Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2024, Vol. 50 ›› Issue (8): 2106-2121.doi: 10.3724/SP.J.1006.2024.34215

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Effects of straw returning methods and sowing depth on soil physical properties and emergence characteristics of summer peanut

ZHU Rong-Yu1(), ZHAO Meng-Jie1, YAO Yun-Feng1, LI Yan-Hong2, LI Xiang-Dong1, LIU Zhao-Xin1,*()   

  1. 1College of Agriculture, Shandong Agricultural University / National Key Laboratory of Wheat Improvement, Tai’an 271018, Shandong, China
    2Yantai Agricultural Technology Extension Center, Yantai 264001, Shandong, China
  • Received:2023-12-30 Accepted:2024-04-01 Online:2024-08-12 Published:2024-05-06
  • Contact: * E-mail: liuxiaoxin0110@163.com
  • Supported by:
    Youth Fund of National Natural Science Foundation of China(32301953);Youth Fund of Natural Science Foundation of Shandong Province(ZR2022QC040);Innovation Team Project for Modern Agricultural Industrious Technology System of Shandong Province(SDAIT-04-06)

Abstract:

To explore the effects of sowing depth and different wheat straw returning methods on soil physical properties, peanut hypocotyl growth dynamics and seedling emergence rate, a wheat-peanut annual positioning experiment was conducted. Peanut season was designed with a split-plot experiment. The main area was wheat straw returning methods, including moldboard plow tillage with wheat residue returning (P), rotary tillage with wheat residue returning (R), no tillage with wheat residue mulching (N). The split area was peanut varieties, which were large-seed peanut variety Shanhua 108 (B) and small-seed peanut variety Shanhua 106 (S). The split zone was the sowing depth, with 3 cm (3), 5 cm (5), 9 cm (9), 15 cm (15) in 2021 and 3 cm (3), 6 cm (6), 9 cm (9) in 2022. The results showed that moldboard plow tillage and rotary tillage increased soil temperature, but decreased soil water content. The no tillage with wheat residue mulching treatment significantly increased the soil compactness of soil layer below 6 cm. Under the same straw returning method, both varieties showed that the appropriate shallow sowing (sowing depth of 3 cm, 6 cm) significantly increased the emergence rate, deep sowing (sowing depth > 9 cm) increased hypocotyl elongation rate, increased cotyledon lipase activity, and decreased cotyledon dry weight, sucrose and soluble sugar content in cotyledons. Compared with PB3, the contents of soluble sugar and sucrose in cotyledons of PB6 and PB9 decreased by 19.72%, 39.43% and 14.15%, 40.23%, respectively. Compared with PS3, the contents of soluble sugar and sucrose in cotyledons of PS6 and PS9 decreased by 10.08%, 24.84% and 20.04%, 37.08%, respectively, indicating that deep sowing increased the nutrient consumption of cotyledons during seedling emergence. The grain yield of tillage and rotary tillage was significantly higher than that of no-tillage. With the increase of sowing depth, the number of plants per unit area and the number of pods per plant decreased significantly under different straw returning methods. Compared with PB6, the pod yield of PB3 and PB9 decreased by 7.47% and 14.94%, respectively. Compared with PS3, the pod yield of PS6 and PS9 decreased by 11.66% and 24.03%, respectively. Therefore, moldboard plow tillage with wheat residue returning treatment was conducive to improving soil structure, shortening peanut emergence time, increasing emergence rate and peanut pod yield. Under this condition, the suitable sowing depth of large-grain peanut varieties and small-small peanut varieties was 5-6 cm and 3 cm, respectively.

Key words: peanut, straw returning, sowing depth, emergence characteristics

Table 1

Experimental treatment operation modes"

处理
Treatment
耕作方式
Tillage mode
PB3, PB5, PB6, PB9, PB15 小麦秸秆全量粉碎, 深翻土壤并旋耕整平地面后播种, 播种花生品种山花108, 播种深度为3 cm、5 cm、6 cm、9 cm、15 cm。
Wheat straw was completely crushed, the soil was deeply ploughed and the ground was leveled by rotary tillage and then sown. The peanut variety Shanhua 108 was sown at a depth of 3 cm, 5 cm, 6 cm, 9 cm, and 15 cm.
RB3, RB5, RB6, RB9, RB15 小麦秸秆全量粉碎, 旋耕还田并整平地面后播种, 播种花生品种山花108, 播种深度为3 cm、5 cm、6 cm、9 cm、15 cm。
Wheat straw was completely crushed, rotary tillage was returned to the field and the ground was leveled before sowing. The peanut variety Shanhua 108 was sown at a depth of 3 cm, 5 cm, 6 cm, 9 cm, and 15 cm.
NB3, NB5, NB6, NB9, NB15 小麦秸秆粉碎后移出地块, 播种后将秸秆均匀覆盖地表, 播种花生品种山花108, 播种深度为3 cm、5 cm、6 cm、9 cm、15 cm。
Wheat straw was crushed and moved out of the plot. After sowing, the straw was evenly covered on the surface, and the peanut variety Shanhua 108 was sown. The sowing depth was 3 cm, 5 cm, 6 cm, 9 cm, and 15 cm.
PS3, PS5, PS6, PS9, PS15 小麦秸秆全量粉碎, 深翻土壤并旋耕整平地面后播种, 播种花生品种山花106, 播种深度为3 cm、5 cm、6 cm、9 cm、15 cm。
Wheat straw was completely crushed, the soil was deeply ploughed and the ground was leveled by rotary tillage and then sown. The peanut variety Shanhua 106 was sown at the sowing depth of 3 cm, 5 cm, 6 cm, 9 cm, and 15 cm.
RS3, RS5, RS6, RS9, RS15 小麦秸秆全量粉碎, 旋耕还田并整平地面后播种, 播种花生品种山花106, 播种深度为3 cm、5 cm、6 cm、9 cm、15 cm。
Wheat straw was fully crushed, rotary tillage and leveling the ground before sowing. The peanut variety Shanhua 106 was sown at a depth of 3 cm, 5 cm, 6 cm, 9 cm, and 15 cm.
NS3, NS5, NS6, NS9, NS15 小麦秸秆粉碎后移出地块, 播种后将秸秆均匀覆盖地表, 播种花生品种山花106, 播种深度为3 cm、5 cm、6 cm、9 cm、15 cm。
Wheat straw was crushed and moved out of the plot. After sowing, the straw was evenly covered on the surface, and the peanut variety Shanhua 106 was sown. The sowing depth was 3 cm, 5 cm, 6 cm, 9 cm, and 15 cm.

Table 2

Effects of straw returning modes on soil temperature"

播种后天数
Days after sowing
处理
Treatment
土壤温度Soil temperature (℃)
3 cm 6 cm 9 cm 12 cm 15 cm
2 d 翻耕还田P 31.7 ab 31.1 b 30.7 a 30.2 ab 29.8 ab
旋耕还田R 32.4 a 31.8 a 31.0 a 30.7 a 30.5 a
免耕覆盖N 30.9 b 30.5 c 30.1 b 29.6 b 29.3 b
4 d 翻耕还田P 34.9 a 34.3 a 33.8 a 33.3 a 33.0 a
旋耕还田R 34.8 a 34.5 a 34.0 a 33.5 a 32.8 a
免耕覆盖N 33.6 b 33.3 b 32.8 b 32.2 b 31.9 b
6 d 翻耕还田P 34.8 ab 34.5 a 33.9 a 33.6 a 33.2 ab
旋耕还田R 35.0 a 34.5 a 34.1 a 33.8 a 33.0 a
免耕覆盖N 34.3 b 33.6 b 33.3 b 33.0 b 32.4 b
8 d 翻耕还田P 32.7 a 32.2 a 31.3 a 30.9 a 30.4 a
旋耕还田R 32.2 a 31.5 b 31.2 a 30.7 a 29.8 a
免耕覆盖N 30.9 b 30.0 c 29.6 b 29.1 b 28.8 b
10 d 翻耕还田P 34.4 a 34.0 a 33.3 a 32.6 a 32.3 a
旋耕还田R 34.8 a 34.0 a 33.4 a 33.1 a 32.7 a
免耕覆盖N 33.4 b 32.9 b 32.0 b 31.6 b 31.4 b
12 d 翻耕还田P 28.6 b 28.1 b 27.5 b 27.0 a 26.7 a
旋耕还田R 28.2 ab 27.8 b 27.3 b 26.8 b 26.6 a
免耕覆盖N 28.8 a 29.1 a 28.1 a 27.5 b 26.8 a

Table 3

Effects of straw returning modes on soil moisture"

播种后天数
Days after sowing
处理
Treatment
土壤含水量Soil moisture (%)
3 cm 6 cm 9 cm 12 cm 15 cm
2 d 翻耕还田P 29.8 b 30.7 b 31.1 b 31.3 b 31.7 b
旋耕还田R 30.0 b 30.6 b 30.9 b 31.2 b 31.7 b
免耕覆盖N 31.0 a 31.7 a 32.6 a 33.0 a 33.4 a
4 d 翻耕还田P 27.0 b 27.4 b 28.5 b 29.3 b 30.1 ab
旋耕还田R 26.3 c 26.8 c 28.1 b 28.9 b 29.7 b
免耕覆盖N 27.7 a 29.1 a 29.8 a 30.3 a 30.6 a
6 d 翻耕还田P 25.7 ab 26.5 a 27.6 a 28.6 ab 29.1 b
旋耕还田R 25.3 b 26.5 a 27.3 a 28.2 b 28.8 b
免耕覆盖N 26.5 a 27.5 a 28.2 a 29.0 a 29.9 a
8 d 翻耕还田P 28.4 a 29.0 ab 29.8 ab 30.3 a 30.9 a
旋耕还田R 28.2 a 28.8 b 29.5 b 30.1 a 30.7 a
免耕覆盖N 28.4 a 29.4 a 30.2 a 30.7 a 31.0 a
10 d 翻耕还田P 26.4 b 27.0 b 28.1 b 29.0 ab 29.6 b
旋耕还田R 25.8 b 26.7 b 27.7 b 28.6 b 29.3 b
免耕覆盖N 27.1 a 28.3 a 29.0 a 29.7 a 30.2 a
12 d 翻耕还田P 31.5 a 32.3 b 33.3 b 34.1 ab 34.4 ab
旋耕还田R 32.1 a 32.0 b 32.9 c 33.4 b 33.8 b
免耕覆盖N 31.4 a 33.4 a 34.0 a 34.5 a 34.8 a

Table 4

Effects of straw returning modes on soil compaction"

播种后天数
Days after sowing
处理
Treatment
土壤紧实度 Soil compaction (kPa)
3 cm 6 cm 9 cm 12 cm 15 cm
2 d 翻耕还田P 388.6 a 497.7 a 589.7 b 698.1 b 927.0 c
旋耕还田R 426.1 a 505.2 a 623.5 b 834.5 a 1030.0 b
免耕覆盖N 265.2 b 544.3 a 801.9 a 919.4 a 1108.2 a
4 d 翻耕还田P 524.1 a 539.0 b 692.5 b 797.0 b 932.9 c
旋耕还田R 533.1 a 619.5 a 742.1 ab 912.9 a 1047.2 b
免耕覆盖N 313.7 b 662.7 a 857.7 a 992.5 a 1157.0 a
6 d 翻耕还田P 569.5 a 588.5 a 715.2 b 854.6 b 992.1 b
旋耕还田R 549.1 a 631.7 a 782.9 ab 914.2 b 1045.5 b
免耕覆盖N 317.4 b 645.2 a 817.2 a 1036.5 a 1222.1 a
8 d 翻耕还田P 360.4 ab 506.7 a 598.0 a 686.2 b 796.6 b
旋耕还田R 442.5 a 419.1 b 580.5 a 660.2 b 860.8 b
免耕覆盖N 297.3 b 397.9 b 594.6 a 785.9 a 1027.1 a
10 d 翻耕还田P 515.8 a 637.9 a 799.9 a 920.7 a 1064.3 a
旋耕还田R 477.0 a 664.3 a 819.2 a 931.3 a 1105.7 a
免耕覆盖N 381.0 b 703.5 a 826.3 a 975.3 a 1156.7 a
12 d 翻耕还田P 376.4 a 413.0 a 579.8 b 759.7 c 914.7 b
旋耕还田R 364.8 a 434.4 a 590.9 b 832.1 b 930.8 b
免耕覆盖N 280.5 b 430.5 a 659.7 a 974.8 a 1134.4 a

Fig. 1

Effects of straw returning modes and sowing depth on dry weight of peanut cotyledon The treatments of PB3, PB5, PB6, PB9, and PB15 were wheat residue returning, peanut variety Shanhua 108 was sown at a depth of 3 cm, 5 cm, 6 cm, 9 cm, and 15 cm, respectively. The treatments of RB3, RB5, RB6, RB9, and RB15 were rotary tillage with wheat residue returning, peanut variety Shanhua 108 was sown at a depth of 3 cm, 5 cm, 6 cm, 9 cm, and 15 cm, respectively. The treatments of NB3, NB5, NB6, NB9, and NB15 were no tillage with wheat residue mulching, peanut variety Shanhua 108 was sown at a depth of 3 cm, 5 cm, 6 cm, 9 cm, and 15 cm, respectively. The treatments of PS3, PS5, PS6, PS9, and PS15 were wheat residue returning, peanut variety Shanhua 106 was sown at a depth of 3 cm, 5 cm, 6 cm, 9 cm and 15 cm, respectively. The treatments of RS3, RS5, RS6, RS9, and RS15 were rotary tillage with wheat residue returning, the peanut variety Shanhua 106 was sown at a depth of 3 cm, 5 cm, 6 cm, 9 cm, and 15 cm, respectively. The treatments of NS3, NS5, NS6, NS9, and NS15 were no tillage with wheat residue mulching, peanut variety Shanhua 106 was sown at a depth of 3 cm, 5 cm, 6 cm, 9 cm and 15 cm, respectively."

Fig. 2

Effects of straw returning modes and sowing depth on lipase activity in peanut Treatments are the same as those given in Fig. 1."

Fig. 3

Effects of straw returning modes and sowing depth on soluble sugar content in peanut cotyledon Treatments are the same as those given in Fig. 1. Different lowercase letters indicate significant difference at P < 0.05 among treatments in the same year."

Fig. 4

Effects of straw returning modes and sowing depth on sucrose content in peanut cotyledon Treatments are the same as those given in Fig. 1. Different lowercase letters indicate significant difference at P < 0.05 among treatments in the same year."

Fig. 5

Effects of straw returning modes and sowing depth on hypocotyl length in peanut Treatments are the same as those given in Fig. 1."

Table 5

Effects of straw returning modes and sowing depth on the emergence rate of peanut in 2021"

处理
Treatment
出苗率Emergence rate
Day 5 Day 8 Day 11 Day 14 Day 17 Day 20
PB3 34.2 64.2 79.2 87.5
PB5 20.0 51.7 81.7 85.0 85.8
PB9 13.3 40.0 70.8 77.5
PB15 19.2 50.8 74.2 76.7
RB3 10.0 30.0 51.7 89.2
RB5 4.2 26.7 45.0 79.2 85.8
RB9 15.0 37.5 70.0 80.0
RB15 10.8 38.3 60.8 60.0
NB3 22.5 53.3 82.5 90.8
NB5 19.2 47.5 67.5 75.0 77.5
NB9 11.7 35.0 50.0 51.7
NB15 1.7 2.5 2.5
PS3 16.7 38.3 74.2 85.0
PS5 4.2 10.8 17.5 26.7 48.3 50.0
PS9 9.2 23.3 45.0 51.7
PS15 11.7 35.8 44.2 46.7
RS3 22.5 36.7 72.5 82.5
RS5 13.3 23.3 52.5 80.8 81.7
RS9 3.3 15.0 46.7 50.8
RS15 8.3 35.0 48.3 48.3
NS3 20.8 46.7 65.8 82.5
NS5 15.0 30.8 52.5 66.7 70.0
NS9 5.0 30.0 51.7 55.8
NS15 2.5 5.0 5.8

Table 6

Effects of straw returning modes and sowing depth on the emergence rate of peanut in 2022"

处理
Treatment
出苗率 Emergence rate
Day 4 Day 5 Day 6 Day 7 Day 8 Day 10 Day 12 Day 14
PB3 21.7 49.6 77.5 82.9 87.1 90.8
PB6 0 15.8 40.4 69.2 79.2 87.5 87.9
PB9 0 0 7.9 23.8 36.7 65.0 69.2 70.8
RB3 15.4 42.1 58.3 70.8 80.4 87.5
RB6 0 12.9 38.3 65.8 81.3 82.5 84.6
RB9 0 0 1.3 6.7 13.8 59.2 65.8 69.2
NB3 13.3 36.7 52.1 68.3 78.3 87.9
NB6 0 10.4 22.5 53.3 75.8 79.6 82.1
NB9 0 0 0.4 5.8 12.1 41.3 55.8 63.3
PS3 17.1 35.0 64.2 78.3 83.8 88.3
PS6 0 12.1 30.4 50.0 71.7 85.8 86.7
PS9 0 0 0.8 2.9 16.3 43.3 57.1 62.5
RS3 12.1 20 38.3 68.8 80.0
RS6 0 5.4 12.9 48.8 75.4 87.5 87.9
RS9 0 0 1.3 5.4 11.3 55.4 65.4 67.5
NS3 7.9 17.9 26.3 65.8 83.3 86.3
NS6 0 5.0 11.3 58.3 70.0 79.6 83.3
NS9 0 0 0.4 2.5 7.5 33.3 43.3 45.8

Table 7

Correlation between physiological characteristics of cotyledon and hypocotyl in Shanhua 108"

特性
Characteristics
子叶干重
Cotyledon dry weight
子叶脂肪酶
Cotyledon
LPS
子叶可溶性糖
Cotyledon
soluble sugar
子叶蔗糖
Cotyledon
sucrose
下胚轴长度
Hypocotyl
length
出苗率Emergence rate 0.597** -0.749** 0.698** 0.690** -0.734**
子叶干重Cotyledon dry weight -0.783** 0.858** 0.861** -0.818**
子叶脂肪酶Cotyledon LPS -0.861** -0.885** 0.881**
子叶可溶性糖Cotyledon soluble sugar 0.967** -0.944**
子叶蔗糖Cotyledon sucrose -0.968**

Table 8

Correlation between physiological characteristics of cotyledon and hypocotyl in Shanhua 106"

特性
Characteristics
子叶干重
Cotyledon dry weight
子叶脂肪酶
Cotyledon
LPS
子叶可溶性糖
Cotyledon soluble sugar
子叶蔗糖
Cotyledon
sucrose
下胚轴长度
Hypocotyl
length
出苗率Emergence rate 0.472** -0.814** 0.731** 0.734** -0.829**
子叶干重Cotyledon dry weight -0.691** 0.802** 0.828** -0.756**
子叶脂肪酶Cotyledon LPS -0.839** -0.852** 0.890**
子叶可溶性糖Cotyledon soluble sugar 0.924** -0.911**
子叶蔗糖Cotyledon sucrose -0.954**

Table 9

Effects of straw returning modes and sowing depth on yield and component factors of Shanhua 108"

年份
Year
处理
Treatment
荚果产量
Pod yield
(kg hm-2)
单位面积株数
Plants per unit area (×104 hm-2)
单株结果数
Pods per plant (ind)
每千克果数
Pods per kg
(ind kg-1)
籽仁产量
Kernel yield
(kg hm-2)
出仁率
Kernel rate
(%)
2021 PB3 3259.3 bcd 22.4 ab 12.2 d 647.8 f 2147.4 cd 65.9 bc
PB5 3911.1 a 23.9 a 16.9 ab 691.1 e 2612.1 a 66.8 abc
PB9 3896.3 a 21.2 ab 16.8 ab 722.2 de 2564.8 ab 65.7 bc
PB15 3000.0 cde 21.3 ab 14.8 bc 793.3 b 2032.3 de 67.8 ab
RB3 3622.2 ab 23.4 a 14.5 bcd 732.2 cd 2437.5 ab 67.3 ab
RB5 3377.8 bc 24.3 a 13.6 cd 768.4 bc 2324.1 bc 68.8 a
RB9 2844.4 de 22.1 ab 12.6 cd 716.7 de 1896.4 de 67.1 abc
RB15 2711.1 e 17.0 bc 17.8 a 834.4 a 1827.1 e 67.4 ab
NB3 2888.9 de 22.4 ab 12.6 cd 725.6 de 1933.8 de 67.0 abc
NB5 2222.2 f 17.2 bc 13.3 cd 730.0 cde 1479.3 f 66.6 bc
NB9 2059.2 f 14.5 c 16.1 ab 780.0 b 1334.8 f 65.0 c
2022 PB3 3855.6 b 23.6 a 14.5 ab 716.0 ab 2512.0 b 65.1 a
PB6 4166.7 a 22.9 ab 14.8 ab 725.3 a 2730.3 a 65.5 a
PB9 3544.4 c 18.0 d 16.1 a 729.3 a 2312.4 c 65.2 a
RB3 3577.8 c 22.8 ab 13.9 bc 716.7 ab 2356.6 c 65.9 a
RB6 3888.9 b 21.9 b 14.4 ab 692.7 bcd 2539.8 b 65.3 a
RB9 3444.5 c 18.4 cd 13.8 bc 703.3 abc 2239.5 c 65.0 a
NB3 3044.5 d 19.9 c 13.8 bc 648.0 e 1989.3 d 65.3 a
NB6 2888.9 d 19.8 c 13.4 bc 670.0 de 1875.1 d 64.9 a
NB9 2600.0 e 15.0 e 12.3 c 683.3 cd 1695.1 e 65.2 a
方差分析ANOVA
秸秆还田方式(T) ** ** NS ** ** **
播种深度(D) ** * ** ** ** **
T×D ** ** ** * ** *

Table 10

Effects of straw returning modes and sowing depth on yield and component factors of Shanhua 106"

年份
Year
处理
Treatment
荚果产量
Pod yield
(kg hm-2)
单位面积株数
Plants per unit area (×104 hm-2)
单株结果数
Pods per plant
(ind)
每千克果数
Pods per kg
(ind kg-1)
籽仁产量
Kernel yield
(kg hm-2)
出仁率
Kernel rate
(%)
2021 PS3 3022.2 a 24.0 a 16.3 de 945.6 efg 2175.1 a 71.9 bcd
PS5 2459.3 bc 13.9 ef 21.1 a 933.3 fg 1733.3 bc 70.5 d
PS9 2296.3 cd 14.4 ef 22.6 a 1035.6 abc 1642.1 cd 71.5 bcd
PS15 1911.1 de 12.9 f 20.1 abc 1040.0 ab 1297.9 e 67.9 e
RS3 2785.2 ab 23.3 ab 15.4 de 976.7 def 2029.6 ab 72.9 ab
RS5 2829.6 ab 22.2 abc 18.0 bcd 1014.4 bcd 2079.3 a 73.5 a
RS9 1792.6 e 11.9 f 18.0 bcd 918.9 g 1294.0 e 72.2 abc
RS15 2177.8 cde 13.5 f 20.9 ab 952.2 efg 1545.1 cde 70.8 cd
NS3 2102.2 cde 19.0 bcd 14.0 e 992.2 bcde 1498.7 cde 71.3 cd
NS5 2281.5 cd 18.1 cde 16.6 de 984.4 cdef 1614.9 cde 70.8 cd
NS9 1985.2 de 15.6 def 17.4 cd 1076.1 a 1324.6 de 66.9 e
2022 PS3 3144.4 a 22.1 a 22.3 a 920.0 c 2271.5 a 71.9 a
PS6 2777.8 bc 21.5 a 18.1 b 914.7 c 1980.2 bc 71.3 a
PS9 2388.9 d 16.6 c 19.7 ab 928.7 c 1699.3 d 71.1 ab
RS3 2944.4 b 22.2 a 21.8 a 966.7 ab 2085.0 b 70.8 ab
RS6 2700.0 c 21.8 a 20.0 ab 970.0 a 1904.9 c 70.5 abc
RS9 2111.1 ef 17.4 c 21.3 ab 963.3 ab 1483.8 ef 70.3 abc
NS3 2177.8 e 20.4 ab 19.3 ab 874.0 d 1504.0 e 69.1 c
NS6 1944.4 f 19.7 b 20.8 ab 935.3 bc 1354.3 f 69.6 bc
NS9 1622.2 g 12.3 d 18.0 b 928.7 c 1112.2 g 69.1 c
方差分析ANOVA
秸秆还田方式(T) ** ** NS ** ** **
播种深度(D) ** ** ** NS ** **
T×D * ** NS * * **
[1] 万书波. 中国花生栽培学. 上海: 上海科学技术出版社, 2003. pp 252-272.
Wan S B. Peanut Cultivation in China. Shanghai: Shanghai Scientific and Technical Publishers, 2003. pp 252-272 (in Chinese).
[2] Sarker J R, Singh B P, Cowie A L, Fang Y Y, Collins D, Badgery W, Dalal R C. Agricultural management practices impacted carbon and nutrient concentrations in soil aggregates, with minimal influence on aggregate stability and total carbon and nutrient stocks in contrasting soils. Soil Tillage Res, 2018, 178: 209-223.
[3] 甄晓宇, 杨坚群, 栗鑫鑫, 刘兆新, 高芳, 赵继浩, 李颖, 钱必长, 李金融, 杨东清, 李向东. 播种深度对花生生育进程和叶片衰老的影响及其生理机制. 作物学报, 2019, 45: 1386-1397.
doi: 10.3724/SP.J.1006.2019.94074
Zhen X Y, Yang J Q, Li X X, Liu Z X, Gao F, Zhao J H, Li Y, Qian B C, Li J R, Yang D Q, Li X D. Effects and physiological mechanisms of sowing depth on the growth progress and leaf senescence of peanut. Acta Agron Sin, 2019, 45: 1386-1397 (in Chinese with English abstract).
[4] 刘娟, 汤丰收, 张俊, 臧秀旺, 董文召, 易明林, 郝西. 国内花生生产技术现状及发展趋势研究. 中国农学通报, 2017, 33(22): 13-18.
doi: 10.11924/j.issn.1000-6850.casb17050016
Liu J, Tang F S, Zhang J, Zang X W, Dong W Z, Yi M L, Hao X. Current status and development trends of peanut production technology in China. Chin Agric Sci Bull, 2017, 33(22): 13-18 (in Chinese with English abstract).
doi: 10.11924/j.issn.1000-6850.casb17050016
[5] 谢明惠, 陈浩梁, 张光玲, 林璐璐, 苏卫华. 温度、土壤湿度和播种深度对花生种子萌发及幼苗生长的影响. 花生学报, 2017, 46(2): 52-59.
Xie M H, Chen H L, Zhang G L, Lin L L, Su W H. Effects of temperature, soil moisture and sowing depths on the seed germination and seedling growth of peanut. J Peanut Sci, 2017, 46(2): 52-59 (in Chinese with English abstract).
[6] 宋大利, 侯胜鹏, 王秀斌, 梁国庆, 周卫. 中国秸秆养分资源数量及替代化肥潜力. 植物营养与肥料学报, 2018, 24: 1-21.
Song D L, Hou S P, Wang X B, Liang G Q, Zhou W. Nutrient resource quantity of crop straw and its potential of substituting. J Plant Nutr Fert, 2018, 24: 1-21 (in Chinese with English abstract).
[7] Guo L J, Zhang Z S, Wang D D, Li C F, Cao C G. Effects of short-term conservation management practices on soil organic carbon fractions and microbial community composition under a rice-wheat rotation system. Biol Fert Soils, 2015, 51: 65-75.
[8] 李逢雨, 孙锡发, 冯文强, 秦鱼生, 王昌全, 涂仕华. 麦秆、油菜秆还田腐解速率及养分释放规律研究. 植物营养与肥料学报, 2009, 15: 374-380.
Li F Y, Sun X F, Feng W Q, Qin Y S, Wang C Q, Tu S H. Nutrient release patterns and decomposing rates of wheat and rapeseed straw. Plant Nutr Fert Sci, 2009, 15: 374-380 (in Chinese with English abstract).
[9] Xu X, Pang D W, Chen J, Luo Y L, Zheng M J, Yin Y P, Li Y X, Li Y, Wang Z L. Straw return accompany with low nitrogen moderately promoted deep root. Field Crops Res, 2018, 221: 71-80.
[10] 郑凤君, 王雪, 李生平, 刘晓彤, 刘志平, 卢晋晶, 武雪萍, 席吉龙, 张建诚, 李永山. 免耕覆盖下土壤水分、团聚体稳定性及其有机碳分布对小麦产量的协同效应. 中国农业科学, 2021, 54: 596-607.
doi: 10.3864/j.issn.0578-1752.2021.03.013
Zheng F J, Wang X, Li S P, Liu X T, Liu Z P, Lu J J, Wu X P, Xi J L, Zhang J C, Li Y S. Synergistic effects of soil moisture, aggregate stability and organic carbon distribution on wheat yield under no-tillage practice. Sci Agric Sin, 2021, 54: 596-607 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2021.03.013
[11] Zhao H L, Jiang Y H, Ning P, Liu J F, Zheng W, Tian X H, Shi J L, Xu M, Liang Z Y, Shar A G. Effect of different straw return modes on soil bacterial community, enzyme activities and organic carbon fractions. Soil Sci Soc Am J, 2019, 83, 638-648.
[12] Zhao J H, Liu Z X, Lai H J, Yang D Q, Li X D. Optimizing residue and tillage management practices to improve soil carbon sequestration in a wheat-peanut rotation system. J Environ Manag, 2022, 306: 114468.
[13] 杨文钰, 屠乃美. 作物栽培学各论. 北京: 中国农业出版社, 2003. pp 88-90.
Yang W Y, Tu N M. On the Theory of Crop Cultivation. Beijing: China Agriculture Press, 2003. pp 88-90 (in Chinese).
[14] 岳丽杰, 文涛, 杨勤, 李卓, 李奇, 刘永红. 不同播种深度对玉米出苗的影响. 玉米科学, 2012, 20(5): 88-93.
Yue L J, Wen T, Yang Q, Li Z, Li Q, Liu Y H. Effects of different sowing depths on seeding emergence of maize. J Maize Sci, 2012, 20(5): 88-93 (in Chinese with English abstract).
[15] Amram A, Fadida-Myers A, Golan G, Nashef K, Ben-David R, Peleg Z. Effect of GA-sensitivity on wheat early vigour and yield components under deep sowing. Front Plant Sci, 2015, 6: 487.
[16] Molatudi R L, Mariga I K. The effect of maize seed size and depth of planting on seedling emergence and seedling vigour. J Appl Sci Res, 2009, 5: 2234-2237.
[17] Zhen X Y, Gao F, Li X D, Liu Z X, Zhao J H, Li Y, Wang Y, Li Y R, Wang Z Y, Lai H J, Pan X Y, Yang D Q. Responses of hypocotyl growth and seedling emergence with respect to soil sowing depth stress in peanut (Arachis hypogaea L). Arch Agron Soil Sci, 2020, 67: 519-535.
[18] 周芳, 程秋博, 金容, 杜伦静, 李小龙, 陈祥, 刘斌祥, 袁继超, 孔凡磊. 种子大小与播种深度对川中丘陵区玉米根系生长的影响. 中国生态农业学报(中英文), 2019, 27: 1799-1181.
Zhou F, Cheng Q B, Jin R, Du L J, Li X L, Chen X, Liu B X, Yuan J C, Kong F L. Effects of kernel size and sowing depth on maize root growth in the middle Sichuan hilly area. Chin J Eco- Agric, 2019, 27: 1799-1181 (in Chinese with English abstract).
[19] 江慧芳, 王雅琴, 刘春国. 三种脂肪酶活力测定方法的比较及改进. 化学与生物工程, 2007, (8): 72-75.
Jiang H F, Wang Y Q, Liu C G. Comparison and improvement of three determination methods for lipase activity. Chem Bioeng, 2007, (8): 72-75 (in Chinese with English abstract).
[20] 苏焕喜, 张改梅. 小麦种子的萌发与出苗及影响因素分析. 新农业, 2020, (22): 71-72.
Su H X, Zhang G M. Analysis of germination and emergence of wheat seeds and its influencing factors. Mod Agric, 2020, (22): 71-72 (in Chinese with English abstract).
[21] 高焕文, 李问盈, 李洪文. 中国特色保护性耕作技术. 农业工程学报, 2003, 19(3): 1-4.
Gao H W, Li W Y, Li H W. Conservation tillage technology with Chinese characteristics. Trans CSAE, 2003, 19(3): 1-4 (in Chinese with English abstract).
[22] 陈学文, 张晓平, 梁爱珍, 贾淑霞, 时秀焕, 范如芹, 魏守才. 耕作方式对黑土硬度和容重的影响. 应用生态学报, 2012, 23: 439-444.
Chen X W, Zhang X P, Liang A Z, Jia S X, Shi X H, Fan R Q, Wei S C. Effects of tillage mode on black soil’s penetration resistance and bulk density. Chin J Appl Ecol, 2012, 23: 439-444 (in Chinese with English abstract).
[23] 张丽华, 徐晨, 于江, 闫伟平, 孙宁, 谭国波, 赵洪祥, 李斐, 孟祥盟, 边少锋. 半湿润区秸秆还田对土壤水分、温度及玉米产量的影响. 水土保持学报, 2021, 35(4): 299-306.
Zhang L H, Xu C, Yu J, Yan W P, Sun N, Tan G B, Zhao H X, Li F, Meng X M, Bian S F. Effects of straw returning on soil moisture,temperature and maize yield in semi humid area. J Soil Water Conserv, 2021, 35(4): 299-306 (in Chinese with English abstract).
[24] 李荣, 勉有明, 侯贤清, 李培富, 王西娜. 秸秆还田配施氮肥对土壤性质及玉米水氮利用效率的影响. 作物学报, 2023, 49: 2820-2832.
Li R, Mian Y M, Hou X Q, Li P F, Wang X N. Effects of straw returning with nitrogen application on soil properties, water and nitrogen use efficiency of maize. Acta Agron Sin, 2023, 49: 2820-2832 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2023.23065
[25] 焦彩强, 王益权, 刘军, 赵加瑞, 宋晓燕. 关中地区耕作方法与土壤紧实度时空变异及其效应分析. 干旱地区农业研究, 2009, 27(3): 7-12.
Jiao C Q, Wang Y Q, Liu J, Zhao J R, Song X Y. Spatial-temporal variability of soil hardness and effect of soil hardness on other soil properties in rotary tillage in Guanzhong farmland. Agric Res Arid Areas, 2009, 27(3): 7-12 (in Chinese with English abstract).
[26] 高海燕, 程庆军, 田承华, 高鹏, 张俊珍, 郭睿, 乔婧, 张福耀. 播种深度对高粱出苗和幼苗生长的影响. 中国农学通报, 2014, 30(30): 89-94.
doi: 10.11924/j.issn.1000-6850.2014-1393
Gao H Y, Cheng Q J, Tian C H, Gao P, Zhang J Z, Guo R, Qiao J, Zhang F Y. Effects of sowing depth on sorghum seedling emergence and growth. Chin Agric Sci Bull, 2014, 30(30): 89-94 (in Chinese with English abstract).
doi: 10.11924/j.issn.1000-6850.2014-1393
[27] 宋兆伟, 郝丽珍, 黄振英, 李娜, 赵清岩. 光照和温度对沙芥和斧翅沙芥植物种子萌发的影响. 生态学报, 2010, 30: 2562-2568.
Song Z W, Hao L Z, Huang Z Y, Li N, Zhao Q Y. Effects of light and temperature on the germination on of Pugionium cornutum (L.) Gaertn and Pugionium dolabratum Maxim. seeds. Acta Ecol Sin, 2010, 30: 2562-2568 (in Chinese with English abstract).
[28] Sanghera G S, Parray G A. Variation for drought tolerance in hill rice genotypes. Crop Improv, 2010, 37: 21-24.
[29] 厉广辉, 万勇善, 刘风珍, 孙爱情, 马登超. 花生不同播种深度的出苗期模拟研究. 山东农业科学, 2009, (12): 22-23.
Li G H, Wan Y S, Liu F Z, Sun A Q, Ma D C. Simulation study of peanut emergence date with different sowing depth. Shandong Agric Sci, 2009, (12): 22-23 (in Chinese with English abstract).
[30] 王庆锁. 土壤质地与播种深度对苜蓿出苗率的影响. 草地学报, 2001, 9: 239-242.
doi: 10.11733/j.issn.1007-0435.2001.03.015
Wang Q S. Effects of soil texture and sowing depth on emergence rate of alfalfa. Acta Agrestia Sin, 2001, 9: 239-242 (in Chinese with English abstract).
[31] 李朋朋, 张改梅, 王雪菁. 影响花生出苗率的原因及改善措施. 种子世界, 2013, (11): 40.
Li P P, Zhang G M, Wang X J. Causes affecting peanut seedling emergence rate and improvement measures. Seed World, 2013, (11): 40 (in Chinese with English abstract).
[32] 徐宜民, 时焦. 花生种子萌发中主要贮藏物质的变化. 中国油料, 1993, (2): 37-40.
Xu Y M, Shi J. Changes of main storage substances in peanut seed germination. Oil Crop Chin, 1993, (2): 37-40 (in Chinese with English abstract).
[33] 申琳, 张智强, 史兰, 石凤, 范蓓, 生吉萍. 花生种子萌发过程中蛋白酶, 脂肪酶及 SOD, CAT 酶活性变化. 中国食品学报, 2003, (增刊1): 24-27.
Shen L, Zhang Z Q, Shi L, Shi F, Fan B, Sheng J P. Changes of the activities of proteinase, Lipase, SOD and CAT during the germination of the peanut seed. J Chin Inst Food Sci Technol, 2003, (S1): 24-27 (in Chinese with English abstract).
[34] 李清芳, 辛天蓉, 马成仓, 王琳. pH值对小麦种子萌发和幼苗生长代谢的影响. 安徽农业科学, 2003, 31: 185-187.
Li Q F, Xin T R, Ma C C, Wang L. Effect of pH value on wheat seed germination and seedlings growth and metabolism. J Anhui Agric Sci, 2003, 31: 185-187 (in Chinese with English abstract).
[35] 孙建, 周红英, 乐美旺, 颜廷献, 饶月亮, 颜小文, 梁俊超, 叶艳英. 芝麻种子萌发动态及其代谢生理变化研究. 中国农业科技导报, 2020, 22(8): 41-48.
doi: 10.13304/j.nykjdb.2019.0452
Sun J, Zhou H Y, Le M W, Yan T X, Rao Y L, Yan X W, Liang J C, Ye Y Y. Germination dynamics and physiological changes of metabolism in sesame seed. J Agric Sci Technol, 2020, 22(8): 41-48 (in Chinese with English abstract).
[36] 曾丽, 赵梁军, 苏立峰. 一串红种子发育及内含物对种子萌发的影响. 中国农业大学学报, 2000, 5(1): 35-38.
Zeng L, Zhao L J, Su L F. Effects of seed development and inclusions on seed germination of salvia splendens. J China Agric Univ, 2000, 5(1): 35-38 (in Chinese with English abstract).
[37] 孙奎香, 于遒功, 张玉凤, 丁红, 慈敦伟, 康涛, 戴良香. 水分胁迫对花生种子萌发过程中贮藏物质降解的影响. 中国农学通报, 2012, 28(12): 60-65.
Sun K X, Yu Q G, Zhang Y F, Ding H, Ci D W, Kang T, Dai L X. The effects of water stress on the degradation of storage materials during peanut seed germination process. Chin Agric Sci Bull, 2012, 28(12): 60-65 (in Chinese with English abstract).
doi: 10.11924/j.issn.1000-6850.2011-2794
[38] 宋雨函, 张锐. 高等植物下胚轴伸长的调控机制. 生命的化学, 2021, 41: 1116-1125.
Song Y H, Zhang R. Regulation mechanism of hypocotyl elongation in higher plant. Chem Life, 2021, 41: 1116-1125 (in Chinese with English abstract).
[39] Qin F F, Xu H L, Lyu D Q, Tetsuo T. Responses of hypocotyl elongation to light and sowing depth in peanut seedlings. J Food Agric Environ, 2012, 10: 607-612.
[40] 刘斌祥, 程秋博, 周芳, 杜伦静, 李小龙, 孔凡磊, 袁继超. 种子大小与播种深度对玉米出苗、苗期光合特性与保护酶活性的影响. 华北农学报, 2020, 35(2): 98-106.
doi: 10.7668/hbnxb.20190319
Liu B X, Cheng Q B, Zhou F, Du L J, Li X L, Kong F L, Yuan J C. Effects of seed size and sowing depth on maize seedling emergence and photosynthesis characteristics and protective enzyme activities in seedling stage. Acta Agric Boreali-Sin, 2020, 35(2): 98-106 (in Chinese with English abstract).
doi: 10.7668/hbnxb.20190319
[41] Zuo Q S, Kuai J, Zhao L, Hu Z, Wu J, Zhou G. The effect of sowing depth and soil compaction on the growth and yield of rapeseed in rice straw returning field. Field Crops Res, 2017, 203: 47-54.
[42] 郭陞垚, 陈剑洪, 王金线, 肖宇, 陈永水. 花生种子大小对产量及品质的影响. 福建农业学报, 2012, 27: 700-706.
Guo S Y, Chen J H, Wang J X, Xiao Y, Chen Y S. Effects of peanut seed size on yield and quality. Fujian J Agric Sci, 2012, 27: 700-706 (in Chinese with English abstract).
[43] 范红霞. 秸秆全量还田下不同耕作方式对小麦出苗质量及产量构成的影响. 种子科技, 2018, 36(2): 117-118.
Fan H X. Effects of different tillage methods on emergence quality and yield components of wheat under total straw returning. Seed Sci Technol, 2018, 36(2): 117-118 (in Chinese with English abstract).
[44] 于庆峰, 苗庆丰, 史海滨, 胡敏, 张俊友. 耕作方式对秸秆覆盖玉米田春播期土壤水热盐状况的影响. 水土保持研究, 2019, 26(3): 265-268.
Yu Q F, Miao Q F, Shi H B, Hu M, Zhang J Y. Effects of tillage methods on soil water, heat and salt of field maize in the period of spring sowing. Res Soil Water Conserv, 2019, 26(3): 265-268 (in Chinese with English abstract).
[45] 田姝红, 周健强, 张春梅. 播期和播种深度耦合对花生生长、产量和品质的影响. 辽宁农业科学, 2022, (1): 45-49.
Tian S H, Zhou J Q, Zhang C M. Effect of sowing date and sowing depth on the growth, yield and quality of peanut. Liaoning Agric Sci, 2022, (1): 45-49 (in Chinese with English abstract).
[46] 赵继浩, 李颖, 钱必长, 李金融, 刘兆新, 高芳, 杨坚群, 甄晓宇, 杨东清, 李向东. 秸秆还田与耕作方式对麦后复种花生田土壤性质和产量的影响. 水土保持学报, 2019, 33(5): 272-280.
Zhao J H, Li Y, Qian B Z, Li J R, Liu Z X, Gao F, Yang J Q, Zhen X Y, Yang D Q, Li X D. Effects of straw return and tillage on soil properties and yield of multi-cropping peanut after wheat. J Soil Water Conserv, 2019, 33(5): 272-280 (in Chinese with English abstract).
[47] 吴菊香, 王宝亮, 王海兰, 许婷婷, 谢宏峰, 许曼琳, 杨吉顺, 陈蕾, 李尚霞, 迟玉成. 不同耕作方式对花生田蛴螬发生及产量的影响. 湖北农业科学, 2013, 52: 1565-1566.
Wu J X, Wang B L, Wang H L, Xu T T, Xie H F, Xu M L, Yang J S, Chen L, Li S X, Chi Y C. Effects of different tillage managements on white grubs’ occurrence and yield of peanut in peanut field. Hubei Agric Sci, 2013, 52: 1565-1566 (in Chinese with English abstract).
[1] LIU Yong-Hui, SHEN Yi, SHEN Yue, LIANG Man, SHA Qin, ZHANG Xu-Yao, and CHEN Zhi-De. Cloning and functional analysis of drought-inducible promoter AhMYB44-11-Pro in peanut (Arachis hypogaea L.) [J]. Acta Agronomica Sinica, 2024, 50(9): 2157-2166.
[2] YANG Qi-Rui, LI Lan-Tao, ZHANG Duo, WANG Ya-Xian, SHENG Kai, WANG Yi-Lun. Effect of phosphorus application on yield, quality, light temperature physiological characteristics, and root morphology in summer peanut [J]. Acta Agronomica Sinica, 2024, 50(7): 1841-1854.
[3] HU Ming-Ming, DING Feng, PENG Zhi-Yun, XIANG Kai-Hong, LI Yu, ZHANG Yu-Jie, YANG Zhi-Yuan, SUN Yong-Jian, MA Jun. Effects of straw returning to field combined with water and N management on rice yield formation and N uptake and utilization under diversified cropping patterns [J]. Acta Agronomica Sinica, 2024, 50(5): 1236-1252.
[4] LIU Cheng-Min, MEN Ya-Qi, QIN Du-Lin, YAN Xiao-Yu, ZHANG Le, MENG Hao, SU Xun-Ya, SUN Xue-Zhen, SONG Xian-Liang, MAO Li-Li. Effects of nitrogen application rate on cotton yield and nitrogen utilization under long-term straw return to the field [J]. Acta Agronomica Sinica, 2024, 50(4): 1043-1052.
[5] LI Hai-Fen, LU Qing, LIU Hao, WEN Shi-Jie, WANG Run-Feng, HUANG Lu, CHEN Xiao-Ping, HONG Yan-Bin, LIANG Xuan-Qiang. Genome-wide identification and expression analysis of AhGA3ox gene family in peanut (Arachis hypogaea L.) [J]. Acta Agronomica Sinica, 2024, 50(4): 932-943.
[6] LU Qing, LIU Hao, LI Hai-Fen, WANG Run-Feng, HUANG Lu, LIANG Xuan-Qiang, CHEN Xiao-Ping, HONG Yan-Bin, LIU Hai-Yan, LI Shao-Xiong. Research on oil content screen with genomic selection and near infrared ray in peanut (Arachis hypogaea L.) [J]. Acta Agronomica Sinica, 2024, 50(4): 969-980.
[7] ZHANG Yue, WANG Zhi-Hui, HUAI Dong-Xin, LIU Nian, JIANG Hui-Fang, LIAO Bo-Shou, LEI Yong. Research progress on genetic basis and QTL mapping of oil content in peanut seed [J]. Acta Agronomica Sinica, 2024, 50(3): 529-542.
[8] ZHI Chen-Yang, XUE Xiao-Meng, WU Jie, LI Xiong-Cai, WANG Jin, YAN Li-Ying, WANG Xin, CHEN Yu-Ning, KANG Yan-Ping, WANG Zhi-Hui, HUAI Dong-Xin, HONG Yan-Bin, JIANG Hui-Fang, LEI Yong, LIAO Bo-Shou. Analysis of genetic model of sucrose content in peanut [J]. Acta Agronomica Sinica, 2024, 50(1): 32-41.
[9] WANG Fei-Fei, ZHANG Sheng-Zhong, HU Xiao-Hui, CHU Ye, CUI Feng-Gao, ZHONG Wen, ZHAO Li-Bo, ZHANG Tian-Yu, GUO Jin-Tao, YU Hao-Liang, MIAO Hua-Rong, CHEN Jing. Comparative transcriptome profiling of dormancy regulatory network in peanut [J]. Acta Agronomica Sinica, 2023, 49(9): 2446-2461.
[10] XU Yang, ZHANG Dai, KANG Tao, WEN Sai-Qun, ZHANG Guan-Chu, DING Hong, GUO Qing, QIN Fei-Fei, DAI Liang-Xiang, ZHANG Zhi-Meng. Effects of salt stress on ion dynamics and the relative expression level of salt tolerance genes in peanut seedlings [J]. Acta Agronomica Sinica, 2023, 49(9): 2373-2384.
[11] HU Mei-Ling, ZHI Chen-Yang, XUE Xiao-Meng, WU Jie, WANG Jin, YAN Li-Ying, WANG Xin, CHEN Yu-Ning, KANG Yan-Ping, WANG Zhi-Hui, HUAI Dong-Xin, JIANG Hui-Fang, LEI Yong, LIAO Bo-Shou. Establishment of near-infrared reflectance spectroscopy model for predicting sucrose content of single seed in peanut [J]. Acta Agronomica Sinica, 2023, 49(9): 2498-2504.
[12] HUANG Li, CHEN Wei-Gang, LI Wei-Tao, YU Bo-Lun, GUO Jian-Bin, ZHOU Xiao-Jing, LUO Huai-Yong, LIU Nian, LEI Yong, LIAO Bo-Shou, JIANG Hui-Fang. Identification of major QTLs for nodule formation in peanut [J]. Acta Agronomica Sinica, 2023, 49(8): 2097-2104.
[13] LI Xing, YANG Hui, LUO Lu, LI Hua-Dong, ZHANG Kun, ZHANG Xiu-Rong, LI Yu-Ying, YU Hai-Yang, WANG Tian-Yu, LIU Jia-Qi, WANG Yao, LIU Feng-Zhen, WAN Yong-Shan. QTLs mapping for single-seed weight of cultivated peanut [J]. Acta Agronomica Sinica, 2023, 49(8): 2160-2170.
[14] TAO Shun-Yu, WU Bei, LIU Nian, LUO Huai-Yong, HUANG Li, ZHOU Xiao-Jing, CHEN Wei-Gang, GUO Jian-Bin, YU Bo-Lun, LEI Yong, LIAO Bo-Shou, JIANG Hui-Fang. Development and employment of InDel marker in peanut QTL mapping of oil content [J]. Acta Agronomica Sinica, 2023, 49(5): 1222-1230.
[15] SUN Quan-Xi, YUAN Cui-Ling, MOU Yi-Fei, YAN Cai-Xia, ZHAO Xiao-Bo, WANG Juan, WANG Qi, SUN Hui, LI Chun-Juan, SHAN Shi-Hua. Genome-wide identification and expression analysis of SWEET genes from peanut genomes [J]. Acta Agronomica Sinica, 2023, 49(4): 938-954.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[2] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[3] Hu Yuqi;Liao Xiaohai. A STUDY ON THE COEFFICIENT OF LEAVES SHAPE OF MAIZE[J]. Acta Agron Sin, 1986, (01): 71 -72 .
[4] LIANG Tai-Bo;YIN Yan-Ping;CAI Rui-Guo;YAN Su-Hui;LI Wen-Yang;GENG Qing-Hui;WANG Ping;WANG Zhen-Lin. Starch Accumulation and Related Enzyme Activities in Superior and Inferior Grains of Large Spike Wheat[J]. Acta Agron Sin, 2008, 34(01): 150 -156 .
[5] WANG Cheng-Zhang;HAN Jin-Feng;SHI Ying-Hua;LI Zhen-Tian;LI De-Feng. Production Performance in Alfalfa with Different Classes of Fall Dormancy[J]. Acta Agron Sin, 2008, 34(01): 133 -141 .
[6] TIAN Zhi-Jian;Yi Rong;CHEN Jian-Rong;GUO Qing-Quan;ZHANG Xue-Wen;. Cloning and Expression of Cellulose Synthase Gene in Ramie [Boehme- ria nivea (Linn.) Gaud.][J]. Acta Agron Sin, 2008, 34(01): 76 -83 .
[7] ZHAO Xiu-Qin;ZHU Ling-Hua;XU Jian-Long;LI Zhi-Kang. QTL Mapping of Yield under Irrigation and Rainfed Field Conditions for Advanced Backcrossing Introgression Lines in Rice[J]. Acta Agron Sin, 2007, 33(09): 1536 -1542 .
[8] WU Ying ; SONG Feng-Sun ; LU Xu-Zhong; ZHAO Wei; YANG Jian-Bo; LI Li ;. Detecting Genetically Modified Soybean by Real-time Quantitative PCR Technique[J]. Acta Agron Sin, 2007, 33(10): 1733 -1737 .
[9] GOU Ling ; HUANG Jian-Jun; ZHANG Bin; LI Tao; SUN Rui; ZHAO Ming ;. Effects of Population Density on Stalk Lodging Resistant Mechanism and Agronomic Characteristics of Maize[J]. Acta Agron Sin, 2007, 33(10): 1688 -1695 .
[10] YU Jing;ZHANG Lin;CUI Hong;ZHANG Yong-Xia;CANG Jing;HAO Zai-Bin;LI Zhuo-Fu. Physiological and Biochemical Characteristics of Dongnongdongmai 1 before Wintering in High-Cold Area[J]. Acta Agron Sin, 2008, 34(11): 2019 -2025 .