 2203-2216.
doi: 10.1111/pbi.12634 pmid: 27614091
[34] Zhang Q W, Yin K Q, Liu G W, Li S N, Li M G, Qiu J L. Fusing T5 exonuclease with Cas9 and Cas12a increases the frequency and size of deletion at target sites. Sci China Life Sci, 2020, 63: 1918-1927.
[35] Cai Y P, Chen L, Sun S, Wu C X, Yao W W, Jiang B J, Han T F, Hou W S. CRISPR/Cas9-mediated deletion of large genomic fragments in soybean. Int J Mol Sci, 2018, 19: 3835.
[36] Gao C X. Genome engineering for crop improvement and future agriculture. Cell, 2021, 184: 1621-1635.
doi: 10.1016/j.cell.2021.01.005 pmid: 33581057
[1] YANG Qi-Rui, LI Lan-Tao, ZHANG Duo, WANG Ya-Xian, SHENG Kai, WANG Yi-Lun. Effect of phosphorus application on yield, quality, light temperature physiological characteristics, and root morphology in summer peanut [J]. Acta Agronomica Sinica, 2024, 50(7): 1841-1854.
[2] LI Hai-Fen, LU Qing, LIU Hao, WEN Shi-Jie, WANG Run-Feng, HUANG Lu, CHEN Xiao-Ping, HONG Yan-Bin, LIANG Xuan-Qiang. Genome-wide identification and expression analysis of AhGA3ox gene family in peanut (Arachis hypogaea L.) [J]. Acta Agronomica Sinica, 2024, 50(4): 932-943.
[3] LU Qing, LIU Hao, LI Hai-Fen, WANG Run-Feng, HUANG Lu, LIANG Xuan-Qiang, CHEN Xiao-Ping, HONG Yan-Bin, LIU Hai-Yan, LI Shao-Xiong. Research on oil content screen with genomic selection and near infrared ray in peanut (Arachis hypogaea L.) [J]. Acta Agronomica Sinica, 2024, 50(4): 969-980.
[4] ZHANG Yue, WANG Zhi-Hui, HUAI Dong-Xin, LIU Nian, JIANG Hui-Fang, LIAO Bo-Shou, LEI Yong. Research progress on genetic basis and QTL mapping of oil content in peanut seed [J]. Acta Agronomica Sinica, 2024, 50(3): 529-542.
[5] LI Zhi-Kun, JIA Wen-Hua, ZHU Wei, LIU Wei, MA Zong-Bin. Effects of nitrogen fertilizer and DPC combined application on temporal distribution of cotton yield and fiber quality [J]. Acta Agronomica Sinica, 2024, 50(2): 514-528.
[6] ZHI Chen-Yang, XUE Xiao-Meng, WU Jie, LI Xiong-Cai, WANG Jin, YAN Li-Ying, WANG Xin, CHEN Yu-Ning, KANG Yan-Ping, WANG Zhi-Hui, HUAI Dong-Xin, HONG Yan-Bin, JIANG Hui-Fang, LEI Yong, LIAO Bo-Shou. Analysis of genetic model of sucrose content in peanut [J]. Acta Agronomica Sinica, 2024, 50(1): 32-41.
[7] SHI Yu-Xin, LIU Xin-Yue, SUN Jian-Qiang, LI Xiao-Fei, GUO Xiao-Yang, ZHOU Ya, QIU Li-Juan. Knockout of GmBADH1 gene using CRISPR/Cas9 technique to reduce salt tolerance in soybean [J]. Acta Agronomica Sinica, 2024, 50(1): 100-109.
[8] HU Yan-Juan, XUE Dan, GENG Di, ZHU Mo, WANG Tian-Qiong, WANG Xiao-Xue. Mutation effects of OsCDF1 gene and its genomic variations in rice [J]. Acta Agronomica Sinica, 2023, 49(9): 2362-2372.
[9] HU Mei-Ling, ZHI Chen-Yang, XUE Xiao-Meng, WU Jie, WANG Jin, YAN Li-Ying, WANG Xin, CHEN Yu-Ning, KANG Yan-Ping, WANG Zhi-Hui, HUAI Dong-Xin, JIANG Hui-Fang, LEI Yong, LIAO Bo-Shou. Establishment of near-infrared reflectance spectroscopy model for predicting sucrose content of single seed in peanut [J]. Acta Agronomica Sinica, 2023, 49(9): 2498-2504.
[10] WANG Fei-Fei, ZHANG Sheng-Zhong, HU Xiao-Hui, CHU Ye, CUI Feng-Gao, ZHONG Wen, ZHAO Li-Bo, ZHANG Tian-Yu, GUO Jin-Tao, YU Hao-Liang, MIAO Hua-Rong, CHEN Jing. Comparative transcriptome profiling of dormancy regulatory network in peanut [J]. Acta Agronomica Sinica, 2023, 49(9): 2446-2461.
[11] XU Yang, ZHANG Dai, KANG Tao, WEN Sai-Qun, ZHANG Guan-Chu, DING Hong, GUO Qing, QIN Fei-Fei, DAI Liang-Xiang, ZHANG Zhi-Meng. Effects of salt stress on ion dynamics and the relative expression level of salt tolerance genes in peanut seedlings [J]. Acta Agronomica Sinica, 2023, 49(9): 2373-2384.
[12] HUANG Li, CHEN Wei-Gang, LI Wei-Tao, YU Bo-Lun, GUO Jian-Bin, ZHOU Xiao-Jing, LUO Huai-Yong, LIU Nian, LEI Yong, LIAO Bo-Shou, JIANG Hui-Fang. Identification of major QTLs for nodule formation in peanut [J]. Acta Agronomica Sinica, 2023, 49(8): 2097-2104.
[13] LI Xing, YANG Hui, LUO Lu, LI Hua-Dong, ZHANG Kun, ZHANG Xiu-Rong, LI Yu-Ying, YU Hai-Yang, WANG Tian-Yu, LIU Jia-Qi, WANG Yao, LIU Feng-Zhen, WAN Yong-Shan. QTLs mapping for single-seed weight of cultivated peanut [J]. Acta Agronomica Sinica, 2023, 49(8): 2160-2170.
[14] WAN Yi-Man, XIAO Sheng-Hui, BAI Yi-Chao, FAN Jia-Yin, WANG Yan, WU Chang-Ai. Establishment and optimization of a high-efficient hairy-root system in foxtail millet (Setaria italica L.) [J]. Acta Agronomica Sinica, 2023, 49(7): 1758-1768.
[15] SHI Pei-Yao, CHEN Li-Juan, SUN Hao-Jie, CHENG Meng-Hao, XIAO Jin, YUAN Chun-Xia, WANG Xiu-E, WANG Hai-Yan. Development of specific oligonucleotide probe library of Aegilops comosa and construction of oligo-FISH karyotype [J]. Acta Agronomica Sinica, 2023, 49(6): 1455-1465.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!