Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2024, Vol. 50 ›› Issue (7): 1684-1698.doi: 10.3724/SP.J.1006.2024.32044

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Developing new rice lines with ultrashort-duration, long-grain, and fragrance

PEI Fa-Jing1(), ZHANG Wen-Xuan1, ZHANG Xiao1, WANG Xin-Yu1,2, PENG Shao-Bing1, MI Jia-Ming1,*()   

  1. 1National Key Laboratory of Crop Genetic Improvement / Hubei Hongshan Laboratory / College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
    2Rice Research Institute, Guangdong Academy of Agricultural Sciences / Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou 510640, Guangdong, China
  • Received:2023-10-21 Accepted:2024-01-31 Online:2024-07-12 Published:2024-03-09
  • Contact: *E-mail: mjm@mail.hzau.edu.cn
  • Supported by:
    Hubei Key Research and Development Program(2022BBA0034);Hubei Key Research and Development Program(2021BBA225);Science and Technology Major Program of Hubei(2022ABA001)

Abstract:

Developing high-quality and ultrashort-duration rice varieties is of great significance for improving the multiple cropping index in the middle and lower reaches of Yangtze River to ensure our food security. In this study, the ultrashort-duration rice line CPPC09-180-28-1-5 was used as the recipient parent. The high-quality variety Xiangyaxiangzhan which carrying the fragrance gene fgr and the grain length gene GW7 was used as the donor parent. Three new breeding lines carrying homozygous fgr and GW7 genes were bred with high-quality and ultrashort-duration, via hybridization, backcrossing and genome-wide marker-assisted selection. Fragrance identification, main agronomic characters, and grain quality analysis of the new breeding lines were carried out. The new lines carrying fgr and GW7 genes had obvious fragrance. The grain length of the new lines was significantly increased compared with the recipient parent CPPC09-180-28-1-5, resulting in better grain quality. The whole growth period of the new lines was about 85-98 days, which was basically consistent with the recipient parent CPPC09-180-28-1-5. The new lines could be planted as early or late rice in the rice area of the middle and lower reaches of the Yangtze River to improve the multiple cropping index. In addition, plant height, 1000-grain weight, and yield per plant of the new breeding lines were significantly reduced compared with the recipient parent CPPC09-180-28-1-5, indicating that the introgression of two chromosome fragments carrying target genes in this study has a significant effect on the main agronomic traits of CPPC09-180-28-1-5. This study provides the germplasm resources and strategies for breeding high grain quality and ultrashort-duration rice by the molecular breeding.

Key words: rice, high-quality, ultrashort-duration, marker-assisted selection

Fig. 1

Roadmap for genome-wide marker assisted backcross breeding"

Fig. S1

Genetic background analysis of the selected plants in BC3F1 generation 1-12 chromosomes of rice are labeled from 1 to 12. The black dots, the gray, and the blue boxes represent the position of the target genes on the chromosomes, the recipient parent genome fragments, and the heterozygous genome fragments, respectively."

Table 1

KASP labeled primer sequence"

标记
Marker
染色体
Chr.
SNP位点
SNP position
引物名称
Primer name
引物序列
Primer sequence (5′-3′)
fgr-8UD2869 8 20,382,869 8UD2869-G GAAGGTGACCAAGTTCATGCTAACCATAGGAGCAGCTGAAG
8UD2869-A GAAGGTCGGAGTCAACGGATTAACCATAGGAGCAGCTGAAA
8UD2869-R GGTTGCATTTACTGGGAGTT
GW7-7YG6092 7 24,666,092 7YG6092-T GAAGGTGACCAAGTTCATGCTTTATGTCGATCTCCTTCACCATGCT
7YG6092-C GAAGGTCGGAGTCAACGGATTTTATGTCGATCTCCTTCACCATGCC
7YG6092-R TCGAAGAGTCCAAGAAGCAGAATC
GW7-7YG6398 7 24,666,398 7YG6398-G GAAGGTGACCAAGTTCATGCTCATGCTCGCCAATGCAAGG
7YG6398-A GAAGGTCGGAGTCAACGGATTCATGCTCGCCAATGCAAGA
7YG6398-R GTTCAGAAACCTCAGGAAGCTG
1JB0799 1 9,190,799 1JB0799-A GAAGGTGACCAAGTTCATGCTTCATTATCTCAAATAGGCAAATACCTTCA
1JB0799-G GAAGGTCGGAGTCAACGGATTTCATTATCTCAAATAGGCAAATACCTTCG
1JB0799-R TCGTCGTTTTCTTTAGCAATTCTCA
2VC9082 2 21,229,082 2VC9082-G GAAGGTGACCAAGTTCATGCTAGAGGACTGAGAAAAGGGTAATCG
2VC9082-A GAAGGTCGGAGTCAACGGATTAGAGGACTGAGAAAAGGGTAATCA
2VC9082-R GACGTTCTACACTTCTGATCCAGT
3ZC1943 3 25,271,943 3ZC1943-T GAAGGTGACCAAGTTCATGCTCATGACCACGTATGTTGAAAGTAGTT
3ZC1943-C GAAGGTCGGAGTCAACGGATTCATGACCACGTATGTTGAAAGTAGTC
3ZC1943-R TGTGGTCTCTGTTTTCCTTGAAAG
10TE2494 10 19,472,494 10TE2494-A GAAGGTGACCAAGTTCATGCTAGTTATGCCAACCAATAGCACTAA
10TE2494-C GAAGGTCGGAGTCAACGGATTAGTTATGCCAACCAATAGCACTAC
10TE2494-R AGAAGAAGAATAAGTTTGGCGCAG

Fig. S2

Genetic background analysis of the selected plants in BC2F1 generation 1-12 chromosomes of rice are labeled from 1 to 12. The black dots, the gray, and the blue boxes represent the position of the target genes on the chromosomes, the recipient parent genome fragments, and the heterozygous genome fragments, respectively."

Fig. 2

Genetic background of new breeding lines 1-12 chromosome of rice is labeled from 1 to 12. The black dots, the gray, and the red boxes represent the position of the target genes on the chromosomes, the recipient parent genome fragments, and the infiltrated donor parent genome fragment, respectively."

Table 2

Fragrance evaluation by KOH method"

品系名称
Breeding line
评价结果(2021武汉晚季)
Evaluation (2021 Wuhan late season)
评价结果(2022海南)
Evaluation (2022 Hainan)
CPPC09-180-28-1-5 无香味Non-fragrant 无香味Non-fragrant
FJ2161-1 有香味Fragrant 有香味Fragrant
FJ2161-2 有香味Fragrant 有香味Fragrant
FJ2162-1 有香味Fragrant
象牙香占Xiangyaxiangzhan 有香味Fragrant 有香味Fragrant

Table 3

Grain quality performance of new breeding lines (Wuhan late season in 2022)"

品系名称
Breeding line
出糙率
Brown
rice rate
(%)
精米率
Milling
rice rate
(%)
整精米率
Head
rice rate
(%)
垩白粒率
Chalky
rice rate
(%)
垩白度
Chalkiness degree
(%)
粒长
Head rice length
(mm)
长宽比
Head rice length/width ratio
直链淀粉
含量
Amylose content (%)
胶稠度
Gel
consistency
(mm)
CPPC09-180-28-1-5 77.4±0.2 66.8±0.4 63.9±0.3 13.8±2.8 3.1±0.7 5.5±0.1 2.7±0.0 13.7±0.3 76.9±0.5
FJ2161-1 73.1±0.8** 61.7±3.6* 56.4±1.8** 31.6±5.5** 9.7±2.6** 6.5±0.4** 3.9±0.2** 12.7±1.7 80.2±4.0
FJ2161-2 72.6±2.4* 60.6±3.1* 53.9±3.6** 20.3±3.4** 8.4±1.8** 6.6±0.3** 3.8±0.3** 13.2±0.8 82.5±1.2**
FJ2162-1 70.5±1.2** 55.8±1.8** 49.4±1.0** 33.6±6.7** 13.0±0.2** 6.2±0.1** 3.6±0.1** 12.7±0.3* 74.9±0.8

Table 4

Grain quality performance of new breeding lines (Hainan in 2022)"

品系名称
Breeding line
出糙率
Brown
rice rate
(%)
精米率
Milling
rice rate
(%)
整精米率
Head
rice rate
(%)
垩白粒率
Chalky
rice rate
(%)
垩白度
Chalkiness degree
(%)
粒长
Head
rice length
(mm)
长宽比
Head rice length/width ratio
直链淀粉
含量
Amylose content (%)
胶稠度
Gel
consistency
(mm)
CPPC09-180-28-1-5 75.3±0.9 67.4±0.7 64.1±0.5 37.4±3.5 9.6±1.7 6.3±0.1 3.2±0.1 10.0±0.5 79.8±2.5
FJ2161-1 71.5±0.2* 61.9±0.8* 46.8±0.5** 38.7±1.9 13.3±0.1 6.9±0.1** 4.1±0.0** 10.5±0.3 77.5±3.5
FJ2161-2 71.5±0.3* 61.4±0.5** 48.4±0.5** 26.8±0.7 7.4±0.4 6.9±0.0** 4.1±0.1** 10.6±0.4 79.0±2.6
FJ2162-1 72.6±0.2 61.4±0.2** 49.1±0.3** 38.1±2.7 12.8±2.4 6.8±0.1** 4.0±0.1** 9.7±0.4 73.2±1.3*
象牙香占Xiangyaxiangzhan 71.9±0.4* 64.9±0.8 59.1±1.7 0.0±0.0** 0.0±0.0* 7.1±0.1** 4.3±0.0** 18.3±0.2** 60.0±0.0**

Fig. 3

Comparison of rice grain type between new breeding line and parental lines (Hainan in 2022) A: grain shape; B: head rice shape."

Fig. 4

Days from sowing to full heading of both new breeding lines and parental lines"

Table 5

Main agronomic traits performance of new breeding lines (Wuhan late season in 2021)"

品系名称
Breeding line
株高
Plant height (cm)
有效穗数
Number of panicles per plant
平均穗长
Average
panicle length
(cm)
每穗颖花数
Number of spikelets per plant
结实率
Seed-
setting rate
(%)
千粒重
1000-grain weight
(g)
单株产量
Grain yield
per plant
(g)
CPPC09-180-28-1-5 91.8±1.8 11.8±1.2 23.5±0.9 153.5±13.4 63.8±6.6 19.9±0.8 23.1±4.3
FJ2161-1 87.9±1.7** 12.4±1.1 25.5±1.3** 149.8±14.8 58.1±2.5* 18.3±0.4** 19.7±3.0
FJ2161-2 86.0±3.0** 12.0±2.3 25.3±0.7** 152.4±8.5 57.8±7.9 18.2±1.0** 19.0±3.0*
FJ2162-1 86.5±1.6** 11.0±1.6 24.6±0.5** 138.9±5.3* 57.1±6.8 17.8±0.6** 15.7±4.4**

Fig. S3

Comparison of plant type between new breeding line and parental lines (Wuhan late season in 2021)"

Table 6

Main agronomic traits performance of new breeding lines (Hainan in 2022)"

品系名称
Breeding line
株高
Plant height (cm)
有效穗数
Number of panicles per plant
平均穗长
Average
panicle length
(cm)
每穗颖花数
Number of spikelets per plant
结实率
Seed-setting rate
(%)
千粒重
1000-grain weight
(g)
单株产量
Grain yield
per plant
(g)
CPPC09-180-28-1-5 74.6±1.0 9.3±2.3 19.7±0.3 150.4±8.0 63.1±7.4 23.8±1.3 25.2±6.5
FJ2161-1 67.8±3.3* 9.0±1.2 20.7±0.7* 129.3±8.9* 51.6±3.8* 20.2±0.7** 12.1±1.7*
FJ2161-2 65.7±4.1* 8.3±1.3 20.3±0.7 128.7±9.1* 46.9±3.5* 20.1±0.7** 10.1±2.1**
FJ2162-1 70.1±3.3 9.5±2.6 20.6±0.2** 124.5±9.4* 48.0±2.9* 20.9±0.9* 11.8±3.1*
象牙香占
Xiangyaxiangzhan
108.5±3.5** 14.0±1.7* 25.4±0.4** 157.1±4.9 70.3±1.7 20.1±0.6* 31.1±3.5
[1] 王飞, 彭少兵. 水稻绿色高产栽培技术研究进展. 生命科学, 2018, 30: 1129-1136.
Wang F, Peng S B. Research progress in rice green and high-yield management practices. Chin Bull Life Sci, 2018, 30: 1129-1136 (in Chinese with English abstract).
[2] Tilman D, Balzer C, Hill J, Befort B L. Global food demand and the sustainable intensification of agriculture. Proc Natl Acad Sci USA, 2011, 108: 20260-20264.
doi: 10.1073/pnas.1116437108 pmid: 22106295
[3] Ray D K, Foley J A. Increasing global crop harvest frequency: recent trends and future directions. Environ Res Lett, 2013, 8: 44041.
[4] 辛良杰, 李秀彬. 近年来我国南方双季稻区复种的变化及其政策启示. 自然资源学报, 2009, 24: 58-65.
doi: 10.11849/zrzyxb.2009.01.007
Xin L J, Li X B. Changes of multiple cropping in double cropping rice area of southern China and its policy implications. J Nat Resour, 2009, 24: 58-65 (in Chinese with English abstract).
[5] 蒋敏, 李秀彬, 辛良杰, 谈明洪. 南方水稻复种指数变化对国家粮食产能的影响及其政策启示. 地理学报, 2019, 74: 32-43.
doi: 10.11821/dlxb201901003
Jiang M, Li X B, Xin L J, Tan M H. Paddy rice multiple cropping index changes in southern China: impacts on national grain production capacity and policy implications. J Geogr Sci, 2019, 74: 32-43 (in Chinese with English abstract).
[6] Chen J N, Huang M, Cao F B, Yin X H, Zou Y B. Availability of existing early-season rice cultivars as resources for selecting high-yielding short-duration cultivars of machine-transplanted late-season rice. Exp Agric, 2019, 56: 218-226.
[7] 潘想成, 杨国栋, 符迎迎, 王昕钰, 熊渠, 徐乐, 彭少兵. 新育成超短生育期品系在双季稻双直播下的产量表现及农艺特性. 作物学报, 2023, 49: 2738-2752.
Pan X C, Yang G D, Fu Y Y, Wang X Y, Xiong Q, Xu L, Peng S B. Yield performance and agronomic characteristics of a newly developed ultrashort-duration line in direct-seeded double-season rice system. Acta Agron Sin, 2023, 49: 2738-2752 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2023.22065
[8] 张坤, 吕伟生, 胡水秀, 曾勇军, 潘晓华, 石庆华. 机插对早稻生育期的影响及原因探究. 江西农业大学学报, 2016, 38: 813-820.
Zhang K, Lyu W S, Hu S X, Zeng Y J, Pan X H, Shi Q H. Influence of mechanical transplantation on the growth period of early rice and its causes. Acta Agric Univ Jiangxiensis, 2016, 38: 813-820 (in Chinese with English abstract).
[9] 韦银兰, 罗友谊, 唐启源, 王慰亲, 郑华斌. 机械种植方式对双季稻生育期、产量及经济效益的影响. 杂交水稻, 2022, 37(1): 122-128.
Wei Y L, Luo Y Y, Tang Q Y, Wang W Q, Zheng H B. Effects of mechanical planting methods on growth period, yield and economic benefits of double-cropping rice. Hybrid Rice, 2022, 37(1): 122-128 (in Chinese).
[10] 朱德峰, 陈惠哲, 徐一成, 张玉屏. 我国双季稻生产机械化制约因子与发展对策. 中国稻米, 2013, 19(4): 1-4.
doi: 10.3969/j.issn.1006-8082.2013.04.001
Zhu D F, Chen H Z, Xu Y C, Zhang Y P. Restriction factors and development countermeasures of mechanization of double- cropping rice production in China. China Rice, 2013, 19(4): 1-4 (in Chinese).
[11] Wang X, Xu L, Li X, Yang G, Wang F, Peng S. Grain yield and lodging-related traits of ultrashort-duration varieties for direct- seeded and double-season rice in Central China. J Integr Agric, 2022, 21: 2888-2899.
[12] 徐善斌, 郑洪亮, 刘利锋, 卜庆云, 李秀峰, 邹德堂. 利用CRISPR/Cas9技术高效创制长粒香型水稻. 中国水稻科学, 2020, 34: 406-412.
doi: 10.16819/j.1001-7216.2020.0104
Xu S B, Zheng H L, Liu L F, Bu Q Y, Li X F, Zou D T. Improvement of grain shape and fragrance by using CRISPR/Cas9 system. Chin J Rice Sci, 2020, 34: 406-412 (in Chinese with English abstract).
doi: 10.16819/j.1001-7216.2020.0104
[13] 康云海, 方玉, 李潜龙, 杜明, 张从合. 水稻粒型基因研究进展及其育种应用. 杂交水稻, 2022, 37(3): 7-10.
Kang Y H, Fang Y, Li Q L, Du M, Zhang C H. Research progress of the genes of rice grain shape and their application in breeding. Hybrid Rice, 2022, 37(3): 7-10 (in Chinese with English abstract).
[14] Wang S, Li S, Liu Q, Wu K, Zhang J, Wang S, Wang Y, Chen X, Zhang Y, Gao C, Wang F, Huang H, Fu X. The OsSPL16-GW7 regulatory module determines grain shape and simultaneously improves rice yield and grain quality. Nat Genet, 2015, 47: 949-954.
[15] Verma D K, Srivastav P P. Extraction, identification and quantification methods of rice aroma compounds with emphasis on 2-acetyl-1-pyrroline (2-AP) and its relationship with rice quality: a comprehensive review. Food Rev Int, 2022, 38: 111-162.
[16] Bradbury L M, Fitzgerald T L, Henry R J, Jin Q S, Waters D L. The gene for fragrance in rice. Plant Biotechnol J, 2005, 3: 363-370.
doi: 10.1111/j.1467-7652.2005.00131.x pmid: 17129318
[17] Semagn K, Babu R, Hearne S, Olsen M. Single nucleotide polymorphism genotyping using kompetitive allele specific PCR (KASP): overview of the technology and its application in crop improvement. Mol Breed, 2014, 33: 1-14.
[18] 杨青青, 唐家琪, 张昌泉, 高继平, 刘巧泉. KASP标记技术在主要农作物中的应用及展望. 生物技术通报, 2022, 38(4): 58-71.
doi: 10.13560/j.cnki.biotech.bull.1985.2021-1378
Yang Q Q, Tang J Q, Zhang C Q, Gao J P, Liu Q Q. Application and prospect of KASP marker technology in main crops. Biotechnol Bull, 2022, 38(4): 58-71 (in Chinese with English abstract).
[19] Majeed U, Darwish E, Rehman S U, Zhang X Y. Kompetitive allele specific PCR (KASP): a single plex genotyping platform and its application. J Agric Sci, 2019, 11: 1916-9752.
[20] Yu H, Xie W, Li J, Zhou F, Zhang Q. A whole-genome SNP array (RICE6K) for genomic breeding in rice. Plant Biotechnol J, 2014, 12: 28-37.
doi: 10.1111/pbi.12113 pmid: 24034357
[21] 邱树青, 陆青, 喻辉辉, 倪雪梅, 张耕耘, 何航, 谢为博, 周发松. 水稻全基因组选择育种技术平台构建与应用. 生命科学, 2018, 30: 1120-1128.
Qiu S Q, Lu Q, Yu H H, Ni X M, Zhang G Y, He H, Xie W B, Zhou F S. The development and application of rice whole genome selection breeding platform. Chin Bull Life Sci, 2018, 30: 1120-1128 (in Chinese with English abstract).
[22] 徐云碧, 杨泉女, 郑洪建, 许彦芬, 桑志勤, 郭子锋, 彭海, 张丛, 蓝昊发, 王蕴波, 吴坤生, 陶家军, 张嘉楠. 靶向测序基因型检测(GBTS)技术及其应用. 中国农业科学, 2020, 53: 2983-3004.
doi: 10.3864/j.issn.0578-1752.2020.15.001
Xu Y B, Yang Q N, Zheng H J, Xu Y F, Sang Z Q, Guo Z F, Peng H, Zhang C, Lan H F, Wang Y B, Wu K S, Tao J J, Zhang J N. Genotyping by target sequencing (GBTS) and its applications. Sci Agric Sin, 2020, 53: 2983-3004 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2020.15.001
[23] Varshney R K, Bohra A, Yu J, Graner A, Zhang Q, Sorrells M E. Designing future crops: genomics-assisted breeding comes of age. Trends Plant Sci, 2021, 26: 631-649.
doi: 10.1016/j.tplants.2021.03.010 pmid: 33893045
[24] 王红波. 全基因组分子标记背景选择创建抗褐飞虱水稻新材料. 华中农业大学博士学位论文, 湖北武汉, 2019.
Wang H B. Development of Rice Breeding Lines for Brown Planthopper Resistance Using Whole Genome Marker Assisted Background Selection. PhD Dissertation of Huazhong Agricultural University, Wuhan, Hubei, China, 2019 (in Chinese with English abstract).
[25] 国家水稻数据中心. 中国水稻品种及其系谱数据库. [2023-02-17] https://www.ricedata.cn/variety/varis/600877.htm.
China Rice Data Center. China Rice Variety and Genealogy Gata Bank. [2023-02-17]https://www.ricedata.cn/variety/varis/600877.htm.
[26] 穆春华, 张发军, 李文才, 孙琦, 丁照华, 王磊, 孟昭东. 玉米叶片基因组快速提取方法研究. 玉米科学, 2010, 18(3): 170-172.
Mu C H, Zhang F J, Li W C, Sun Q, Ding Z H, Wang L, Meng Z D. A method of genomic DNA extraction of maize. Maize Sci, 2010, 18(3): 170-172 (in Chinese with English abstract).
[27] Sood B C, Siddiq E A. A rapid technique for scent determination in rice. Indian J Genet Plant Breed, 1978, 38: 268-275.
[28] 胡培松, 邵雅芳, 朱智伟, 于永红, 章林平, 胡贤巧, 朱大伟. 食用稻品种品质. 北京: 中国农业出版社, 2021. pp 1-5.
Hu P S, Shao Y F, Zhu Z W, Yu Y H, Zhang L P, Hu X Q, Zhu D W. Cooking Rice Variety Quality, Beijing: China Agriculture Press, 2021. pp 1-5 (in Chinese).
[29] 彭波, 孙艳芳, 陈报阳, 孙瑞萌, 孔冬艳, 庞瑞华, 李先文, 宋晓华, 李慧龙, 李金涛, 周棋赢, 柳琳, 段斌, 宋世枝. 水稻香味基因及其在育种中的应用研究进展. 植物学报, 2017, 52: 797-807.
doi: 10.11983/CBB16197
Peng B, Sun Y F, Chen B Y, Sun R M, Kong D Y, Pang R H, Li X W, Song X H, Li H L, Li J T, Zhou Q Y, Liu L, Duan B, Song S Z. Research progress of fragrance gene and its application in rice breeding. Chin Bull Bot, 2017, 52: 797-807 (in Chinese with English abstract).
[30] He Q, Park Y J. Discovery of a novel fragrant allele and development of functional markers for fragrance in rice. Mol Breed, 2015, 35: 217.
[31] Bradbury L M, Henry R J, Jin Q, Reinke R F, Waters D L. A perfect marker for fragrance genotyping in rice. Mol Breed, 2005,16: 279-283.
[32] Shi W, Yang Y, Chen S, Xu M. Discovery of a new fragrance allele and the development of functional markers for the breeding of fragrant rice varieties. Mol Breed, 2008, 22: 185-192.
[33] 黄娟, 刘开强, 邓国富, 卿冬进, 高菊, 伍豪, 周维永, 杨燕宇, 朱昌兰, 高利军. 水稻香味基因荧光分子标记开发及育种应用. 植物生理学报, 2020, 56: 1015-1022.
Huang J, Liu K Q, Deng G F, Qing D J, Gao J, Wu H, Zhou W Y, Yang Y Y, Zhu C L, Gao L J. Development and breeding application of fluorescent molecular marker for rice fragrance gene. Plant Physiol J, 2020, 56: 1015-1022 (in Chinese with English abstract).
[34] Wang Y, Xiong G, Hu J, Jiang L, Yu H, Xu J, Fang Y, Zeng L, Xu E, Xu J, Ye W, Meng X, Liu R, Chen H, Jing Y, Wang Y, Zhu X, Li J, Qian Q. Copy number variation at the GL7 locus contributes to grain size diversity in rice. Nat Genet, 2015, 47: 944-948.
[35] Zhang L, Ma B, Bian Z, Li X, Zhang C, Liu J, Li Q, Liu Q, He Z. Grain size selection using novel functional markers targeting 14 genes in rice. Rice, 2020, 13: 63.
doi: 10.1186/s12284-020-00427-y pmid: 32902771
[36] Chen S, Lin X H, Xu C G, Zhang Q. Improvement of bacterial blight resistance of ‘Minghui 63’, an elite restorer line of hybrid rice, by molecular marker-assisted selection. Crop Sci, 2000, 40: 239-244.
[37] 兰艳荣, 王俊义, 王弋, 牟同敏. 分子标记辅助选择改良水稻光温敏核不育系华201S的白叶枯病抗性. 中国水稻科学, 2011, 5: 169-174.
Lan Y R, Wang J Y, Wang Y, Mou T M. Improvement of rice bacterial blight resistance of Hua 201S, an elite photo-thermo- sensitive genic male sterile line, by molecular marker-assisted selection. Chin J Rice Sci, 2011, 25: 169-174 (in Chinese with English abstract).
[38] 胡兰, 孙双燕, 曹伟召, 曾文秀, 赵国超, 李建粤. 利用分子标记辅助选育优质长粒香型软米水稻新品系“上师大19号”. 上海农业学报, 2020, 36(4): 1-5.
Hu L, Sun S Y, Cao W Z, Zeng W X, Zhao G C, Li J Y. Development of a aromatic soft rice line “Shangshida No. 19” with long grain by molecular marker-assisted selection. Acta Agric Shanghai, 2020, 36(4): 1-5 (in Chinese with English abstract).
[39] 张昌泉, 赵冬生, 李钱峰, 顾铭洪, 刘巧泉. 稻米品质性状基因的克隆与功能研究进展. 中国农业科学 2016, 49: 4267-4283.
doi: 10.3864/j.issn.0578-1752.2016.22.002
Zhang C Q, Zhao D S, Li Q F, Gu M H, Liu Q Q. Progresses in research on cloning and functional analysis of key genes involving in rice grain quality. Sci Agric Sin, 2016, 49: 4267-4283 (in Chinese with English abstract).
[40] Mao H, Sun S, Yao J, Wang C, Yu S, Xu C, Li X, Zhang Q. Linking differential domain functions of the GS3 protein to natural variation of grain size in rice. Proc Natl Acad Sci USA, 2010, 107: 19579-19584.
doi: 10.1073/pnas.1014419107 pmid: 20974950
[41] Li Y, Fan C, Xing Y, Jiang Y, Luo L, Sun L, Shao D, Xu C, Li X, Xiao J, He Y, Zhang Q. Natural variation in GS5 plays an important role in regulating grain size and yield in rice. Nat Genet, 2011, 43: 1266-1269.
[42] 朱霁晖, 张昌泉, 顾铭洪, 刘巧泉. 水稻Wx基因的等位变异及育种利用研究进展. 中国水稻科学, 2015, 29: 431-438.
doi: 10.3969/j.issn.1001G7216.2015.04.013
Zhu J H, Zhang C Q, Gu M H, Liu Q Q. Progress in the allelic variation of Wx gene and its application in rice breeding. Chin J Rice Sci, 2015, 29: 431-438 (in Chinese with English abstract).
[43] 杨勇, 陆彦, 郭淑青, 石仲慧, 赵杰, 范晓磊, 李钱峰, 刘巧泉, 张昌泉. 籼稻背景下导入Wxin等位基因改良稻米食味和理化品质. 作物学报, 2019, 45: 1628-1637.
doi: 10.3724/SP.J.1006.2019.82064
Yang Y, Lu Y, Guo S Q, Shi Z H, Zhao J, Fan X L, Li Q F, Liu Q Q, Zhang C Q. Improvement of rice eating quality and physicochemical properties by introgression of Wxin allele in indica varieties. Acta Agron Sin, 2019, 45: 1628-1637 (in Chinese with English abstract).
[44] 郑永丹. 中国主要粮食作物生育期时空格局及其变化. 华中师范大学硕士学位论文, 湖北武汉, 2015.
Zheng Y D. Research on the Spatial-Temporal Distribution of Growth Period of Main Grain Crops and Its Change in China. MS Thesis of Central China Normal University, Wuhan, Hubei, China, 2015 (in Chinese with English abstract).
[45] 彭少兵. 对转型时期水稻生产的战略思考. 中国科学: 生命科学, 2014, 44: 845-850.
Peng S B. Reflection on China’s rice production strategies during the transition period. Sci Sin (Vitae), 2014, 44: 845-850 (in Chinese with English abstract).
[46] 张晓丽, 陶伟, 高国庆, 陈雷, 郭辉, 张华, 唐茂艳, 梁天锋. 直播栽培对双季早稻生育期、抗倒伏能力及产量效益的影响. 中国农业科学, 2023, 56: 249-263.
doi: 10.3864/j.issn.0578-1752.2023.02.004
Zhang X L, Tao W, Gao G Q, Chen L, Guo H, Zhang H, Tang M Y, Liang T F. Effects of direct seeding cultivation method on growth stage, lodging resistance and yield benefit of double- cropping early rice. Sci Agric Sin, 2023, 56: 249-263 (in Chinese with English abstract).
[47] 周训华, 唐广心, 朱志华, 何华元. “稻-稻-油”三熟制生产模式探讨. 作物研究, 2015, 29: 64-66.
Zhou X H, Tang G X, Zhu Z H, He H Y. Discussion on the production model of the “rice-rice-rape” triple cropping system. Crop Res, 2015, 29: 64-66 (in Chinese).
[48] 孙松. 稻田二熟制与三熟制生产力及生态经济效益综合评价. 江西农业大学硕士学位论文, 江西南昌, 2018.
Sun S. Study on Comprehensive Evaluation of Double Cropping Systems and Triple Cropping Systems Productivity and Ecological Economic Benefit. MS Thesis of Jiangxi Agricultural University, Nanchang, Jiangxi, China, 2018 (in Chinese with English abstract).
[1] FU Jing, MA Meng-Juan, ZHANG Qi-Fei, DUAN Ju-Qi, WANG Yue-Tao, WANG Fu-Hua, WANG Sheng-Xuan, BAI Tao, YIN Hai-Qing, WANG Ya. Effects of alternate wetting and drying irrigation and different nitrogen application levels on photosynthetic characteristics and nitrogen absorption and utilization of japonica rice [J]. Acta Agronomica Sinica, 2024, 50(7): 1787-1804.
[2] CHENG Shuang, XING Zhi-Peng, TIAN Chao, HU Qun, WEI Hai-Yan, ZHANG Hong-Cheng. Effects of an integrated dryland tillage and soaking pattern on the reducing substances in rice field and early growth of machine transplanted rice [J]. Acta Agronomica Sinica, 2024, 50(7): 1762-1775.
[3] TANG Qing-Yun, YANG Jing-Jing, ZHAO Lei, SONG Zhi-Wen, WANG Guo-Dong, LI Yu-Xiang. Effect of nitrogen application on morphological conformation and fractal characteristics of drip irrigated rice roots [J]. Acta Agronomica Sinica, 2024, 50(6): 1540-1553.
[4] ZHANG Xiao-Fang, ZHU Qi, HUA Yun-Yan, JIA Li-Hui-Ying, QIU Shi-You, CHEN Yu-Jie, MA Tao, DING Wo-Na. Screening and validation of OsCYP22 interacting proteins in rice [J]. Acta Agronomica Sinica, 2024, 50(6): 1628-1634.
[5] ZHU Zhong-Lin, WEN Yue, ZHOU Qi, WU Yan-Fei, DU Xue-Zhu, SHENG Feng. Mechanism of loding residence and drought tolerance of OsCNGC10 gene in rice [J]. Acta Agronomica Sinica, 2024, 50(5): 1351-1360.
[6] HU Ming-Ming, DING Feng, PENG Zhi-Yun, XIANG Kai-Hong, LI Yu, ZHANG Yu-Jie, YANG Zhi-Yuan, SUN Yong-Jian, MA Jun. Effects of straw returning to field combined with water and N management on rice yield formation and N uptake and utilization under diversified cropping patterns [J]. Acta Agronomica Sinica, 2024, 50(5): 1236-1252.
[7] GENG Xiao-Yu, ZHANG Xiang, LIU Yang, ZUO Bo-Yuan, ZHU Wang, MA Wei-Yi, WANG Lu-Lu, MENG Tian-Yao, GAO Ping-Lei, CHEN Ying-Long, XU Ke, DAI Qi-Gen, WEI Huan-He. Grain yield and its characteristics of japonica/indica hybrids rice in coastal saline-alkali lands [J]. Acta Agronomica Sinica, 2024, 50(5): 1253-1270.
[8] WAN Ying-Chun, BAN Yi-Jie, JIANG Yu-Dong, WANG Ya-Xin, LIU Jing-Jing, LIU Xiao-Qing, CHENG Yu-Lin, WANG Nan, FENG Ping. Phenotypic identification and fine mapping of male sterile mutant tpa1 in rice [J]. Acta Agronomica Sinica, 2024, 50(5): 1104-1114.
[9] CAO Xin-Yuan, DU Ming-Li, WANG Yu-Cheng, CHEN Xin-Hua, CHEN Jia-Xin, LING Xiao-Xia, HUANG Jian-Liang, PENG Shao-Bing, DENG Nan-Yan. Evaluation of annual yield gap and yield limiting facters in rice-rapeseed cropping system: an example from Wuxue city, Hubei province, China [J]. Acta Agronomica Sinica, 2024, 50(5): 1287-1299.
[10] YU Yao, WANG Zi-Yao, ZHOU Si-Rui, LIU Peng-Cheng, YE Ya-Feng, MA Bo-Jun, LIU Bin-Mei, CHEN Xi-Feng. Phenotypic identification and disease resistance mechanism analysis of rice lesion mutant lms1 [J]. Acta Agronomica Sinica, 2024, 50(4): 857-870.
[11] WANG Lyu, WU Yu-Hong, QIN Yu-Hang, DAN Ya-Bin, CHEN Hao, HAO Xing-Shun, TIAN Xiao-Hong. Effects of rice straw mulching combined with green manure retention and nitrogen reduction applications on dry matter quality accumulation, nitrogen transport and grain yield of rice [J]. Acta Agronomica Sinica, 2024, 50(3): 756-770.
[12] ZHANG Li-Jie, ZHOU Hai-Yu, MUHAMMAD Zeshan, MUNSIF Ali Shad, YANG Ming-Chong, LI Bo, HAN Shi-Jian, ZHANG Cui-Cui, HU Li-Hua, WANG Ling-Qiang. Functional analysis of OsFLZ13, the gene encoding a small peptide zinc finger protein in rice [J]. Acta Agronomica Sinica, 2024, 50(3): 543-555.
[13] WEI Huan-He, ZHANG Xiang, ZHU Wang, GENG Xiao-Yu, MA Wei-Yi, ZUO Bo-Yuan, MENG Tian-Yao, GAO Ping-Lei, CHEN Ying-Long, XU Ke, DAI Qi-Gen. Effects of salinity stress on grain-filling characteristics and yield of rice [J]. Acta Agronomica Sinica, 2024, 50(3): 734-746.
[14] XIAO Zheng-Wu, HU Li-Qin, LI Xing, XIE Jia-Xin, LIAO Cheng-Jing, KANG Yu-Ling, Hu Yu-Ping, ZHANG Ke-Qian, FANG Sheng-Liang, CAO Fang-Bo, CHEN Jia-Na, HUANG Min. Quality differences between noodle rice grown in early and late seasons [J]. Acta Agronomica Sinica, 2024, 50(2): 451-463.
[15] WU Hao, ZHANG Ying, WANG Chen, GU Han-Zhu, ZHOU Tian-Yang, ZHANG Wei-Yang, GU Jun-Fei, LIU Li-Jun, YANG Jian-Chang, ZHANG Hao. Effects of cultivation optimization on root characteristics and starch properties of rice at grain filling stage in the lower reaches of the Yangtze River [J]. Acta Agronomica Sinica, 2024, 50(2): 478-492.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!