Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2024, Vol. 50 ›› Issue (8): 1934-1947.doi: 10.3724/SP.J.1006.2024.32046

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

OsRPTA18 participated in the regulation of leaf inclination in rice

HE Dan-Dan1,2(), SHU Ya-Zhou1,2(), ZHOU Hai-Lian1,2, WU Song-Guo1,2, WEI Xiao-Shuang1,2, YANG Ming-Chong1,2, LI Bo1,2, WU Zheng-Dan1,2, HAN Shi-Jian2, YANG Juan2,3, WANG Ji-Bin1,2,4,*(), WANG Ling-Qiang1,2,3,*()   

  1. 1Guangxi University / State Key Laboratory of Conservation and Utilization of Agric-Biological Resources, Nanning 530004, Guangxi, China
    2College of Agriculture, Guangxi University, Nanning 530004, Guangxi, China
    3National Demonstration Center for Experimental Plant Science Education / Guangxi University, Nanning 530004, Guangxi, China
    4Moutai Institute, Renhuai 564501, Guizhou, China
  • Received:2023-12-01 Accepted:2024-04-01 Online:2024-08-12 Published:2024-04-18
  • Contact: * E-mail: wangjibin@mtxy.edu.cn;E-mail: lqwang@gxu.edu.cn
  • About author:** Contributed equally to this work
  • Supported by:
    General Project of Guangxi Natural Science Foundation(2022GXNSFAA035479);Key Project of Guangxi Natural Science Foundation(2020GXN9)

Abstract:

The regulatory particle triple-A ATPase (RPTA) gene family is closely related to plant growth and development, hormone regulation and stress response. In this study, a total of 33 members of the gene family were identified in rice and their gene locations, gene structures, motifs composition, and cis-elements in the promoter regions were revealed. Then, the relative expression patterns of the gene members in OsRPTA family were investigated with the data downloaded from rice CREP database. Most of the OsRPTA genes expressed highly in panicle, endosperm and callus tissues. β-D-glucuronidase (GUS) staining further indicated that one of the members, OsRPTA18, was expressed in collar, root, leaf, leaf sheath, stem node, vascular bundles of glume and lemma. Subcellular localization indicated that OsRPTA18 protein was in nucleus. Two knock-out mutants (osrpta18-1 and osrpta18-2) were generated by CRISPR/Cas9 editing technology and both exhibited reduced plant height, leaf inclination, accompanied by the decreased grain width and 1000-grain weight compared to the wild type Zhonghua 11. Transverse section staining of the lamina joints of the plants indicated the changes in the cell wall thickness and vascular bundle size, causing the obvious proliferation of thick-walled cells at adaxial side, thus decreasing asymmetric development of the lamina joints and the leaf angel in the osrpta18 mutants. These results of this study are valuable for further functional analysis of RPTA genes and utilization of the OsRPTA18 gene for the genetic improvement of rice varieties with ideal plant architecture.

Key words: rice, RPTA gene family, collar, leaf inclination

Table 1

Primers used in this study"

引物名称
Primer name
正向引物
Forward primer (5'-3')
反向引物
Reverse primer (5'-3')
OsRPTA18-CRISPR-Target TAGAGCTAGAAATAGCAAGTTAAAAT TAGAGCTAGAAATAGCAAGTTAAAAT
OsRPTA18-CRISPR-Identify CCGGAAGAGGAGACCCATCTCGACA CACTCCTATCTCACTGGCTGGTA
OsRPTA18-GUS TATGACCATGATTACGAATTCGAATGTGCAGAACACTGTGAGGA TGGCTGCAGGTCGACGGATCCGGTAGACAAAAGATACCCTAACCAAGA
OsRPTA18-GUS-Identify CAGTGAGCGCAACGCAATTA CCCAGTCACGACGTTGTAAAACG

Table 2

Information of RPTA family in rice"

基因名称
Gene name
基因LOC号
Gene LOC number
染色体Chr. 核酸长度Nucleotide length
(bp)
氨基酸数目
Number of amino acids (aa)
分子量
Molecular weight
(kD)
等电点
pI
不稳定
系数Instability index
脂肪族
指数Aliphatic index
平均疏水性
Grand average of hydropathicity
OsRPTA1 LOC_Os01g04814.4 1 1260 400 44.17 6.98 47.96 73.91 -0.453
OsRPTA2 LOC_Os01g12660.1 1 2928 841 93.42 8.23 48.06 87.81 -0.378
OsRPTA3.1 LOC_Os01g43480.1 1 1281 813 89.85 5.54 38.12 89.95 -0.341
OsRPTA3.2 LOC_Os01g43480.2 1 1290 754 84.23 5.76 40.71 87.17 -0.415
OsRPTA3.3 LOC_Os01g43480.3 1 1230 676 75.82 5.38 37.24 86.53 -0.480
OsRPTA4 LOC_Os01g48270.1 1 1353 411 45.57 5.42 51.96 86.85 -0.378
OsRPTA5.1 LOC_Os01g55260.1 1 3333 387 43.47 6.02 47.87 87.75 -0.428
OsRPTA5.2 LOC_Os01g55260.2 1 1074 307 34.56 6.23 51.23 97.25 -0.286
OsRPTA6 LOC_Os02g10640.1 2 1731 401 44.58 7.03 28.84 93.40 -0.333
OsRPTA7 LOC_Os02g11050.1 2 1737 425 47.22 8.90 40.91 93.58 -0.342
OsRPTA8 LOC_Os02g21970.1 2 1176 420 46.45 5.74 37.35 88.95 -0.328
OsRPTA9 LOC_Os02g51400.1 2 2568 976 109.51 5.41 53.23 81.72 -0.553
OsRPTA10 LOC_Os02g54340.1 2 2484 427 47.68 6.03 33.77 83.94 -0.406
OsRPTA11.1 LOC_Os02g56000.1 2 2097 430 47.79 4.94 41.09 92.10 -0.427
OsRPTA11.2 LOC_Os02g56000.2 2 2313 410 45.48 4.88 41.48 93.25 -0.375
OsRPTA12 LOC_Os03g18690.1 3 1464 451 49.71 5.91 45.46 90.98 -0.388
OsRPTA13 LOC_Os03g22420.1 3 1290 1111 121.68 6.13 43.49 82.72 -0.373
OsRPTA14 LOC_Os04g21660.1 4 1281 358 39.50 5.32 35.59 93.45 -0.239
OsRPTA15 LOC_Os04g39190.1 4 2922 577 62.28 9.84 50.51 92.25 -0.148
OsRPTA16 LOC_Os04g42110.1 4 1272 579 62.80 7.24 44.39 89.67 -0.231
OsRPTA17 LOC_Os05g31220.1 5 1206 392 42.30 6.73 44.03 94.65 -0.151
OsRPTA18.1 LOC_Os05g50750.1 5 1536 856 94.86 5.58 46.24 83.87 -0.485
OsRPTA18.2 LOC_Os05g50750.2 5 1446 828 91.67 5.52 47.76 84.93 -0.475
OsRPTA18.3 LOC_Os05g50750.3 5 1182 699 77.05 5.38 45.08 80.42 -0.597
OsRPTA19 LOC_Os06g01980.1 6 3246 771 84.78 7.31 55.90 78.48 -0.486
OsRPTA20 LOC_Os06g03940.1 6 1347 488 107.10 9.43 45.81 84.78 -0.381
OsRPTA21 LOC_Os06g07630.1 6 3279 430 47.77 4.94 38.87 92.77 -0.412
OsRPTA22 LOC_Os06g09290.1 6 1347 427 47.68 6.03 33.77 83.94 -0.406
OsRPTA23 LOC_Os06g12160.1 6 588 974 108.20 5.72 53.80 85.51 -0.496
OsRPTA24 LOC_Os06g39870.1 6 3609 424 46.82 9.03 39.28 93.33 -0.289
OsRPTA25 LOC_Os06g40560.1 6 1260 402 44.58 8.48 29.86 93.72 -0.315
OsRPTA26.1 LOC_Os06g45820.3 6 2928 512 55.06 8.55 33.69 87.79 -0.167
OsRPTA26.2 LOC_Os06g45820.4 6 1281 482 51.45 7.79 30.88 94.07 -0.084
OsRPTA27 LOC_Os06g50050.1 6 1290 394 43.69 7.65 63.65 92.34 -0.254
OsRPTA28 LOC_Os07g47530.1 7 1230 1082 1184.00 8.40 42.38 81.67 -0.385
OsRPTA29 LOC_Os07g49150.1 7 1353 449 49.58 5.91 44.33 89.87 -0.414
OsRPTA30 LOC_Os08g44240.1 8 3333 1093 119.51 5.91 47.33 95.12 -0.135
OsRPTA31 LOC_Os09g38730.1 9 1074 449 48.69 4.90 37.33 91.94 -0.263
OsRPTA32 LOC_Os10g30580.2 10 1731 196 21.81 4.88 57.44 75.28 -0.559
OsRPTA33 LOC_Os11g43970.1 11 1737 1203 131.21 6.81 48.55 80.52 -0.478

Fig. 1

Chromosomal distribution, protein clustering, and collinearity analysis of RPTA gene family in rice A: Chromosomal distribution of OsRPTA gene family; B: Unrooted phylogenetic tree of OsRPTA proteins; C: Collinearity analysis of OsRPTA gene family, where red and gray lines indicate the collinear relationship among RPTA gene members and among all genes in rice genome, respectively."

Fig. 2

Motif composition, conserved domains, and gene structure of RPTA gene family in rice A: motif composition of RPTA proteins; B: conserved domains of RPTA proteins; C: gene structures of OsRPTA family, where green blocks indicate 5' and 3' untranslated regions (UTR), yellow blocks indicate the exons in coding region (CDS), and black lines indicate introns."

Fig. 3

Cis-elements in the promoter regions of RPTA gene family in rice The number of cis-elements is indicated numerically. Gray box means no corresponding cis-element."

Fig. 4

Co-expression profiling of RPTA in rice The color scale representing the relative signal values is shown above (green refers to low expression; black refers to medium expression and red refers to high expression). N1, N7, N20: endosperm 14, 17, 21 days after pollination; N2, N18: flag leaves; N3-N6, N17, N24, N29: Calli; N8: Spikelet; N9, N30: young leaves; N10, N31: sheaths; N11, N22: young panicles; N12-N14: plumules; N15, N16: radicles; N19, N23: stems; N21: seed imbibition; N25: Hull; N26: stamen; N27, N28, N32: young panicles at heading stages 3, 4, and 5, respectively; N33: root; N34: shoot; N35, N36: leaf and root; N37-N39: seedlings at trefoil stage treated with GA3, KT, and NAA, respectively."

Fig. 5

β-Glucuronidase (GUS) staining of various tissues and organs from OsRPTA18pro-GUS transgenic lines A: germinating seeds; B: root, leaf, stem, and collar collected from the seedlings at three-leaf stage; C: root, leaf, stem internode, collar, cross section of a collar, cross section of a sheath, stem node, floret, cross section of a hull collected from the plants at third heading stage; D: root, leaf, stem internode, collar, cross section of a collar, cross section of a sheath, stem node, cross section of a node collected from the plants at the fifth heading stage, and a developing seed at early maturity stage."

Fig. 6

Subcellular localization of rice RPTA18 protein in Nicotona benthamiana 35S::GFP was empty vector; 35S:OSRPSTA18-GFP was constructed from OSRPSTA18 and vector pD1301S; 35S::H2B-mCherry was nuclear marker vector. Bar: 20 μm."

Fig. 7

Generating the CRISPR/Cas9 editing lines osrpta18-1 and osrpta18-2 A: gRNA target sequence and Cas9/gRNA recombination; B: the sequence comparison between mutants (osrpta18-1 and osrpta18-2) and Zhonghua 11 (ZH11) wild type (WT) plants, where the blue letters, deletion lines, lowercase letters in red represent target sequences, missing bases, and inserted bases, respectively. - represents missing bases, + represents inserted bases."

Fig. 8

Phenotypes of the CRISPR/Cas9 edited lines osrpta18-1 and osrpta18-1 A: leaf inclination of the seedling 10 days after germination (DAG) (Bar: 1 cm) (n = 26); B: plant height of the 100-DAG plants (Bar: 1 cm) (n = 60); C: leaf inclination of the 100-DAG plants (n = 45); D: grain length (n = 66), grain width (n = 34) and 1000-grain weight (n = 5) of plants. One-way ANOVA (and nonparametric or mixed). *: P < 0.05; **: P < 0.001."

Fig. 9

Alternation of cell proliferation cell wall thickness and vascular bundle in lamina joint of CRISPR/Cas9 edited lines osrpta18-1 and osrpta18-2 A: the comparison of the lamina joints; B: the cross sections of the collar, the red boxes indicate the adaxial side and the abaxial side of the collar, bar: 500 μm; C: zoomed-in view of the abaxial side of the cross section of collar, Bar: 40 μm; D: zoomed-in view of the adaxial side of the cross section of collar, bar: 40 μm."

[1] Chen L T, Li Y C, Sottas C, Lazaris A, Petrillo S K, Metrakos P, Li L, Ishida Y, Saito T, Garza S, Papadopoulos V. Loss of mitochondrial ATPase ATAD3A contributes to nonalcoholic fatty liver disease through accumulation of lipids and damaged mitochondria. J Biol Chem, 2022, 298: 102008.
[2] Xu H Y, Holly V R. The SarcoEndoplasmic Reticulum Calcium ATPase (SERCA) pump: a potential target for intervention in aging and skeletal muscle pathologies. Skelet Muscle, 2021, 11: 25.
doi: 10.1186/s13395-021-00280-7 pmid: 34772465
[3] Kotani Y, Morito D, Yamazaki S, Ogino K, Kawakami K, Takashima S, Hirata H, Nagata K. Neuromuscular regulation in zebrafish by a large AAA+ ATPase/ubiquitin ligase, mysterin/RNF213. Sci Rep, 2015, 5: 16161.
doi: 10.1038/srep16161 pmid: 26530008
[4] Morito D, Nishikawa K, Hoseki J, Kitamura A, Kotani Y, Kiso K, Kinjo M, Fujiyoshi Y, Nagata K. Moyamoya disease-associated protein mysterin/RNF213 is a novel AAA+ ATPase, which dynamically changes its oligomeric state. Sci Rep, 2014, 4: 4442.
doi: 10.1038/srep04442 pmid: 24658080
[5] Qi Y, Liu H, Daniels M P, Zhang G, Xu H. Loss of Drosophila i-AAA protease, dYME1L, causes abnormal mitochondria and apoptotic degeneration. Cell Death Differ, 2016, 23: 291-302.
doi: 10.1038/cdd.2015.94 pmid: 26160069
[6] Cui K, Qin L, Tang X Y, Nong J K, Chen J, Wu N, Gong X, Yi L X, Yang C H, Xia S T. A single amino acid substitution in RFC4 leads to endoduplication and compromised resistance to DNA damage in Arabidopsis thaliana. Genes, 2022, 13: 1037.
[7] Zhang B T, Van Aken O, Thatcher L, De Clercq I, Duncan O, Law S R, Murcha M W, van der Merwe M, Seifi H S, Carrie C, Cazzonelli C, Radomiljac J, Höfte M, Singh K B, Van Breusegem F, Whelan J. The mitochondrial outer membrane AAA ATPase AtOM66 affects cell death and pathogen resistance in Arabidopsis thaliana. Plant J, 2014, 80: 709-727.
[8] Wu Q F, Han T T, Yang L, Wang Q, Zhao Y X, Jiang D, Ruan X. The essential roles of OsFtsH2 in developing the chloroplast of rice. BMC Plant Biol, 2021, 21: 445.
doi: 10.1186/s12870-021-03222-z pmid: 34598671
[9] 张海丽, 高静, 张昊, 李生辉, 邢继红, 王凤茹, 董金皋. 油菜素内酯对水稻细胞伸长和分裂的调控. 农业生物技术学报, 2015, 23: 71-79.
Zhang H L, Gao J, Zhang H, Li S H, Xing J H, Wang F R, Dong J G. The regulation of brassinosteroid (BR) on elongation and division of rice (Oryza sativa) cells. J Agric Biotechnol, 2015, 23: 71-79 (in Chinese with English abstract).
[10] Guo J F, Li W, Shang L G, Wang Y G, Yan P, Bai Y H, Da X W, Wang K, Guo Q Q, Jiang R R, Mao C Z, Mo X R. OsbHLH98 regulates leaf angle in rice through transcriptional repression of OsBUL1. New Phytol, 2021, 230: 1953-1966.
[11] Huang Q N, Shi Y F, Zhang X B, Song L X, Feng B H, Wang H M, Xu X, Li X H, Guo D, Wu J L. Single base substitution in OsCDC48isresponsible for premature senescence and death phenotype in rice. J Integr Plant Biol, 2016, 58: 12-28.
[12] Zhang Y, Iqbal M F, Wang Y L, Qian K Y, Xiang J X, Xu G H, Fan X R. OsTBP2.1, A TATA-binding protein, alters the ratio of OsNRT2.3b to OsNRT2.3a and improves rice grain yield. Int J Mol Sci, 2022, 23: 10795.
[13] Yedidi R S, Wendler P, Enenkel C. AAA-ATPases in protein degradation. Int J Mol Sci, 2017, 4: 42.
[14] Tong H N, Chu C C. Functional specificities of brassinosteroid and potential utilization for crop improvement. Trends Plant Sci, 2018, 23: 1016-1028.
doi: S1360-1385(18)30187-0 pmid: 30220494
[15] 许娜, 徐铨, 徐正进, 陈温福. 水稻株型生理生态与遗传基础研究进展. 作物学报, 2023, 49: 1735-1746.
doi: 10.3724/SP.J.1006.2023.22050
Xu N, Xu Q, Xu Z J, Chen W F. Research progress on physiological ecology and genetic basis of rice plant architecture. Acta Agron Sin, 2023, 49: 1735-1746 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2023.22050
[16] 马梦影, 巩文靓, 康雪蒙, 段海燕. 水稻理想株型改良的研究进展. 中国农学通报, 2020, 36(29): 1-6.
doi: 10.11924/j.issn.1000-6850.casb20190900610
Ma M Y, Gong W Y, Kang X M, Duan H Y. The improvement of ideal plant type of rice: a review. Chin Agric Sci Bull, 2020, 36(29): 1-6 (in Chinese with English abstract).
doi: 10.11924/j.issn.1000-6850.casb20190900610
[17] Dong H J, Zhao H, Li S L, Han Z M, Hu G, Liu C, Yang G Y, Wang G W, Xie W B, Xing Y Z. Genome-wide association studies reveal that members of bHLH subfamily 16 share a conserved function in regulating flag leaf angle in rice (Oryza sativa L.). PLoS Genet, 2018, 14: 1007323.
[18] 徐静, 王莉, 钱前, 张光恒. 水稻叶片形态建成分子调控机制研究进展. 作物学报, 2013, 39: 767-774.
Xu J, Wang L, Qian Q, Zhang G H. Research advance in molecule regulation mechanism of leaf morphogenesis in rice (Oryza sativa L.). Acta Agron Sin, 2013, 39: 767-774 (in Chinese with English abstract).
[19] 胡娟, 林晗, 徐娜, 焦然, 戴志俊, 鲁草林, 饶玉春, 王跃星. 水稻叶倾角分子机制及育种应用的研究进展. 中国水稻科学, 2019, 33: 391-400.
doi: 10.16819/j.1001-7216.2019.9029
Hu J, Lin H, Xu N, Jiao R, Dai Z J, Lu C L, Rao Y C, Wang Y X. Advances in molecular mechanisms of rice leaf inclination and its application in breeding. Chin J Rice Sci, 2019, 33: 391-400 (in Chinese with English abstract).
doi: 10.16819/j.1001-7216.2019.9029
[20] Huang P, Zhao J Z, Hong J L, Zhu B, Xia S, Zhu E G, Han P F, Zhang K W. Cytokinins regulate rice lamina joint development and leaf angle. Plant Physiol, 2023, 191: 56-69.
[21] Xing M Q, Wang W, Fang X, Xue H W. Rice OsIAA6 interacts with OsARF1 and regulates leaf inclination. Crop J, 2022, 10: 1580-1588.
[22] Fàbregas N, Caño-Delgado A I. Turning on the microscope turret: a new view for the study of brassinosteroid signaling in plant development. Physiol Plant, 2014, 151: 172-183.
doi: 10.1111/ppl.12130 pmid: 24547704
[23] 张晓琼, 王晓雯, 田维江, 张孝波, 孙莹, 李杨羊, 谢佳, 何光华, 桑贤春. LAZY1通过BR途径调控水稻叶夹角的发育. 作物学报, 2017, 43: 1767-1773.
Zhang X Q, Wang X W, Tian W J, Zhang X B, Sun Y, Li Y Y, Xie J, He G H, Sang X C. LAZY1regulates the development of rice leaf angle through BR pathway. Acta Agron Sin, 2017, 43: 1767-1773 (in Chinese with English abstract).
[24] Gan L J, Wu H, Wu D P, Zhang Z F, Guo Z F, Yang N, Xia K, Zhou X, Oh K, Matsuoka M, Ng D, Zhu C H. Methyl jasmonate inhibits lamina joint inclination by repressing brassinosteroid biosynthesis and signaling in rice. Plant Sci, 2015, 241: 238-245.
doi: 10.1016/j.plantsci.2015.10.012 pmid: 26706074
[25] Chen H J, Wan Y, Teng K C, Liu B H, Zhao N, Xu K Z, Li J X. The role of OsOFP8gene in regulating rice leaf angle. J Plant Biochem Biot, 2023, 32: 304-318.
[26] 凌启鸿, 陆卫平, 蔡建中, 曹显祖. 水稻根系分布与叶角关系的研究初报. 作物学报, 1989, 15: 123-131.
Ling Q H, Lu W P, Cai J Z, Cao X Z. The relationship between root distribution and leaf angle in rice plant. Acta Agron Sin, 1989, 15: 123-131 (in Chinese with English abstract).
[27] Liu J M, Park S J, Huang J, Lee E J, Xuan Y H, Je BI, Kumar V, Priatama R A, Vimal R K, Kim S H, Min M K, Cho J H, Kim T H, Chandran A K N, Jung K H, Takatsuto S, Fujioka S, Han C D. Loose Plant Architecture1 (LPA1) determines lamina joint bending by suppressing auxin signalling that interacts with C-22-hydroxylated and 6-deoxo brassinosteroids in rice. J Exp Bot, 2016, 67: 1883-1895.
doi: 10.1093/jxb/erw002 pmid: 26826218
[28] Luo X Y, Zheng J S, Huang R Y, Huang Y M, Wang H C, Jiang L R, Fang X J. Phytohormones signaling and crosstalk regulating leaf angle in rice. Plant Cell Rep, 2016, 35: 2423-2433.
pmid: 27623811
[29] Kokkirala V R, Yonggang P, Abbagani S, Zhu Z, Umate P. Subcellular localization of proteins of Oryza sativa L. in the model tobacco and tomato plants. Plant Signal Behav, 2010, 5: 1336-1341.
[30] Lee J H, Schöffl F. GUS activity staining in gels: a powerful tool for studying protein interactions in plants. Plant Mol Biol Rep, 1995, 13: 346-354.
[31] 杨捷频. 常规石蜡切片方法的改良. 生物学杂志, 2006, 23(1): 45-46.
Yang J P. Improvement of traditional paraffin section preparation methods. J Biol, 2006, 23(1): 45-46 (in Chinese with English abstract).
[32] Ferrero-Serrano Á, Assmann S M. The α-subunit of the rice heterotrimeric G protein, RGA1, regulates drought tolerance during the vegetative phase in the dwarf rice mutant d1. J Exp Bot, 2016, 67: 3433-3443.
doi: 10.1093/jxb/erw183 pmid: 27194741
[33] Cao Y Y, Zhong Z J, Wang H Y, Shen R X. Leaf angle: a target of genetic improvement in cereal crops tailored for high-density planting. Plant Biotechnol J, 2022, 20: 426-436.
doi: 10.1111/pbi.13780 pmid: 35075761
[1] JIA Shu-Han, HE Can, CHEN Min, LIU Jia-Xin, HU Wei-Min, HU Jin, GUAN Ya-Jing. Study on the quality differences of seeds with different pre-harvest sprouting levels and the grading of pre-harvest sprouting in hybrid rice [J]. Acta Agronomica Sinica, 2024, 50(9): 2310-2322.
[2] HU Li-Qin, XIAO Zheng-Wu, FANG Sheng-Liang, CAO Fang-Bo, CHEN Jia-Na, HUANG Min.
Effects of planting season on digestive characteristics of high amylose content rice
[J]. Acta Agronomica Sinica, 2024, 50(9): 2347-2357.
[3] LIU Chen, WANG Kun-Kun, LIAO Shi-Peng, YANG Jia-Qun, CONG Ri-Huan, REN Tao, LI Xiao-Kun, LU Jian-Wei. Effects of nitrogen fertilizer application levels on yield and nitrogen absorption and utilization of oilseed rape under maize-oilseed rape and rice-oilseed rape rotation fields [J]. Acta Agronomica Sinica, 2024, 50(8): 2067-2077.
[4] SONG Zhi-Wen, ZHAO Lei, BI Jun-Guo, TANG Qing-Yun, WANG Guo-Dong, LI Yu-Xiang. Effects of nitrogen fertilization levels on matter accumulation and nutrient uptake in rice cultivar with different nitrogen efficiency under drip irrigation [J]. Acta Agronomica Sinica, 2024, 50(8): 2025-2038.
[5] SHAO Mei-Hong, ZHAO Ling-Ling, CHENG Chu, CHENG Si-Ming, ZHU Shuang-Bing, ZHAI Lai-Yuan, CHEN Kai, XU Jian-Long. Screening, evaluation, and utilization of low nitrogen tolerance for the selected introgression lines in rice with Huanghuazhan background [J]. Acta Agronomica Sinica, 2024, 50(8): 1907-1919.
[6] GUO Chun-Lin, LIN Man-Hong, CHEN Ting, CHEN Hong-Fei, LIN Wen-Fang, LIN Wen-Xiong. Evolution characteristics of rhizosphere microorganisms in response to ratoon rice senescence and underlying carry-over effect mechanism [J]. Acta Agronomica Sinica, 2024, 50(8): 2039-2052.
[7] FU Jing, MA Meng-Juan, ZHANG Qi-Fei, DUAN Ju-Qi, WANG Yue-Tao, WANG Fu-Hua, WANG Sheng-Xuan, BAI Tao, YIN Hai-Qing, WANG Ya. Effects of alternate wetting and drying irrigation and different nitrogen application levels on photosynthetic characteristics and nitrogen absorption and utilization of japonica rice [J]. Acta Agronomica Sinica, 2024, 50(7): 1787-1804.
[8] CHENG Shuang, XING Zhi-Peng, TIAN Chao, HU Qun, WEI Hai-Yan, ZHANG Hong-Cheng. Effects of an integrated dryland tillage and soaking pattern on the reducing substances in rice field and early growth of machine transplanted rice [J]. Acta Agronomica Sinica, 2024, 50(7): 1762-1775.
[9] PEI Fa-Jing, ZHANG Wen-Xuan, ZHANG Xiao, WANG Xin-Yu, PENG Shao-Bing, MI Jia-Ming. Developing new rice lines with ultrashort-duration, long-grain, and fragrance [J]. Acta Agronomica Sinica, 2024, 50(7): 1684-1698.
[10] TANG Qing-Yun, YANG Jing-Jing, ZHAO Lei, SONG Zhi-Wen, WANG Guo-Dong, LI Yu-Xiang. Effect of nitrogen application on morphological conformation and fractal characteristics of drip irrigated rice roots [J]. Acta Agronomica Sinica, 2024, 50(6): 1540-1553.
[11] ZHANG Xiao-Fang, ZHU Qi, HUA Yun-Yan, JIA Li-Hui-Ying, QIU Shi-You, CHEN Yu-Jie, MA Tao, DING Wo-Na. Screening and validation of OsCYP22 interacting proteins in rice [J]. Acta Agronomica Sinica, 2024, 50(6): 1628-1634.
[12] ZHU Zhong-Lin, WEN Yue, ZHOU Qi, WU Yan-Fei, DU Xue-Zhu, SHENG Feng. Mechanism of loding residence and drought tolerance of OsCNGC10 gene in rice [J]. Acta Agronomica Sinica, 2024, 50(5): 1351-1360.
[13] HU Ming-Ming, DING Feng, PENG Zhi-Yun, XIANG Kai-Hong, LI Yu, ZHANG Yu-Jie, YANG Zhi-Yuan, SUN Yong-Jian, MA Jun. Effects of straw returning to field combined with water and N management on rice yield formation and N uptake and utilization under diversified cropping patterns [J]. Acta Agronomica Sinica, 2024, 50(5): 1236-1252.
[14] GENG Xiao-Yu, ZHANG Xiang, LIU Yang, ZUO Bo-Yuan, ZHU Wang, MA Wei-Yi, WANG Lu-Lu, MENG Tian-Yao, GAO Ping-Lei, CHEN Ying-Long, XU Ke, DAI Qi-Gen, WEI Huan-He. Grain yield and its characteristics of japonica/indica hybrids rice in coastal saline-alkali lands [J]. Acta Agronomica Sinica, 2024, 50(5): 1253-1270.
[15] WAN Ying-Chun, BAN Yi-Jie, JIANG Yu-Dong, WANG Ya-Xin, LIU Jing-Jing, LIU Xiao-Qing, CHENG Yu-Lin, WANG Nan, FENG Ping. Phenotypic identification and fine mapping of male sterile mutant tpa1 in rice [J]. Acta Agronomica Sinica, 2024, 50(5): 1104-1114.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[2] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[3] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .
[4] XING Guang-Nan, ZHOU Bin, ZHAO Tuan-Jie, YU De-Yue, XING Han, HEN Shou-Yi, GAI Jun-Yi. Mapping QTLs of Resistance to Megacota cribraria (Fabricius) in Soybean[J]. Acta Agronomica Sinica, 2008, 34(03): 361 -368 .
[5] ZHENG Yong-Mei;DING Yan-Feng;WANG Qiang-Sheng;LI Gang-Hua;WANG Hui-Zhi;WANG Shao-Hua. Effect of Nitrogen Applied before Transplanting on Tillering and Nitrogen Utilization in Rice[J]. Acta Agron Sin, 2008, 34(03): 513 -519 .
[6] QIN En-Hua;YANG Lan-Fang;. Selenium Content in Seedling and Selenium Forms in Rhizospheric Soil of Nicotiana tabacum L.[J]. Acta Agron Sin, 2008, 34(03): 506 -512 .
[7] LÜ Li-Hua;TAO Hong-Bin;XIA Lai-Kun; HANG Ya-Jie;ZHAO Ming;ZHAO Jiu-Ran;WANG Pu;. Canopy Structure and Photosynthesis Traits of Summer Maize under Different Planting Densities[J]. Acta Agron Sin, 2008, 34(03): 447 -455 .
[8] Zhang Shubiao;Yang Rencui. Some Biological Character of eui-hybrid Rice[J]. Acta Agron Sin, 2003, 29(06): 919 -924 .
[9] SHAO Rui-Xin;SHANG-GUAN Zhou-Ping. Effects of Exogenous Nitric Oxide Donor Sodium Nitroprusside on Photosynthetic Pigment Content and Light Use Capability of PS II in Wheat under Water Stress[J]. Acta Agron Sin, 2008, 34(05): 818 -822 .
[10] Qui Chongli. STUDIES ON THE INCOMPATIBILITY OF HYBRIDIZATION BETWEEN TRITICUM AESTIVUM L.AND HEXAPLOID TRITICALE Ⅰ.THE DEVELOPMENT OF HYBRID EMBRYO[J]. Acta Agron Sin, 1986, (01): 49 -56 .