Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2024, Vol. 50 ›› Issue (8): 1907-1919.doi: 10.3724/SP.J.1006.2024.42002

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Screening, evaluation, and utilization of low nitrogen tolerance for the selected introgression lines in rice with Huanghuazhan background

SHAO Mei-Hong1(), ZHAO Ling-Ling1, CHENG Chu1, CHENG Si-Ming1, ZHU Shuang-Bing2, ZHAI Lai-Yuan2, CHEN Kai2, XU Jian-Long2,3,4,*()   

  1. 1Agricultural Technology Extension Center of Jiande, Hangzhou 311600, Zhejiang, China
    2Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, Guangdong, China
    3Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
    4National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, Hainan, China
  • Received:2024-01-06 Accepted:2024-04-01 Online:2024-08-12 Published:2024-05-08
  • Contact: * E-mail: xujianlong@caas.cn
  • Supported by:
    National Key Research and Development Program of China(2023YFF1000400)

Abstract:

Nitrogen deficiency in medium-yield and low-yield fields is an important factor restricting the high yield in rice. It is one of effective ways to solve the problem by screening and developing rice variety with low nitrogen tolerance (LNT). In this study, the selected introgression lines (SILs) from germplasms in Huanghuazhan (HHZ) background were used to evaluate the performance of yield and its related traits under low and normal nitrogen conditions for successive three seasons. Low nitrogen had least effect on heading date, seed fertility, and 1000-grain weight (TGW) with the average low nitrogen tolerance index (LNTI) around 1.0, whereas had greatest effect on grain yield per plant (GYP) and panicle number per plant (PN) with the respective average LNTI of 0.45 and 0.62, indicating that GYP and PN were useful indicator of LNT. Based on LNTI of GYP, nine LNT lines were selected with LNTI ranging from 0.87 to 1.04. Five of the selected LNT lines verified by multiple-site trials, one line (M281) had low LNT with GYP-LNTI of 0.66 and the other four had high LNT with the average GYP-LNTI of 0.94, indicating that LNT was a characteristic with the differences at individual and population levels, thus emphasizing the importance of population verification for LNT materials which were screened from segregation population. Among the four LNT lines, M85 was mainly achieved by higher PN and TGW under low nitrogen condition, whereas the other three lines (M382, M563, and M79) were mainly supported by more filled grains per panicle (FGP) and higher TGW. Therefore, an important way was proposed to achieve high yield under low nitrogen condition through increasing FGP based on a relatively high PN. In view of salt tolerance at seedling stage, drought tolerance at reproductive stage and LNT at all growth duration of SILs, it was discussed how to simultaneously improve multiple complex abiotic stress tolerances using SILs derived from diverse donors by molecular design.

Key words: rice, selected introgression line, low nitrogen tolerance, low nitrogen tolerance index, stress tolerance improvement

Table 1

591 BC1F5 selected introgression lines (SILs) derived from Huanghuazhan (HHZ) as a recipient crossed with different donors after high yielding, drought and salt tolerance screening, and cross screening "

群体编号
Population ID
供体亲本
Donor parent
籼粳属性
Indica/japonica
来源
Source
导入系数
Number of ILs
HHZ5 OM1723 Indica 越南 Vietnam 97
HHZ8 Phalguna Indica 印度 India 74
HHZ9 IR50 Indica 菲律宾 Philippines 73
HHZ11 IR64 Indica 菲律宾 Philippines 68
HHZ12 Teqing Indica 中国 China 84
HHZ15 PSBRc66 Indica 菲律宾 Philippines 54
HHZ17 CDR22 Indica 印度 India 74
HHZ19 PSBRc28 Indica 菲律宾 Philippines 67

Table 2

Performance of yield and its related traits of Huanghuazhan (HHZ) under different seasons and different nitrogen fertilizer addressing"

性状
Trait
对照
Control (CK)
低氮
Low nitrogen (LN)
耐低氮指数
Low nitrogen tolerance index (LNTI)
2013早季
Early season
in 2013
2013晚季
Late season
in 2013
2014早季
Early season
in 2014
2013早季
Early season
in 2013
2013晚季
Late season
in 2013
2014早季
Early season
in 2014
2013早季
Early season
in 2013
2013晚季
Late season
in 2013
2014早季
Early season
in 2014
单株有效穗数 PN 11.5 12.3 10.7 4.8 5.6 4.6 0.42 0.46 0.43
抽穗期 HD (d) 75.3 73.1 76.5 60.1 60.1 60.1 0.80 0.82 0.79
株高 PH (cm) 95.0 92.1 94.2 75.2 75.2 75.2 0.79 0.82 0.80
千粒重 TWG (g) 23.6 22.8 23.5 19.0 21.0 19.8 0.81 0.92 0.84
每穗实粒数 FGP 164.2 153.2 170.3 106.9 103.7 107.5 0.65 0.68 0.63
每穗总粒数 SNP 187.6 167.5 189.8 134.3 122.5 137.1 0.72 0.73 0.72
结实率 SF (%) 87.5 85.1 88.1 79.6 83.8 80.1 0.91 0.98 0.91
单株产量 GYP (g) 26.3 22.7 26.9 12.7 10.5 13.7 0.48 0.46 0.51

Table 3

ANOVA analysis of low nitrogen tolerance-related traits under different nitrogen fertilizer addressing in the three seasons"

变异来源
Source
抽穗期
HD
株高
PH
有效穗数
PN
千粒重
TGW
每穗实粒数
FGP
每穗总粒数
SNP
结实率
SF
单株产量
GYP
基因型 Genotype (G) 4.11*** 12.69*** 1.04 11.93*** 2.85*** 3.46*** 4.69*** 1.53***
环境 Environment (E) 12,656.68*** 20,694.99*** 146.96*** 4189.74*** 283.02*** 739.79*** 492.34*** 961.01***
处理 Treatment (T) 17.48*** 19,288.91*** 3129.51*** 1378.64*** 994.48*** 1496.87*** 51.11*** 12,048.01***
基因型×环境G × E 0.65 1.03 0.56 1.58*** 1.33*** 1.06. 2.43*** 1.03
基因型×处理G × T 0.50 1.39*** 0.39 1.01 1.14* 1.23*** 1.11 1.18
环境×处理E × T 87.65*** 2311.09*** 261.41*** 66.72*** 4.85* 0.07 19.31*** 6.69**
基因型×环境×处理G × E × T 0.38 0.97 0.36 0.89 0.86 0.92 0.86 0.80**
耐低氮指数Low nitrogen tolerance index
基因型 Genotype (G) 1.27*** 1.29*** 0.52 1.36*** 1.41*** 1.46*** 1.60*** 1.21**
环境 Environment (E) 252.44*** 1602.53*** 495.90*** 60.41*** 5.03* 1.12 22.07*** 292.30***
基因型×环境 G × E 1.00 1.34*** 0.42 1.24*** 1.19** 1.14* 1.00 0.96

Table 4

Performance of yield and its related traits for 591 SILs in HHZ background in different seasons and nitrogen fertilizer addressing"

处理
Treatment
性状
Trait
2013早季 Early season in 2013 2013晚季 Late season in 2013 2014早季 Early season in 2014
平均数±
标准差
Mean ± SD
变幅
Range
变异
系数
CV (%)
平均数±
标准差
Mean ± SD
变幅
Range
变异
系数
CV (%)
平均数±
标准差
Mean ± SD
变幅
Range
变异
系数
CV (%)
对照 单株有效穗数 PN 5.3±0.71 3.3-8.4 13.46 6.2±1.06 3.2-10.7 17.05 6.8±1.16 4.5-12.6 17.07
CK 抽穗期 HD (d) 104.4±3.64 95.5-117.0 3.49 85.6±0.05 79.5-102.0 4.71 96.8±4.28 90.0-114.0 4.42
株高 PH (cm) 113.3±6.34 99.8-146.5 5.60 86.1±0.07 71.5-110.8 7.20 110.6±7.33 95.5-143.6 6.62
千粒重 TGW (g) 24.7±1.61 19.1-29.9 6.53 21.3±1.65 16.9-26.7 7.73 23.3±1.53 19.8-28.6 6.59
每穗实粒数 FGP 176.7±25.95 38.9-251.4 14.69 151.7±24.46 81.0-231.8 16.12 150.4±23.95 67.5-224.4 15.92
每穗总粒数 SNP 200.4±23.98 135.0-278.4 11.97 168.3±25.66 87.5-259.3 15.25 179.8±24.96 116.3-267.0 13.88
结实率 SF (%) 88.0±0.07 57.0-96.5 7.45 90.2±0.05 62.9-97.9 5.51 83.6±0.07 52.2-95.8 8.54
单株产量 GYP (g) 21.58±3.72 9.92-34.74 17.23 17.69±3.00 9.30-28.87 16.98 19.92±4.15 9.06-35.80 20.85
低氮
LN
单株有效穗数 PN 3.2±0.44 1.9-5.3 13.88 2.9±0.51 1.8-6.7 17.65 5.2±0.94 2.9-9.3 18.12
抽穗期 HD (d) 105.3±3.52 95.0-123.0 3.34 83.2±3.99 72.5-96.5 4.80 96.6±4.30 75.0-113.0 4.46
株高 PH (cm) 89.8±5.15 72.4-118.1 5.73 77.1±5.03 59.7-97.2 6.53 90.4±5.90 76.3-119.0 6.53
千粒重 TGW (g) 22.9±1.66 14.1-29.6 7.23 20.4±1.61 16.4-26.6 7.91 22.0±1.54 18.5-28.8 7.00
每穗实粒数 FGP 151.1±22.82 92.2-220.6 15.10 125.3±22.10 60.5-190.3 17.64 130.1±22.40 62.4-211.9 17.21
每穗总粒数 SNP 168.5±24.50 105.8-249.8 14.54 138.5±23.31 63.5-205.0 16.82 152.9±24.52 88.9-246.6 16.04
结实率 SF (%) 89.7±0.05 50.0-98.0 5.83 90.4±0.05 71.1-98.10 4.98 85.2±0.07 48.9-95.4 7.77
单株产量 GYP (g) 10.32±2.01 6.14-17.41 19.44 6.27±1.39 3.33-11.89 22.23 9.45±2.23 4.74-23.18 23.62
耐低氮
指数
LNTI
单株有效穗数 PN 0.60±0.11 0.34-1.14 18.55 0.48±0.11 0.23-1.08 23.60 0.77±0.11 0.43-1.22 13.81
抽穗期 HD 1.01±0.03 0.89-1.14 2.55 0.97±0.03 0.87-1.07 3.56 1.00±0.05 0.77-1.16 5.07
株高 PH 0.79±0.04 0.67-0.93 4.94 0.90±0.05 0.70-1.09 5.91 0.82±0.04 0.66-0.96 4.72
千粒重 TGW 0.93±0.05 0.51-1.20 5.83 0.96±0.06 0.76-1.20 5.91 0.95±0.05 0.80-1.12 5.03
每穗实粒数 FGP 0.87±0.17 0.56-2.75 19.68 0.84±0.19 0.40-1.53 22.10 0.88±0.18 0.42-1.77 20.22
每穗总粒数 SNP 0.85±0.13 0.58-1.57 15.56 0.84±0.18 0.44-1.54 21.03 0.86±0.15 0.54-1.79 17.48
结实率 SF 1.02±0.11 0.59-2.96 10.56 1.00±0.06 0.79-1.34 6.23 1.02±0.09 0.73-1.45 8.53
单株产量 GYP 0.49±0.13 0.24-1.04 25.93 0.36±0.10 0.16-0.87 27.86 0.49±0.15 0.20-1.28 30.53

Fig. S1

Correlation among the average trait values across three seasons of 591 selected introgression lines in Huanghuazhan background evaluated in different nitrogen fertilizer conditions HD: heading date; PH: plant height; PN: panicle number per plant; TGW: 1000-grain weight; FGN: filled grains per panicle; SNP: spikelet number per panicle; SF: seed fertility; GYP: grain yield per plant. 1: normal nitrogen condition; 2: low nitrogen condition; 3: ratio of values under low to normal nitrogen conditions."

Fig. 1

Path analysis of yield trait under different nitrogen fertilizer treatments A: control; B: low nitrogen treatment; C: low nitrogen tolerance index. Full line stands for direct effect of each trait on yield whereas dotted line for indirect effect; green line stands for positive effect while red line for negative effect. Size of lines represents coefficient of path. Abbreviations are the same as those given in Table 2."

Table 5

Low nitrogen tolerance lines screened based on grain yield per plant"

季节
Season
株系号
Line
供体
Donor
处理
Treatment
抽穗期
HD (d)
株高
PH (cm)
单株有效穗
PN
千粒重
TGW (g)
每穗实粒数
FGP
每穗总粒数
SNP
结实率
SF (%)
单株产量
GYP (g)
2013
早季
2013 Early season
M85 OM723 正常 CK 112.5 117.5 3.7 24.2 151.4 211.0 71.8 11.79
低氮 LN 116.5 101.9 3.9 24.1 121.1 191.5 63.2 11.60
耐低氮指数 LNTI 1.04 0.87 1.07 a 0.99 0.80 0.91 0.88 0.98
M336 Teqing 正常 CK 102.5 114.8 4.3 21.5 131.3 152.5 86.0 15.25
低氮 LN 103.0 93.0 3.5 22.0 119.0 131.3 90.6 13.90
耐低氮指数 LNTI 1.00 0.81 0.81 1.03 0.91 0.86 1.05 0.91
M382 Teqing 正常 CK 103.0 116.4 4.8 22.7 164.7 211.2 78.0 14.70
低氮 LN 103.0 97.1 4.1 21.9 185.7 213.1 87.1 15.32
耐低氮指数 LNTI 1.00 0.83 0.84 0.97 1.13 1.01 1.12 1.04
M563 PSBRc28 正常 CK 101.5 108.9 5.4 24.6 178.1 203.0 0.88 16.32
低氮 LN 105.5 89.4 3.9 23.7 175.8 207.5 0.85 16.67
耐低氮指数 LNTI 1.04 0.82 0.72 0.96 0.99 1.02 1.06 1.02
2014
早季
2014
Early season
M17 OM1723 正常 CK 103.5 133.4 6.1 28.0 147.3 166.5 88.2 21.68
低氮 LN 103.0 105.6 5.4 25.3 150.6 169.3 88.9 18.75
耐低氮指数 LNTI 1.00 0.79 0.88 0.90 1.02 1.02 1.01 0.87
M79 OM1723 正常 CK 105.0 130.0 6.5 25.6 132.4 152.8 86.5 16.35
低氮 LN 107.0 97.3 4.6 23.9 141.5 169.9 82.8 15.34
耐低氮指数 LNTI 1.02 0.75 0.71 0.93 1.07 1.11 0.96 0.94
M98 Phalguna 正常 CK 94.0 104.1 5.5 22.3 160.0 186.1 85.7 15.04
低氮 LN 94.0 86.6 4.5 22.2 137.5 151.8 90.5 13.73
耐低氮指数 LNTI 1.00 0.83 0.82 0.99 0.86 0.82 1.06 0.91
M281 IR64 正常 CK 107.5 120.8 6.3 23.0 133.8 166.1 0.81 13.24
低氮 LN 102.0 101.6 5.3 22.6 139.5 177.9 0.78 12.83
耐低氮指数 LNTI 0.95 0.84 0.84 0.98 1.04 1.07 0.97 0.97
M414 PSBRc66 正常 CK 90.0 105.1 5.3 21.2 163.6 188.0 87.1 17.49
低氮 LN 101.0 90.0 4.8 18.8 161.8 194.4 83.5 15.78
耐低氮指数 LNTI 1.12 0.86 0.90 0.89 0.99 1.03 0.96 0.90

Table 6

Performance of low nitrogen tolerance lines in multiple trials"

试点
Site
品系
Line
处理
Treatment
抽穗期
HD
(d)
株高
PH
(cm)
有效穗数
PN
(×104 hm-2)
千粒重
TGW
(g)
穗实粒数
FGP
结实率
SF
(%)
实收产量
Yield harvested
(t hm-2)
大同镇
Datong town
M85 正常 CK 108.4 114.6 16.5 20.9 166.7 77.0 6.35
低氮 LN 108.0 102.5 15.3 21.7 141.9 82.9 5.73
耐低氮指数 LNTI 1.00 0.89 0.93 a 1.04 0.85 1.08 0.90
M382 正常 CK 102.4 107.7 14.9 23.1 160.4 86.3 6.49
低氮 LN 107.0 90.1 11.3 22.2 149.4 90.2 5.90
耐低氮指数 LNTI 1.04 0.84 0.76 0.96 0.93 1.05 0.91
M563 正常 CK 108.9 134.7 14.9 23.7 181.9 85.6 6.35
低氮 LN 108.5 109.3 13.0 23.5 167.9 85.6 6.12
耐低氮指数 LNTI 1.00 0.81 0.87 0.99 0.92 1.00 0.96
M79 正常 CK 100.8 106.2 16.0 22.4 142.2 86.4 6.49
低氮 LN 93.0 89.7 13.3 22.5 136.9 88.6 6.27
耐低氮指数 LNTI 0.92 0.84 0.83 1.00 0.96 1.03 0.97
M281 正常 CK 84.3 119.0 15.5 22.33 139.8 83.0 6.42
低氮 LN 67.4 100.6 12.7 21.7 130.7 84.6 4.17
耐低氮指数 LNTI 0.79 0.85 0.82 0.97 0.93 1.02 0.65
黄华占(CK) 正常 CK 82.9 106.8 15.2 21.3 155.9 89.4 7.05
Huanghuazhan (CK) 低氮 LN 69.1 84.8 10.0 18.7 112.4 82.3 3.28
耐低氮指数 LNTI 0.83 0.79 0.66 0.88 0.72 0.92 0.46
大慈
岩镇
Daciyan
town
M85 正常 CK 107.1 113.9 16.0 21.0 159.8 77.0 5.90
低氮 LN 107.8 102.0 14.9 22.0 137.3 83.1 4.99
耐低氮指数 LNTI 1.01 0.90 0.93 1.05 0.86 1.08 0.85
M382 正常 CK 102.2 106.5 14.9 21.2 158.3 86.1 6.10
低氮 LN 107.4 89.4 12.1 22.2 146.1 90.0 5.80
耐低氮指数 LNTI 1.05 0.84 0.81 1.05 0.92 1.05 0.95
M563 正常 CK 107.3 130.8 15.8 23.8 175.2 85.5 425.4
低氮 LN 106.9 108.0 13.1 23.5 157.0 85.5 416.6
耐低氮指数 LNTI 1.00 0.83 0.83 0.99 0.90 1.00 0.98
M79 正常 CK 99.8 104.0 16.0 22.5 139.3 86.8 416.2
低氮 LN 92.4 88.4 13.5 22.2 128.5 88.3 405.9
耐低氮指数 LNTI 0.93 0.85 0.84 0.99 0.92 1.02 0.98
M281 正常 CK 83.0 103.4 15.1 21.2 153.3 89.1 462.4
低氮 LN 67.2 84.0 10.4 18.4 135.1 83.0 332.9
耐低氮指数 LNTI 0.81 0.81 0.69 0.87 0.88 0.93 0.72
黄华占(CK) 正常 CK 83.0 103.4 15.1 21.2 153.3 89.1 462.4
Huanghuazhan (CK) 低氮 LN 67.2 84.0 10.4 18.4 115.1 83 214.8
耐低氮指数 LNTI 0.81 0.81 0.69 0.87 0.75 0.93 0.46
航头镇
Hangtou town
M85 正常 CK 106.7 111.9 16.1 21.0 158.9 76.9 375.2
低氮 LN 107.3 100.7 15.2 22.0 130.2 82.2 321.2
耐低氮指数 LNTI 1.01 0.90 0.94 1.05 0.82 1.07 0.86
M382 正常 CK 102.3 105.4 14.8 21.2 154.7 85.0 397.3
低氮 LN 106.3 90.7 12.5 22.5 142.4 90.4 362.6
航头镇
Hangtou Town
M382 耐低氮指数 LNTI 1.04 0.86 0.84 1.06 0.92 1.06 0.91
M563 正常 CK 106.9 129.4 14.3 23.8 174.7 86.1 432.6
低氮 LN 105.0 107.3 11.3 23.5 164.1 85.3 423.7
耐低氮指数 LNTI 0.98 0.83 0.79 0.99 0.94 0.99 0.98
M79 正常 CK 100.6 104.0 15.6 22.8 142.1 87.1 423.7
低氮 LN 93.2 89.8 12.6 21.9 140.1 88.1 413.3
耐低氮指数 LNTI 0.93 0.86 0.81 0.96 0.99 1.01 0.98
M281 正常 CK 83.5 103.1 15.5 21.3 147.7 86.0 440.7
低氮 LN 67.2 83.4 10.8 18.7 133.1 82.8 264.4
耐低氮指数 LNTI 0.80 0.81 0.70 0.88 0.90 0.96 0.60
黄华占 正常 CK 83.5 103.1 15.5 21.3 147.7 86.0 440.7
Huanghuazhan (CK) 低氮 LN 67.2 83.4 10.8 18.7 113.1 82.8 207.2
耐低氮指数 LNTI 0.80 0.81 0.70 0.88 0.77 0.96 0.47
[1] Xu C C, Ji L, Chen Z D, Fang F P. Analysis of China’s rice industry in 2022 and the outlook for 2023. China Rice, 2023, 29: 1-4.
doi: 10.3969/j.issn.1006-8082.2023.02.001
[2] 张启发主编. 资源节约型、环境友好型农业生产体系的理论与实践. 科学出版社, 2015. pp 1-10.
Zhang Q F. Theory and Practice of Resource-saving and Environment-friendly Agricultural Production System. Beijing: Science Press, 2015. pp 1-10.
[3] Peng S B, Buresh R J, Huang J L, Yang J L, Zou Y B, Zhong X H, Wang G H, Zhang F S. Strategies for overcoming low agronomic nitrogen use efficiency in irrigated rice systems in China. Field Crops Res, 2006, 96: 37-47.
[4] Guo J H, Liu X J, Zhang Y, Shen J L, Han W X, Zhang W F, Christie P, Goulding K W T, Vitousek P M, Zhang F S. Significant acidification in major Chinese croplands. Science, 2010, 327: 1008-1010.
doi: 10.1126/science.1182570 pmid: 20150447
[5] Luo L G, Itoh S, Zhang Q W, Yang S Q, Zhang Q Z, Yang Z L. Leaching behavior of nitrogen in a long-term experiment on rice under different N management systems. Environ Monitor Assessment, 2011, 177: 141-150.
[6] Zhao C, Liu G M, Chen Y, Jiang Y, Shi Y, Zhao L T, Liao P Q, Wang W L, Xu K, Dai Q G, Huo Z Y. Excessive nitrogen application leads to lower rice yield and grain quality by inhibiting the grain filling of inferior grains. Agriculture, 2022, 12: 962.
[7] 杨秀娟, 甘林, 阮宏椿, 杜宜新, 李科, 孙福如. 氮肥对水稻苗 POD、SOD 活性及稻瘟病发生的影响. 福建农林大学学报(自然科学版), 2011, 40: 8-12.
Yang X J, Gan L, Ruan H C, Du Y X, Li K, Sun F R. Influence of nitrogen on the activities of POD and SOD in rice seedlings and the incidence of rice blast disease. J Fujian Agric For Univ (Nat Sci Edn), 2011, 40: 8-12 (in Chinese with English abstract).
[8] 皮楚舒, 章桃娟, 周建光, 朱凤华, 杨诚, 陈杰峰. 氮肥不同用量对早稻产量和纹枯病发生的影响. 现代农业科技, 2021, (3) : 23-24.
Pi C S, Zhang T J, Zhou J G, Zhu F H, Yang C, Chen J F. Effect of different quantities of nitrogen fertilizer on yield and sheath blight of early season rice. Mod Agric Tech, 2021, (3): 23-24 (in Chinese).
[9] Zhang Q. Strategies for developing green super rice. Proc Natl Acad Sci USA, 2007, 104: 16402-16409.
doi: 10.1073/pnas.0708013104 pmid: 17923667
[10] 石全红, 王宏, 陈阜, 褚庆全. 中国中低产田时空分布特征及增产潜力分析. 中国农学通报, 2010, 26(19): 369-373.
Shi Q H, Wang H, Chen F, Chu Q Q. The spatial-temporal distribution characteristics and yield potential of medium-low yielded farmland in China. Chin Agric Sci Bull, 2010, 26(19): 369-373 (in Chinese with English abstract).
doi: 10.11924/j.issn.1000-6850.2010-1435
[11] Tanksley S D, McCouch S R. Seed banks and molecular maps: unlocking genetic potential from the wild. Science, 1997, 277: 1063-1066.
doi: 10.1126/science.277.5329.1063 pmid: 9262467
[12] Duvick D N. Genetic contributions to yield gains of U.S. hybrid maize, 1930 to 1980. In:Fehr W R, ed. Genetic Contributions to Yield Gains of Five Major Crop Plants. CSSA Special Publication No. 7. Madison, WI, USA: Crop Science Society of America and American Society of Agronomy, 1984. pp 15-47.
[13] Duvick D N. Theory, empiricism and intuition in professional plant breeding. In:Cleveland D A, Soleri D, eds. Farmers, Scientists and Plant Breeding: Integrating Knowledge and Practice. Wallingford UK: CABI Publishing, 2002. pp 189-211.
[14] 荘洁, 张宗琼, 农保选, 杨行海, 蒋显斌, 李丹婷, 夏秀忠. 广西普通野生稻渗入系耐低氮和氮素利用率的鉴定评价. 热带作物学报, 2022, 43: 2071-2079.
doi: 10.3969/j.issn.1000-2561.2022.10.013
Zhuang J, Zhang Z Q, Nong B X, Yang X H, Jiang X B, Li D T, Xia X Z. Identification and evaluation of nitrogen-deficiency tolerance and nitrogen-use efficiency for introgression lines of wild rice (Oryza rufipogon Griff.) in Guangxi. Chin J Trop Crops, 2022, 43: 2071-2079 (in Chinese with English abstract).
[15] 吴婷, 李霞, 黄得润, 黄凤林, 肖宇龙, 胡标林. 应用东乡野生稻回交重组自交系分析水稻耐低氮产量相关性状QTL. 中国水稻科学, 2020, 34: 499-511.
doi: 10.16819/j.1001-7216.2020.0408
Wu T, Li X, Huang D R, Huang F L, Xiao Y L, Hu B L. QTL Analysis for yield traits related to low nitrogen tolerance using backcrossing recombinant inbred lines derived from Dongxiang wild rice (Oryza rufipogon Griff.). Chin J Rice Sci, 2020, 34: 499-511 (in Chinese with English abstract).
[16] 孟丽君, 马秀芳, 唐志强, 沈枫, 崔彦茹, 柴路, 陈凯, 徐建龙, 黎志康. 粳稻超优1号背景回交导入系的耐热性筛选与评价. 作物学报, 2012, 38: 1949-1959.
doi: 10.3724/SP.J.1006.2012.01949
Meng L J, Ma X F, Tang Z Q, Shen F, Cui Y R, Chai L, Chen K, Xu J L, Li Z K. Screening and evaluation of heat tolerance of introgression lines with japonica Chaoyou 1 background. Acta Agron Sin, 2012, 38: 1949-1959 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2012.01949
[17] Ali A J, Xu J L, Ismail A M, Fu B Y, Vijaykumar C H M, Gao Y M, Domingo J, Maghirang R, Yu S B, Gregorio G, Yanaghihara S, Cohen M, Carmen B, Mackill D, Li Z K. Hidden diversity for abiotic and biotic stress tolerances in the primary gene pool of rice revealed by a large backcross breeding program. Field Crops Res, 2006, 97: 66-76.
[18] Wang Y, Zhang L B, Nafisah A, Zhu L H, Xu J L, Li Z K. Selection efficiencies for improving drought/salt tolerances and yield using introgression breeding in rice (Oryza sativa L.). Crop J, 2013, 1: 134-142.
[19] Ali J, Xu J L, Gao Y M, Ma X F, Meng L J, Wang Y, Pang Y L, Guan Y S, Xu M R, Revilleza J E, Franje N J, Zhou S C, Li Z K. Harnessing the hidden genetic diversity for improving multiple abiotic stress tolerance in rice (Oryza sativa L.). PLoS One, 2017, 12: e0172515.
[20] Gentleman R, Ihaka R. R: a language and environment for statistical computing. Computing, 2011, 1: 12-21.
[21] Huang X H, Wei X H, Sang T, Zhao Q, Feng Q, Zhao Y, Li C Y, Zhu C R, Lu T T, Zhang Z W, Li M, Fan D L, Guo Y L, Wang A H Wang L, Deng L W, Li W J, Lu Y Q, Weng Q J, Liu K Y, Huang T, Zhou T Y, Jing Y F, Li W, Lin Z, Buckler E S, Qian Q, Zhang Q F, Li J Y, Han B. Genome-wide association studies of 14 agronomic traits in rice landraces. Nat Genet, 2010, 42: 961-967.
doi: 10.1038/ng.695 pmid: 20972439
[22] Jing L, Yan L, Xiao P, Sun M, Corke H, Bao J S. Genetic diversity and population structure of a diverse set of rice germplasm for association mapping. Theor Appl Genet, 2010, 121: 475-487.
doi: 10.1007/s00122-010-1324-7 pmid: 20364375
[23] 曹桂兰, 张媛媛, 朴钟泽, 韩龙植. 水稻不同基因型耐低氮能力差异评价. 植物遗传资源学报, 2006, 7: 316-320.
Cao G L, Zhang Y Y, Piao Z Z, Han L Z. Evaluation of tolerance to low N-fertilized level for rice type. J Plant Genet Resour, 2006, 7: 316-321 (in Chinese with English abstract).
[24] 朴钟泽, 韩龙植, 高熙宗. 水稻不同基因型氮素利用效率差异. 中国水稻科学, 2003, 17: 233-238.
Piao Z Z, Han L Z, Koh H J. Variations of nitrogen use efficiency by rice genotype. Chin J Rice Sci, 2003, 17: 233-238 (in Chinese with English abstract).
[25] 江立庚, 戴廷波, 韦善清, 甘秀芹, 徐建立, 曹卫星. 南方水稻氮素吸收与利用效率的基因型差异评价. 植物生态学报, 2003, 27: 466-471.
doi: 10.17521/cjpe.2003.0067
Jiang L G, Dai T B, Wei S Q, Gan X Q, Xu J L, Cao W X. Genotypic differences and valuation in nitrogen uptake and utilization efficiency in rice. Acta Phytoecol Sin, 2003, 27: 466-471 (in Chinese with English abstract).
[26] Samonte S O P B, Wilson L T, Medley J C, Pinson S R M, McClung A M, Lales J S. Nitrogen utilization efficiency: relationship with grain yield, grain protein, and yield-related traits in rice. Agron J, 2006, 98: 168-176.
[27] 魏海燕, 张洪程, 马群, 戴其根, 霍中洋, 许轲, 张庆, 黄丽芬. 不同氮肥吸收利用效率水稻基因型叶片衰老特性. 作物学报, 2010, 36: 645-654.
doi: 10.3724/SP.J.1006.2010.00645
Wei H Y, Zhang H C, Ma Q, Dai Q G, Huo Z Y, Xu K, Zhang Q, Huang L F. Characteristics of leaf senescence in rice genotypes with different nitrogen use efficiencies. Acta Agron Sin, 2010, 36: 645-654 (in Chinese with English abstract).
[28] 朴钟泽, 韩龙植, 高熙宗, 陆家安, 张建明. 水稻氮素利用效率的选择效果. 作物学报, 2004, 30: 651-656.
Piao Z Z, Han L L, Koh H J, Lu J A, Zhang J M. Selection effect of nitrogen use efficiency in rice. Acta Agron Sin, 2004, 30: 651-656 (in Chinese with English abstract).
[29] 张亚丽, 樊剑波, 段英华, 王东升, 叶利庭, 沈其荣. 不同基因型水稻氮利用效率的差异及评价. 土壤学报, 2008, 45: 267-273.
Zhang Y L, Fan J B, Duan Y H, Wang D S, Ye L T, Shen Q R. Variation of nitrogen use efficiency of rice different in genotype and its evaluation. Acta Pedol Sin, 2008, 45: 267-273 (in Chinese with English abstract).
[30] 童汉华, 余新桥, 梅捍卫, 曹一平, 章善庆, 罗利军. 水稻苗期氮素营养高效基因型的筛选. 浙江农业科学, 2007, 48: 537-541.
Tong H H, Yu X Q, Mei H W, Cao Y P, Zhang S Q, Luo L J. An effective method to identify high nitrogen use efficiency (NUE) genotype at seedling stage in rice. J Zhejiang Agric Sci, 2007, 48: 537-541 (in Chinese with English abstract).
[31] 郑家奎, 文春阳, 张涛, 杨莉, 杨乾华, 郑建敏, 杨松涛, 唐江云, 田翠. 耐低氮水稻材料筛选及筛选指标研究. 安徽农业科学, 2009, 37: 7361-7363.
Zheng J K, Wen C Y, Zhang T, Yang L, Yang Q H, Zheng J M, Yang S T, Tang J Y, Tian C. Studies on the screening index for low nitrogen tolerant rice and its selection. J Anhui Agric Sci, 2009, 37: 7361-7363 (in Chinese with English abstract).
[32] Park H, Mok S K, Seok S J. Efficiency of soil and fertilizer nitrogen in relation to rice variety and application time, using 15N labeled fertilizer: V. 15N point application in fields. J Korean Agric Chem, 1982, 25: 30-34.
[33] 黎毛毛, 万建林, 黄永兰, 曹桂兰, 陈红萍, 韩龙植. 水稻微核心种质氮素利用率相关性状的鉴定评价及其相关分析. 植物遗传资源学报, 2011, 12: 352-361.
doi: 10.13430/j.cnki.jpgr.2011.03.004
Li M M, Wan J L, Huang Y L, Cao G K, Chen H P, Han L Z. Evaluation and correlation analysis of the characters rated to nitrogen use efficiency for mini core collection of rice (Oryza sativa L.) in China. J Plant Genet Resour, 2011, 12: 352-361 (in Chinese with English abstract).
[34] 钟思荣, 龚丝雨, 张世川, 陈仁霄, 刘齐元, 翟小清. 作物不同基因型耐低氮性和氮效率研究进展. 核农学报 2018, 32: 1656-1663.
doi: 10.11869/j.issn.100-8551.2018.08.1656
Zhong S R, Gong S Y, Zhang S C, Chen R X, Liu Q Y, Zhai X Q. Research progress on low nitrogen tolerance and nitrogen efficiency in crop plants. J Nucl Agric Sci, 2018, 32: 1656-1663 (in Chinese with English abstract).
doi: 10.11869/j.issn.100-8551.2018.08.1656
[35] 周德贵, 李宏, 卢德城, 黄道强, 赖穗春, 王志东, 周少川. 水稻氮磷高效利用育种材料的发掘研究. 分子植物育种, 2010, 8: 1196-1201.
Zhou D G, Li H, Lu D C, Huang D Q, Lai S C, Wang Z D, Zhou S C. The exploration and establishment of rice breeding materials of high phosphorus use efficiency and nitrogen use efficiency. Mol Plant Breed, 2010, 8: 1196-1201 (in Chinese with English abstract).
[1] JIA Shu-Han, HE Can, CHEN Min, LIU Jia-Xin, HU Wei-Min, HU Jin, GUAN Ya-Jing. Study on the quality differences of seeds with different pre-harvest sprouting levels and the grading of pre-harvest sprouting in hybrid rice [J]. Acta Agronomica Sinica, 2024, 50(9): 2310-2322.
[2] HU Li-Qin, XIAO Zheng-Wu, FANG Sheng-Liang, CAO Fang-Bo, CHEN Jia-Na, HUANG Min.
Effects of planting season on digestive characteristics of high amylose content rice
[J]. Acta Agronomica Sinica, 2024, 50(9): 2347-2357.
[3] LIU Chen, WANG Kun-Kun, LIAO Shi-Peng, YANG Jia-Qun, CONG Ri-Huan, REN Tao, LI Xiao-Kun, LU Jian-Wei. Effects of nitrogen fertilizer application levels on yield and nitrogen absorption and utilization of oilseed rape under maize-oilseed rape and rice-oilseed rape rotation fields [J]. Acta Agronomica Sinica, 2024, 50(8): 2067-2077.
[4] SONG Zhi-Wen, ZHAO Lei, BI Jun-Guo, TANG Qing-Yun, WANG Guo-Dong, LI Yu-Xiang. Effects of nitrogen fertilization levels on matter accumulation and nutrient uptake in rice cultivar with different nitrogen efficiency under drip irrigation [J]. Acta Agronomica Sinica, 2024, 50(8): 2025-2038.
[5] HE Dan-Dan, SHU Ya-Zhou, ZHOU Hai-Lian, WU Song-Guo, WEI Xiao-Shuang, YANG Ming-Chong, LI Bo, WU Zheng-Dan, HAN Shi-Jian, YANG Juan, WANG Ji-Bin, WANG Ling-Qiang. OsRPTA18 participated in the regulation of leaf inclination in rice [J]. Acta Agronomica Sinica, 2024, 50(8): 1934-1947.
[6] GUO Chun-Lin, LIN Man-Hong, CHEN Ting, CHEN Hong-Fei, LIN Wen-Fang, LIN Wen-Xiong. Evolution characteristics of rhizosphere microorganisms in response to ratoon rice senescence and underlying carry-over effect mechanism [J]. Acta Agronomica Sinica, 2024, 50(8): 2039-2052.
[7] FU Jing, MA Meng-Juan, ZHANG Qi-Fei, DUAN Ju-Qi, WANG Yue-Tao, WANG Fu-Hua, WANG Sheng-Xuan, BAI Tao, YIN Hai-Qing, WANG Ya. Effects of alternate wetting and drying irrigation and different nitrogen application levels on photosynthetic characteristics and nitrogen absorption and utilization of japonica rice [J]. Acta Agronomica Sinica, 2024, 50(7): 1787-1804.
[8] CHENG Shuang, XING Zhi-Peng, TIAN Chao, HU Qun, WEI Hai-Yan, ZHANG Hong-Cheng. Effects of an integrated dryland tillage and soaking pattern on the reducing substances in rice field and early growth of machine transplanted rice [J]. Acta Agronomica Sinica, 2024, 50(7): 1762-1775.
[9] PEI Fa-Jing, ZHANG Wen-Xuan, ZHANG Xiao, WANG Xin-Yu, PENG Shao-Bing, MI Jia-Ming. Developing new rice lines with ultrashort-duration, long-grain, and fragrance [J]. Acta Agronomica Sinica, 2024, 50(7): 1684-1698.
[10] TANG Qing-Yun, YANG Jing-Jing, ZHAO Lei, SONG Zhi-Wen, WANG Guo-Dong, LI Yu-Xiang. Effect of nitrogen application on morphological conformation and fractal characteristics of drip irrigated rice roots [J]. Acta Agronomica Sinica, 2024, 50(6): 1540-1553.
[11] ZHANG Xiao-Fang, ZHU Qi, HUA Yun-Yan, JIA Li-Hui-Ying, QIU Shi-You, CHEN Yu-Jie, MA Tao, DING Wo-Na. Screening and validation of OsCYP22 interacting proteins in rice [J]. Acta Agronomica Sinica, 2024, 50(6): 1628-1634.
[12] ZHU Zhong-Lin, WEN Yue, ZHOU Qi, WU Yan-Fei, DU Xue-Zhu, SHENG Feng. Mechanism of loding residence and drought tolerance of OsCNGC10 gene in rice [J]. Acta Agronomica Sinica, 2024, 50(5): 1351-1360.
[13] HU Ming-Ming, DING Feng, PENG Zhi-Yun, XIANG Kai-Hong, LI Yu, ZHANG Yu-Jie, YANG Zhi-Yuan, SUN Yong-Jian, MA Jun. Effects of straw returning to field combined with water and N management on rice yield formation and N uptake and utilization under diversified cropping patterns [J]. Acta Agronomica Sinica, 2024, 50(5): 1236-1252.
[14] GENG Xiao-Yu, ZHANG Xiang, LIU Yang, ZUO Bo-Yuan, ZHU Wang, MA Wei-Yi, WANG Lu-Lu, MENG Tian-Yao, GAO Ping-Lei, CHEN Ying-Long, XU Ke, DAI Qi-Gen, WEI Huan-He. Grain yield and its characteristics of japonica/indica hybrids rice in coastal saline-alkali lands [J]. Acta Agronomica Sinica, 2024, 50(5): 1253-1270.
[15] WAN Ying-Chun, BAN Yi-Jie, JIANG Yu-Dong, WANG Ya-Xin, LIU Jing-Jing, LIU Xiao-Qing, CHENG Yu-Lin, WANG Nan, FENG Ping. Phenotypic identification and fine mapping of male sterile mutant tpa1 in rice [J]. Acta Agronomica Sinica, 2024, 50(5): 1104-1114.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[2] Qi Zhixiang;Yang Youming;Zhang Cunhua;Xu Chunian;Zhai Zhixi. Cloning and Analysis of cDNA Related to the Genes of Secondary Wall Thickening of Cotton (Gossypium hirsutum L.) Fiber[J]. Acta Agron Sin, 2003, 29(06): 860 -866 .
[3] NI Da-Hu;YI Cheng-Xin;LI Li;WANG Xiu-Feng;ZHANG Yi;ZHAO Kai-Jun;WANG Chun-Lian;ZHANG Qi;WANG Wen-Xiang;YANG Jian-Bo. Developing Rice Lines Resistant to Bacterial Blight and Blast with Molecular Marker-Assisted Selection[J]. Acta Agron Sin, 2008, 34(01): 100 -105 .
[4] DAI Xiao-Jun;LIANG Man-Zhong;CHEN Liang-Bi. Comparison of rDNA Internal Transcribed Spacer Sequences in Oryza sativa L.[J]. Acta Agron Sin, 2007, 33(11): 1874 -1878 .
[5] WANG Bao-Hua;WU Yao-Ting;HUANG Nai-Tai;GUO Wang-Zhen;ZHU Xie-Fei;ZHANG Tian-Zhen. QTL Analysis of Epistatic Effects on Yield and Yield Component Traits for Elite Hybrid Derived-RILs in Upland Cotton[J]. Acta Agron Sin, 2007, 33(11): 1755 -1762 .
[6] WANG Chun-Mei;FENG Yi-Gao;ZHUANG Li-Fang;CAO Ya-Ping;QI Zeng-Jun;BIE Tong-De;CAO Ai-Zhong;CHEN Pei-Du. Screening of Chromosome-Specific Markers for Chromosome 1R of Secale cereale, 1V of Haynaldia villosa and 1Rk#1 of Roegneria kamoji[J]. Acta Agron Sin, 2007, 33(11): 1741 -1747 .
[7] ZHOU Lu-Ying;LI Xiang-Dong;WANG Li-Li;TANG Xiao;LIN Ying-Jie. Effects of Different Ca Applications on Physiological Characteristics, Yield and Quality in Peanut[J]. Acta Agron Sin, 2008, 34(05): 879 -885 .
[8] WANG Li-Xin; LI Yun-Fu; CHANG Li-Fang; HUANG Lan ;; LI Hong-Bo ; GE Ling-Ling; Liu Li-Hua ;; YAO Ji ;; ZHAO Chang-Ping ;. Method of ID Constitution for Wheat Cultivars[J]. Acta Agron Sin, 2007, 33(10): 1738 -1740 .
[9] ZHENG Tian-Qing;XU Jian-Long;FU Bing-Ying;GAO Yong-Ming;Satish VERUKA;Renee LAFITTE;ZHAI Hu-Qu;WAN Jian-Min;ZHU Ling-Hua;LI Zhi-Kang. Preliminary Identification of Genetic Overlaps between Sheath Blight Resistance and Drought Tolerance in the Introgression Lines from Directional Selection[J]. Acta Agron Sin, 2007, 33(08): 1380 -1384 .
[10] YANG Yan;ZHAO Xian-Lin; ZHANG Yong;CHEN Xin-Min;HE Zhong-Hu;YU Zhuo;XIA Lan-Qin
. Evaluation and Validation of Four Molecular Markers Associated with Pre-Harvest Sprouting Tolerance in Chinese Wheats[J]. Acta Agron Sin, 2008, 34(01): 17 -24 .