Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2024, Vol. 50 ›› Issue (7): 1710-1718.doi: 10.3724/SP.J.1006.2024.31060

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Construction of SNP high-density genetic map and localization of QTL for β-glucan content in oats

HAN Li1(), TANG Sheng-Sheng1, LI Jia1, HU Hai-Bin2, LIU Long-Long1,*(), WU Bin2,*()   

  1. 1Center for Agricultural Genetic, Resources Research, Shanxi Agricultural University / Key Laboratory of Crop Gene Resources and Germplasm Enhancement on Loess Plateau, Ministry of Agriclture and Rural Affairs, Taiyuan 030031, Shanxi, China
    2Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
  • Received:2023-10-24 Accepted:2024-01-31 Online:2024-07-12 Published:2024-03-07
  • Contact: *E-mail: lllong781211@sina.com; E-mail: wubin03@caas.cn
  • Supported by:
    China Agriculture Research System of MOF and MARA(CARS-07-A);National Natural Science Foundation of China(30800699)

Abstract:

β-glucan is the main functional component of oats for health care, and improving its content is of great significance to the production of high-quality oats. In this study, in order to promote the effective utilization of high β-glucan oat germplasm resources and the discovery of related genes, a genetic linkage map containing 21 linkage groups and 5032 bin markers was constructed by using resequencing technology with the 223 RIL8 populations derived from the high β-glucan variety Xiayoumai and the low β-glucan resource Chi38. The total length of the map was 2045.09 cM, and the average plot distance was 0.42 cM. The β-glucan content of RIL populations in four environments was determined by standard enzyme method and near infrared method. Combined with the determination results, QTL analysis of β-glucan content was performed by complete interval mapping method. The results showed that the β-glucan content of RIL populations was normally distributed under different environmental conditions, and there were superparent descendants. The coefficient of variation of β-glucan content in the four environments ranged from 9.06% to 16.63%. Seven QTLs related to β-glucan content in oat were detected by QTL mapping, distributed on 2D, 3D, 4C, and 4D chromosomes, with the highest contribution rate of 14.73%. The same QTL was detected in two environments with a marker interval of Chr4C_mark8361257-Chr4C_mark8384831. The results of this study provide an important theoretical basis for molecular marker-assisted breeding of oat β-glucan.

Key words: oat, SNP, genetic map, β-glucan, QTL mapping

Table 1

Statistical analysis of oat β-glucan content in parental and RIL populations"

试点
Location
亲本 Parents RIL群体 RIL population
赤38
Chi 38 (%)
夏莜麦
Xiayoumai (%)
范围
Range
平均值
Mean (%)
变异系数
CV (%)
偏度
Skewness
峰度
Kurtosis
遗传力
Heritability
北京Beijing 4.06 6.52 2.92-6.95 5.11 16.63 -0.33 -0.08 0.95
山西Shanxi 4.14 5.68 3.59-5.84 4.83 9.11 -0.07 -0.39 0.90
新疆Xinjiang 5.08 6.01 4.47-6.48 5.49 6.21 0.13 0.41 0.94
河北Hebei 4.84 5.68 4.71-7.29 5.63 9.06 0.89 0.73 0.86

Fig. 1

Frequency distribution of oat β-glucan content in RIL populations under different environments BJ, SX, XJ, and HB represent the four environments of Beijing, Shanxi, Xinjiang, and Hebei, respectively."

Table 2

Joint analysis of variance for oat β-glucan content in RIL populations in different environments"

变异来源
Source
自由度
DF
离均差平方和
SS
均方
MS
F
F-value
P
P-value
基因型 Genotype 218 110.58 0.51 1.94 < 0.010
环境 Environment 3 89.06 29.69 113.57 < 0.010
基因型×环境 GE interaction 654 170.95 0.26 < 0.010
残差 Residual 216 17.76 0.08
总变异 Total 875 370.58

Table 3

Information of genetic map"

染色体
Chr.
SNP数量
Number of
SNP
Bin标记数量
Number of Bin
marker
总遗传距离
Total distance
(cM)
平均遗传距离
Average marker interval
(cM)
最大
Max. interval
(cM)
1A 6316 304 135.06 0.44 10.26
1C 2076 79 29.91 0.38 2.43
1D 10,517 273 116.85 0.43 3.13
2A 3174 219 84.61 0.39 7.99
2C 8185 206 85.27 0.41 3.21
2D 14,888 425 158.68 0.37 4.40
3A 53,092 137 55.46 0.40 3.85
3C 22,630 231 81.24 0.35 2.65
3D 11,396 354 160.97 0.45 11.72
4A 7407 278 135.66 0.49 12.67
4C 100,146 300 120.65 0.40 12.85
4D 23,126 491 194.12 0.40 8.81
5A 141,190 85 49.91 0.59 7.92
5C 91,777 392 104.23 0.27 1.92
5D 48,610 147 52.51 0.36 1.97
6A 10,996 190 78.26 0.41 4.51
6C 25,948 302 124.40 0.41 5.25
6D 3253 165 77.76 0.47 5.78
7A 6105 161 58.28 0.36 1.98
7C 10,390 182 90.39 0.50 4.95
7D 8264 111 50.87 0.46 3.90
总计 Total 609,486 5032 2045.09 0.42 12.85

Table 4

Results of QTL localization for four environmental β-glucan contents"

地点
Location
数量性状位点
QTL
染色体
Chr.
位置
Position (cM)
标记区间
Marked interval
加性效应
Additive
effect
LOD值
Likelihood
of odd
贡献率
Contribution rate (%)
北京Beijing qBG9-1 3D 73 mark52899524-mark56792010 0.1856 3.5566 7.4766
qBG12-1 4D 131.5 mark359462864-mark359731564 0.1730 2.8829 6.1583
山西Shanxi qBG9-2 3D 103 mark345485656-mark345492373 0.1406 5.0331 10.2452
qBG11-1 4C 0.5 mark8361257-mark8384831 -0.1389 4.9324 9.9790
新疆Xinjiang qBG11-1 4C 0.5 mark8361257-mark8384831 -0.1250 5.6343 14.7268
河北Hebei qBG6-1 2D 37 mark72268394-mark72566672 0.1327 3.6026 6.2789
qBG11-2 4C 115 mark704833011-mark708537606 -0.1439 2.9495 6.9865
qBG12-2 4D 38 mark40330973-mark40622203 0.1172 2.6276 4.6057

Fig. 2

Genetic linkage mapping for QTL localization of β-glucan content in oats Markers names are shown on the right of linkage groups, and their genetic positions are shown on the left (cM). LOD values are shown on the right side of QTL. The four colors in the diagram represent the four environments, and the corresponding rules are as follows: Blue: Beijing; Red: Hebei; Green: Xinjiang; Orange: Shanxi."

[1] 陆大彪. 燕麦. 作物杂志, 1985, (1): 28.
Lu D B. Oats. Crops, 1985, (1): 28 (in Chinese).
[2] Shewry P R, Piironen V, Lampi A M, Nyström L, Li L, Rakszegi M, Fraś A, Boros D, Gebruers K, Courtin C M, Delcour J A, Andersson A A, Dimberg L, Bedo Z, Ward J L. Phytochemical and fiber components in oat varieties in the HEALTHGRAIN diversity screen. J Agric Food Chem, 2008, 56: 9777-9784.
[3] Kendall C W C, Esfahani A, Jenkins D J A. The link between dietary fibre and human health. Food Hydrocoll, 2010, 24: 42-48.
[4] Beer M U, Wood P J, Weisz J, Fillion N. Effect of cooking and storage on the amount and molecular weight of (1→3) (1→4)-β- D-glucan extracted from oat products by an in vitro digestion system. Cereal Chem, 1997, 74: 705-709.
[5] Ballabio C, Uberti F, Manferdelli S, Vacca E G, Boggini G, Redaelli R, Catassi C, Lionetti E, Peñas E, Restani P. Molecular characterization of 36 oat varieties and in vitro assessment of their suitability for coeliacs’ diet. J Cereal Sci, 2011, 54: 110-115.
[6] Fincher G B, Stone B. Cell walls and their components in cereal grain technology. In: Advances in Cereal Science and Technology, USA, 1986, Vol. 8.
[7] Wang Y, Liu J, Chen F, Zhao G. Effects of molecular structure of polyphenols on their noncovalent interactions with oat β-glucan. J Agric Food Chem, 2013, 61: 4533-4538.
[8] Bacic A, Stone B. A (1→3)- and (1→4)-linked β-D-glucan in the endosperm cell-walls of wheat. Carbohydr Res, 1980, 82: 372-377.
[9] Saulnier L, Péneau N, Thibault J F. Variability in grain extract viscosity and water-soluble arabinoxylan content in wheat. J Cereal Sci, 1995, 22: 259-264.
[10] Yun C H, Estrada A, Van Kessel A, Gajadhar A A, Redmond M J, Laarveld B. β-(1→3, 1→4) oat glucan enhances resistance to Eimeria vermiformis infection in immunosuppressed mice. Int J Parasitol, 1997, 27: 329-337.
doi: 10.1016/s0020-7519(96)00178-6 pmid: 9138036
[11] 申瑞玲, 王章存, 董吉林, 姚惠源. 燕麦β-葡聚糖对小鼠结肠菌群及其功能的影响. 营养学报, 2006, 28: 430-433.
Shen R L, Wang Z C, Dong J L, Yao H Y. Effect of oat β-glucan on colon flora and its function in mice. Acta Nutr Sin, 2006, 28: 430-433 (in Chinese with English abstract).
[12] Wood P J, Braaten J T, Scott F W, Riedel K D, Wolynetz M S, Collins M W. Effect of dose and modification of viscous properties of oat gum on plasma glucose and insulin following an oral glucose load. Brit J Nutr, 1994, 72: 731-743.
pmid: 7826996
[13] 张勇, 郝元峰, 张艳, 何心尧, 夏先春, 何中虎. 小麦营养和健康品质研究进展. 中国农业科学, 2016, 49: 4284-4298.
doi: 10.3864/j.issn.0578-1752.2016.22.003
Zhang Y, Hao Y F, Zhang Y, He X Y, Xia X C, He Z H. Research progress in wheat nutrition and health quality. Chin Agric Sci, 2016, 49: 4284-4298 (in Chinese with English abstract).
[14] Kianian S, Phillips R, Rines H, Fulcher R, Webster F, Stuthman D. Quantitative trait loci influencing β-glucan content in oat (Avena sativa, 2n = 6x = 42). Theor Appl Genet, 2000, 101: 1039-1048.
[15] Groh S, Kianian S, Phillips R, Rines H, Stuthman D, Wesenberg D, Fulcher R. Analysis of factors influencing milling yield and their association to other traits by QTL analysis in two hexaploid oat populations. Theor Appl Genet, 2001, 103: 9-18.
[16] Tanhuanpää P, Manninen O, Beattie A, Eckstein P, Scoles G, Rossnagel B, Kiviharju E. An updated doubled haploid oat linkage map and QTL mapping of agronomic and grain quality traits from Canadian field trials. Genome, 2012, 55: 289-301.
doi: 10.1139/G2012-017 pmid: 22443510
[17] Herrmann M H, Yu J Z, Steffen B, Wilhelm E W. Quantitative trait loci for quality and agronomic traits in two advanced backcross populations in oat (Avena sativa L.). Plant Breed, 2014, 133: 588-601.
[18] 吴斌, 张茜, 宋高原, 陈新, 张宗文. 裸燕麦SSR标记连锁群图谱的构建及β-葡聚糖含量QTL的定位. 中国农业科学, 2014, 47: 1208-1215.
doi: 10.3864/j.issn.0578-1752.2014.06.017
Wu B, Zhang Q, Song G Y, Chen X, Zhang Z W. Construction of SSR marked linkage group map for bare oats and its application β-localization of QTL for glucan content. Sci Agric Sci, 2014, 47: 1208-1215 (in Chinese with English abstract).
[19] Zimmer C M, McNish I G, Klos K E, Oro T, Arruda K M A, Gutkoski L C, Pacheco M T, Smith K P, Federizzi L C. Genome- wide association for β-glucan content, population structure, and linkage disequilibrium in elite oat germplasm adapted to subtropical environments. Mol Breed: New Strat Plant Improv, 2020, 40: 103.
[20] 吕耀昌, 王强, 赵炜, 邓万和. 燕麦、大麦中β-葡聚糖的酶法测定. 食品科学, 2005, 26: 180-182.
Lyu Y C, Wang Q, Zhao W, Deng W H. Oats and barley β-enzymatic determination of dextran. Food Sci, 2005, 26: 180-182 (in Chinese with English abstract).
[21] Henry R J. Near-infrared reflectance analysis of carbohydrates and its application to the determination of (1→3), (1→4)-β-D- glucan in barley. Carbohydr Res, 1985, 141: 13-19.
[22] Meng L, Hui H L, Lu Y Z, Jian K W. QTL IciMapping: integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. Crop J, 2015, 3: 269-283.
doi: 10.1016/j.cj.2015.01.001
[23] McCouch S, Cho Y G, Yano M, Paul E, Blinstrub M, Morishima H, Kinoshita T. Report on QTL nomenclature. Rice Genet Newsl, 1997, 14: 11-13.
[24] 李慧慧, 张鲁燕, 王建康. 数量性状基因定位研究中若干常见问题的分析与解答. 作物学报, 2010, 36: 918-931.
doi: 10.3724/SP.J.1006.2010.00918
Li H H, Zhang L Y, Wang J K. Analysis and answers to several common problems in quantitative trait gene mapping research. Acta Agron Sin, 2010, 36: 918-931 (in Chinese with English abstract).
[25] O’Donoughue L S, Sorrells M E, Tanksley S D, Autrique E, Deynze A V, Kianian S F, Phillips R L, Wu B, Rines H W, Rayapati P J, Lee M, Penner G A, Fedak G, Molnar S J, Hoffman D, Salas C A. A molecular linkage map of cultivated oat. Genome, 1995, 38: 368-380.
pmid: 18470176
[26] Chaffin A, Huang Y, Smith S M, Bekele W A, Babiker E M, Gnanesh B N, Foresman B J, Blanchard S G, Jay J J, Reid R W, Wight C P, Chao S, Oliver R E, Islamovic E, Kolb F L, McCartney C A, Mitchell Fetch J W, Beattie A D, Bjornstad Å, Bonman J M, Langdon T, Howarth C J, Brouwer C R, Jellen E N, Klos K E, Poland J A, Hsieh T, Brown R H, Jackson E W, Schlueter J, Tinker N A. A consensus map in cultivated hexaploid oat reveals conserved grass synteny with substantial subgenome rearrangement. Plant Genom, 2016, 9(2): 1-21.
[27] Huang Y F, Poland J A, Wight C P, Jackson E W, Tinker N A. Using genotyping-by-sequencing (GBS) for genomic discovery in cultivated oat. PLoS One, 2014, 9: e102448.
[28] Bekele W A, Wight C P, Chao S, Howarth C J, Tinker N A. Haplotype-based genotyping-by-sequencing in oat genome research. Plant Biotechnol J, 2018, 16: 1452-1463.
doi: 10.1111/pbi.12888 pmid: 29345800
[29] Kono T J, Seth K, Poland J A, Morrell P L. SNPMeta: SNP annotation and SNP metadata collection without a reference genome. Mol Ecol Resour, 2014, 14: 419-425.
doi: 10.1111/1755-0998.12183 pmid: 24237904
[30] Du Z, Huang Z, Li J, Bao J, Tu H, Zeng C, Wu Z, Fu H, Xu J, Zhou D, Zhu C, Fu J, He H. qTGW12a, a naturally varying QTL, regulates grain weight in rice. Theor Appl Genet, 2021, 134: 2767-2776.
doi: 10.1007/s00122-021-03857-4 pmid: 34021769
[31] Yu H, Xie W, Wang J, Xing Y, Xu C, Li X, Xiao J, Zhang Q. Gains in QTL detection using an ultra-high density SNP map based on population sequencing relative to traditional RFLP/SSR markers. PLoS One, 2011, 6: e17595.
[32] Fogarty M C, Smith S M, Sheridan J L, Hu G, Islamovic E, Reid R, Jackson E W, Maughan P J, Ames N P, Jellen E N, Hsieh T. Identification of mixed linkage β-glucan quantitative trait loci and evaluation of AsCslF6 homeologs in hexaploid oat. Crop Sci, 2020, 60: 914-933.
[33] Tinker N A, Wight C P, Bekele W A, Yan W, Jellen E N, Renhuldt N T, Sirijovski N, Lux T, Spannagl M, Mascher M. Genome analysis in Avena sativa reveals hidden breeding barriers and opportunities for oat improvement. Commun Biol, 2022, 5: 474.
[34] Burton R A, Wilson S M, Hrmova M, Harvey A J, Shirley N J, Medhurst A, Stone B A, Newbigin E J, Bacic A, Fincher G B. Cellulose synthase-like CslF genes mediate the synthesis of cell wall (1,3;1,4)-beta-D-glucans. Science, 2006, 311: 1940-1942.
doi: 10.1126/science.1122975 pmid: 16574868
[35] Doblin M S, Pettolino F A, Wilson S M, Campbell R, Burton R A, Fincher G B, Newbigin E, Bacic A. A barley cellulose synthase-like CSLH gene mediates (1,3;1,4)-beta-D-glucan synthesis in transgenic Arabidopsis. Proc Natl Acad Sci USA, 2009, 106: 5996-6001.
[36] Little A, Schwerdt J G, Shirley N J, Khor S F, Neumann K, O’Donovan L A, Lahnstein J, Collins H M, Henderson M, Fincher G B, Burton R A. Revised phylogeny of the cellulose synthase gene superfamily: insights into cell wall evolution. Plant Physiol, 2018, 177: 1124-1141.
doi: 10.1104/pp.17.01718 pmid: 29780036
[37] Peng Y, Yan H, Guo L, Deng C, Wang C, Wang Y, Kang L, Zhou P, Yu K, Dong X, Liu X, Sun Z, Peng Y, Zhao J, Deng D, Xu Y, Li Y, Jiang Q, Li Y, Wei L, Wang J, Ma J, Hao M, Li W, Kang H, Peng Z, Liu D, Jia J, Zheng Y, Ma T, Wei Y, Lu F, Ren C. Reference genome assemblies reveal the origin and evolution of allohexaploid oat. Nat Genet, 2022, 54: 1248-1258.
[38] Bernal A J, Jensen J K, Harholt J, Sørensen S, Moller I, Blaukopf C, Johansen B, Lotto R D, Pauly M, Scheller H V, Willats W G. Disruption of ATCSLD5 results in reduced growth, reduced xylan and homogalacturonan synthase activity and altered xylan occurrence in Arabidopsis. Plant J, 2007, 52: 791-802.
[1] BI Jun-Ge, ZENG Zhan-Kui, LI Qiong, HONG Zhuang-Zhuang, YAN Qun-Xiang, ZHAO Yue, WANG Chun-Ping. QTL mapping and KASP marker development of grain quality-relating traits in two wheat RIL populations [J]. Acta Agronomica Sinica, 2024, 50(7): 1669-1683.
[2] QIN Na, YE Zhen-Yan, ZHU Can-Can, FU Sen-Jie, DAI Shu-Tao, SONG Ying-Hui, JING Ya, WANG Chun-Yi, LI Jun-Xia. QTL mapping for flavonoid content and seed color in foxtail millet [J]. Acta Agronomica Sinica, 2024, 50(7): 1719-1727.
[3] SUN Mei-Hong, WANG Cai-Qin, WANG Rong, BAI Wen-Bin, GAO Zhen-Feng. Preparation of Bacillus velezensis G-1·lipopeptide suspension seed coating agent and its anti-infection effect on Sphacelotheca reiliana [J]. Acta Agronomica Sinica, 2024, 50(6): 1467-1485.
[4] ZHANG Zhi-Yuan, ZHOU Jie-Guang, LIU Jia-Jun, WANG Su-Rong, WANG Tong-Zhu, ZHAO Cong-Hao, YOU Jia-Ning, DING Pu-Yang, TANG Hua-Ping, LIU Yan-Lin, JIANG Qian-Tao, CHEN Guo-Yue, WEI Yu-Ming, MA Jian. Identification and verification of low-tillering QTL based on a new model of genetic analysis in wheat [J]. Acta Agronomica Sinica, 2024, 50(6): 1373-1383.
[5] ZHENG Xue-Qing, WANG Xing-Rong, ZHANG Yan-Jun, GONG Dian-Ming, QIU Fa-Zhan. Mapping of QTL for ear-related traits and prediction of key candidate genes in maize [J]. Acta Agronomica Sinica, 2024, 50(6): 1435-1450.
[6] TIAN Hong-Li, YANG Yang, FAN Ya-Ming, YI Hong-Mei, WANG Rui, JIN Shi-Qiao, JIN Fang, ZHANG Yun-Long, LIU Ya-Wei, WANG Feng-Ge, ZHAO Jiu-Ran. Development of an optimal core SNP loci set for maize variety genuineness identification [J]. Acta Agronomica Sinica, 2024, 50(5): 1115-1123.
[7] XU Nai-Yin, JIN Shi-Qiao, JIN Fang, LIU Li-Hua, XU Jian-Wen, LIU Feng-Ze, REN Xue-Zhen, SUN Quan, XU Xu, PANG Bin-Shuang. Genetic similarity and its detection accuracy analysis of wheat varieties based on SNP markers [J]. Acta Agronomica Sinica, 2024, 50(4): 887-896.
[8] ZHANG Yue, WANG Zhi-Hui, HUAI Dong-Xin, LIU Nian, JIANG Hui-Fang, LIAO Bo-Shou, LEI Yong. Research progress on genetic basis and QTL mapping of oil content in peanut seed [J]. Acta Agronomica Sinica, 2024, 50(3): 529-542.
[9] HAO Qian-Lin, YANG Ting-Zhi, LYU Xin-Ru, QIN Hui-Min, WANG Ya-Lin, JIA Chen-Fei, XIA Xian-Chun, MA Wu-Jun, XU Deng-An. QTL mapping and GWAS analysis of coleoptile length in bread wheat [J]. Acta Agronomica Sinica, 2024, 50(3): 590-602.
[10] WANG Qiong, ZHU Yu-Xiang, ZHOU Mi-Mi, ZHANG Wei, ZHANG Hong-Mei, CEHN Xin, CEHN Hua-Tao, CUI Xiao-Yan. Genome-wide association analysis and candidate genes predication of leaf characteristics traits in soybean (Glycine max L.) [J]. Acta Agronomica Sinica, 2024, 50(3): 623-632.
[11] SONG Jian, XIONG Ya-Jun, CHEN Yi-Jie, XU Rui-Xin, LIU Kang-Lin, GUO Qing-Yuan, HONG Hui-Long, GAO Hua-Wei, GU Yong-Zhe, ZHANG Li-Juan, GUO Yong, YAN Zhe, LIU Zhang-Xiong, GUAN Rong-Xia, LI Ying-Hui, WANG Xiao-Bo, GUO Bing-Fu, SUN Ru-Jian, YAN Long, WANG Hao-Rang, JI Yue-Mei, CHANG Ru-Zhen, WANG Jun, QIU Li-Juan. Genetic analysis of seed coat and flower color based on a soybean nested association mapping population [J]. Acta Agronomica Sinica, 2024, 50(3): 556-575.
[12] WANG Rang-Jian, YANG Jun, ZHANG Li-Lan, GAO Xiang-Feng. Genome-wide association analysis of geraniol primrose glycoside abundance in tender tea shoots [J]. Acta Agronomica Sinica, 2023, 49(7): 1843-1859.
[13] WANG Hao, SUN Ni-Na, WANG Chu, XIAO Lu-Ning, XIAO Bei, LI Dong, LIU Jie, QIN Ran, WU Yong-Zhen, SUN Han, ZHAO Chun-Hua, LI Lin-Zhi, CUI Fa, LIU Wei. Genetic basis analysis of high-yielding in Yannong wheat varieties [J]. Acta Agronomica Sinica, 2023, 49(6): 1584-1600.
[14] LU Mao-Ang, PENG Xiao-Ai, ZHANG Ling, WANG Jian-Lai, HE Xian-Fang, ZHU Yu-Lei. Genetic diversity of wheat breeding parents revealed by 55K SNP-based microarray [J]. Acta Agronomica Sinica, 2023, 49(6): 1708-1714.
[15] LIU Ting-Xuan, GU Yong-Zhe, ZHANG Zhi-Hao, WANG Jun, SUN Jun-Ming, QIU Li-Juan. Mapping soybean protein QTLs based on high-density genetic map [J]. Acta Agronomica Sinica, 2023, 49(6): 1532-1541.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!