Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2024, Vol. 50 ›› Issue (8): 2067-2077.doi: 10.3724/SP.J.1006.2024.34181

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Effects of nitrogen fertilizer application levels on yield and nitrogen absorption and utilization of oilseed rape under maize-oilseed rape and rice-oilseed rape rotation fields

LIU Chen(), WANG Kun-Kun, LIAO Shi-Peng, YANG Jia-Qun, CONG Ri-Huan, REN Tao, LI Xiao-Kun, LU Jian-Wei()   

  1. College of Resources and Environment, Huazhong Agricultural University / Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs / Microelement Research Center, Huazhong Agricultural University, Wuhan 430070, Hubei, China
  • Received:2023-11-03 Accepted:2024-04-01 Online:2024-08-12 Published:2024-04-24
  • Contact: * E-mail: lunm@mail.hzau.edu.cn
  • Supported by:
    National Key Research and Development Program Project(2021YFD1600500);China Agriculture Research System of MOF and MARA(CARS-12);China Agriculture Research System of Hubei Province(HBHZD-ZB-2020-005)

Abstract:

Continuous upland and paddy-upland anniversary multiple cropping rotations are typical planting patterns of winter rape in the Yangtze River basin in China, and nitrogen nutrient deficiency is the main limiting factor for rapeseed yield. To provide a basis for scientific nitrogen application, a comparative positioning experiment of split area was conducted in Wuhan City, Hubei Province from 2016 to 2023, and the effects of nitrogen fertilizer application on rapeseed yield and nitrogen uptake and utilization under different rotation patterns was explored. The main treatments of the experimental design were two rotation modes of upland-oilseed rape (maize-oilseed rape rotation) and paddy-oilseed rape (rice-oilseed rape rotation), and the secondary treatments were four nitrogen application rates (0 kg N hm-2, 75 kg N hm-2, 150 kg N hm-2, and 225 kg N hm-2). The related indexes such as rapeseed yield, yield components, and nitrogen absorption were analyzed. The average results of seven-year experiment showed that there were differences in response to the yield and nitrogen uptake of rapeseed in upland and paddy fields under different nitrogen fertilizer inputs. When there was no nitrogen application or low nitrogen application (75 kg N hm-2), the yield of rapeseed in paddy fields was significantly higher than that in upland fields, which was higher by 53.9% and 20.8%, and the nitrogen accumulation was higher by 57.8% and 18.3%, respectively. When the nitrogen application rate was 150 kg N hm-2, there was no significant difference between the two rotations. When the nitrogen application rate reached 225 kg N hm-2, the yield and nitrogen accumulation of rapeseed in dry land were higher by 11.2% and 16.0% than those in paddy fields, respectively. The agronomic utilization efficiency, contribution rate, and apparent utilization rate of nitrogen fertilizer in upland rapeseed were higher on average by 16.5%, 20.5%, and 22.0% than those in paddy field rapeseed, respectively. Nitrogen fertilizer had a greater yield increase effect on upland-rapeseed, but the soil background nitrogen supply in paddy field rapeseed season was 61.5% higher than that in upland, and its dependence on nitrogen fertilizer was less. In conclusion, the increase in nitrogen fertilizer application significantly increased rapeseed yield and nitrogen accumulation. There were differences in the response of rapeseed yield to nitrogen fertilizer between maize-oilseed rape rotation and rice-oilseed rape rotation. Paddy-oilseed rape exhibited higher stability under low nitrogen input, while upland-oilseed rape achieved higher yield under high nitrogen input. Therefore, the nitrogen application rate of rapeseed should be adjusted according to different crop rotation modes in actual production. The nitrogen application rate of upland rapeseed can be appropriately increased to achieve high yield, while the nitrogen application rate of rapeseed in paddy field should be properly controlled by making full use of the nitrogen supply capacity to achieve the high yield and efficient production of rapeseed and efficient utilization of nitrogen fertilizer.

Key words: maize-oilseed rape rotation, rice-oilseed rape rotation, nitrogen fertilizer rate, rapeseed yield, nitrogen accumulation

Fig. 1

Average monthly temperature and monthly precipitation in oilseed rape growing season from 2016 to 2023"

Table 1

Yield of oilseed rape with different fertilization input under continuous-upland and paddy-upland rotations (kg hm-2)"

轮作模式
Rotation
氮肥用量
N fertilizer rate
(kg hm-2)
产量 Yield
2016/2017 2017/2018 2018/2019 2019/2020 2020/2021 2021/2022 2022/2023 平均
Average
旱地-油菜
Upland-oilseed rape
0 373±64 Bd 387±49 Bd 548±54 Bd 493±50 Bd 611±92 Ad 615±93 Bd 597±75 Bd 518±103 Bd
75 1302±221 Bc 1161±98 Bc 1497±239 Bc 1435±67 Ac 1553±74 Ac 1581±75 Bc 1516±93 Bc 1435±152 Bc
150 2555±150 Ab 2393±99 Ab 2399±279 Ab 2183±283 Ab 2258±170 Ab 2061±111 Ab 2031±111 Ab 2269±192 Ab
225 3062±100 Aa 2675±109 Aa 2967±217 Aa 2641±325 Aa 2742±121 Aa 2471±109 Aa 2802±79 Aa 2766±200 Aa
水田-油菜
Paddy-oilseed rape
0 712±116 Aa 769±93 Ac 716±56 Ad 953±70 Ac 695±70 Ad 878±41 Ac 856±97 Ac 797±100 Ad
75 1879±278 Ab 1759±151 Ab 1624±147 Ac 1574±183 Ab 1601±78 Ac 1789±27 Ab 1913±39 Aab 1734±137 Ac
150 2388±143 Ac 2401±101 Aa 2000±157 Bb 2047±157 Aa 2177±340 Ab 1949±305 Ab 2154±68 Ab 2159±179 Ab
225 2621±138 Bd 2609±99 Aa 2319±245 Ba 2139±210 Ba 2762±68 Aa 2462±61 Aa 2500±107 Ba 2487±208 Ba
方差分析ANOVA FF-value
轮作模式 Rotation (R) 4.222*
氮肥用量 Nitrogen rate (N) 1361.697***
年份 Year (Y) 3.456**
R×N 38.311***
R×Y 4.443**
N×Y 4.728***
R×N×Y 2.111**

Table 2

Yield components of rapeseed with different fertilization input under continuous-upland and paddy-upland rotations (2022/2023)"

轮作模式
Rotation
氮肥用量
N fertilizer rate
(kg N hm-2)
单株角果数
Pod number
每角粒数
Seed number
千粒重
1000-seed weight
(g)
旱地-油菜
Upland-oilseed rape
0 94.7±11.6 Bd 21.1±0.5 Ac 3.02±0.08 Ac
75 207.8±7.7 Bc 23.4±0.2 Ab 3.17±0.04 Abc
150 276.7±7.0 Ab 25.6±0.5 Aa 3.19±0.08 Aab
225 356.6±16.5 Aa 23.9±0.2 Ab 3.35±0.08 Aa
水田-油菜
Paddy-oilseed rape
0 133.3±14.0 Ac 21.8±0.5 Ac 3.08±0.07 Ab
75 267.3±26.9 Ab 24.2±1.0 Ab 3.10±0.08 Ab
150 306.0±7.3 Aa 25.6±0.5 Aa 3.13±0.24 Ab
225 315.0±19.2 Aa 24.1±1.0 Ab 3.44±0.04 Aa
FF-value
轮作模式 Rotation (R) 10.869** 1.213ns 0.891ns
氮肥用量 Nitrogen rate (N) 213.001*** 38.439*** 12.613***
R×N 11.125** 0.342ns 0.989ns

Fig. 2

Nitrogen uptake by different parts of rapeseed with different nitrogen levels under continuous-upland and paddy-upland rotations (average value for seven years) UO and PO refer to Upland-Oilseed rape and Paddy-Oilseed rape, respectively. N0, N75, N150, and N225 refer to nitrogen application rates of 0, 75, 150, and 225 kg N hm-2 in oilseed rape season, respectively. Different lowercase letters indicate significant difference at P < 0.05 between N fertilization rate in the same rotation. * indicates the total shoot nitrogen uptake differences between different rotations in the same N fertilization rate under t-test, **: P < 0.01; *: P < 0.05; ns: no significant difference."

Table 3

Nitrogen fertilizer use efficiency of oilseed rape under continuous-upland and paddy upland rotations (average value for seven years)"

氮肥用量
N fertilizer rate
(kg N hm-2)
旱地-油菜 Upland-Oilseed rape 水田-油菜 Paddy-Oilseed rape
农学利用效率Fertilizer
contribution
rate (kg kg-1)
贡献率
Fertilizer
contribution
rate (%)
表观利用率Recovery
efficiency
(%)
农学利用效率Fertilizer
contribution
rate (kg kg-1)
贡献率
Fertilizer
contribution
rate (%)
表观利用率Recovery
efficiency
(%)
0
75 12.2 64.2 44.0 12.5 53.8 41.6
150 11.7 76.8 45.0 9.0 62.7 35.8
225 10.0 81.1 40.9 7.5 67.6 29.0
平均Average 11.3 74.0 43.3 9.7 61.4 35.5

Fig. 3

Apparent nitrogen balance of the oilseed rape season under continuous-upland and paddy-upland rotations with different nitrogen levels (average value for seven years) N0, N75, N150, and N225 refer to nitrogen application rates of 0, 75, 150, and 225 kg N hm-2 in oilseed rape season, respectively. Different lowercase letters indicate significant difference at P < 0.05 between different N fertilization rate under the same rotation; * indicates the total shoot nitrogen uptake differences between rotations under t-test; **: P < 0.01; *: P < 0.05; ns: no significant difference."

Fig. 4

Soil indigenous nitrogen supply and linear grey model of rapeseed season under continuous-upland and paddy-upland rotations * indicates the differences between rotations under t-test; ***: P < 0.001; **: P < 0.01; *: P < 0.05; ns: no significant difference. In the unitary regression equation, Y is the soil indigenous nitrogen supply. t is the experimental years, a is the slope, indicating the inter-annual soil indigenous nitrogen supply trend."

[1] 张冉, 曹娟娟, 濮超, 李育, 金海刚. 中国油菜籽和菜籽油的生产、进出口及供需分析. 中国油脂, 2022, 47(6): 8-14.
Zhang R, Cao J J, Pu C, Li Y, Jin H G. Production, import and export, and supply and demand analysis of rapeseed and rapeseed oil in China. China Oil, 2022, 47(6): 8-14 (in Chinese with English abstract).
[2] 殷艳, 廖星, 余波, 王汉中. 我国油菜生产区域布局演变和成因分析. 中国油料作物学报, 2010, 32: 147-151.
Yin Y, Liao X, Yu B, Wang H Z. Evolution and cause analysis of regional layout of rapeseed production in China. Chin J Oil Crop Sci, 2010, 32: 147-151 (in Chinese with English abstract).
[3] 丛日环, 张智, 鲁剑巍. 长江流域不同种植区气候因子对冬油菜产量的影响. 中国油料作物学报, 2019, 41: 894-903.
doi: 10.19802/j.issn.1007-9084.2019046
Cong R H, Zhang Z, Lu J W. The impact of climate factors on winter rapeseed yield in different planting areas of the Yangtze River Basin. Chin J Oil Crop Sci, 2019, 41: 894-903 (in Chinese with English abstract).
doi: 10.19802/j.issn.1007-9084.2019046
[4] 李小坤, 任涛, 鲁剑巍. 长江流域水稻-油菜轮作体系氮肥增产增效综合调控. 华中农业大学学报, 2021, 40(3): 13-20.
Li X K, Ren T, Lu J W. Comprehensive control of nitrogen fertilizer production and efficiency in rice-rape rotation system in the Yangtze River basin. J Huazhong Agric Univ, 2021, 40(3): 13-20 (in Chinese with English abstract).
[5] 汤春纯, 余乾, 文炯, 陈鸽, 朱坚. 不同施肥模式对油菜-棉花轮作产量及土壤养分的影响. 湖南农业科学, 2020, (7): 36-40.
Tang C C, Yu Q, Wen J, Chen G, Zhu J. Effects of different fertilization patterns on yield and soil nutrients in rape-cotton rotation. Hunan Agric Sci, 2020, (7): 36-40 (in Chinese with English abstract).
[6] Wei Q Q, Gou J L, Zhang M, Zhang B X, Rao Y, Xiao H G. Nitrogen reduction combined with organic materials can stabilize crop yield and soil nutrients in winter rapeseed and maize rotation in yellow soil. Sustain Sci, 2022, 14: 7183.
[7] 张丽梅, 马欣, 韩宝吉, 石磊. 大豆-油菜轮作中不同硼肥及后效对作物产量的影响. 中国农业科技导报, 2019, 21(10): 133-139.
doi: 10.13304/j.nykjdb.2019.0091
Zhang L M, Ma X, Han B J, Shi L. Effects of different boron fertilizers and after-effects on crop yield in soybean-rape rotation. J Agric Sci Technol, 2019, 21(10): 133-139 (in Chinese with English abstract).
[8] 元晋川, 王威雁, 赵德强, 侯玉婷, 吴伟, 刘杨, 温晓霞. 不同作物茬口对冬油菜养分积累和产量的影响. 中国油料作物学报, 2021, 43: 260-270.
Yuan J C, Wang W Y, Zhao D Q, Hou Y T, Wu W, Liu Y, Wen X X. Effect of different preceding cover crops on yield and nutrient accumulation of winter oilseed rape. Chin J Oil Crop Sci, 2021, 43: 260-270 (in Chinese with English abstract).
doi: 10.19802/j.issn.1007-9084.2019311
[9] Yu T B, Nie J W, Zang H D, Zang H D, Zeng Z H, Yang Y D. Peanut-based rotation stabilized diazotrophic communities and increased subsequent wheat yield. Microb Ecol, 2023, 86: 2447-2460.
doi: 10.1007/s00248-023-02254-2 pmid: 37296336
[10] 张顺涛, 鲁剑巍, 丛日环, 任涛, 李小坤, 廖世鹏, 张跃强, 郭世伟, 周明华, 黄益国, 程辉. 油菜轮作对后茬作物产量的影响. 中国农业科学, 2020, 53: 2852-2858.
doi: 10.3864/j.issn.0578-1752.2020.14.009
Zhang S T, Lu J W, Cong R H, Ren T, Li X K, Liao S P, Zhang Y Q, Guo S W, Zhou M H, Huang Y G, Cheng H. Effect of rapeseed rotation on the yield of next-stubble crops. Sci Agric Sin, 2020, 53: 2852-2858 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2020.14.009
[11] Zhou W, Lv T F, Chen Y, Westby A, Ren W. Soil physicochemical and biological properties of paddy-upland rotation: a review. Sci World J, 2014, 2014: 856352.
[12] Kogel-Knabner I, Amelung W, Cao Z, Fiedler S, Frenzel P, Jahn R, Kalbitz K, Kolbl A, Schloter M. Biogeochemistry of paddy soils. Geoderma, 2010, 157: 1-14.
[13] Liu Y, Ge T, van Groenigen K J, Yang Y, Wang P, Cheng K, Kuzyakov Y. Rice paddy soils are a quantitatively important carbon store according to a global synthesis. Commun Earth Environ, 2021, 2: 154.
[14] 李银水, 余常兵, 廖星, 胡小加, 谢立华, 张树杰, 车志. 湖北省不同油菜轮作模式下作物施肥现状调查. 中国农学通报, 2012, 28(36): 205-211.
Li Y S, Yu C B, Liao X, Hu X J, Xie L H, Zhang S J, Che Z. Investigation on the current situation of crop fertilization under different rapeseed rotation patterns in Hubei province. Chin Agric Sci Bull, 2012, 28(36): 205-211 (in Chinese with English abstract).
[15] 鲁剑巍, 任涛, 丛日环, 李小坤, 张洋洋. 我国油菜施肥状况及施肥技术研究展望. 中国油料作物学报, 2018, 40: 712-720.
doi: 10.7505/j.issn.1007-9084.2018.05.014
Lu J W, Ren T, Cong R H, Li X K, Zhang Y Y. The fertilization status and research prospects of rapeseed in China. Chin J Oil Crop Sci, 2018, 40: 712-720 (in Chinese with English abstract).
[16] 宋毅, 李静, 谷贺贺, 陆志峰, 廖世鹏, 李小坤, 鲁剑巍. 氮肥用量对冬油菜籽粒产量和品质的影响. 作物学报, 2023, 49: 2002-2011.
Song Y, Li J, Gu H H, Lu Z F, Liao S P, Li X K, Lu J W. Effect of nitrogen application rate on grain yield and quality of winter rapeseed. Acta Agron Sin, 2023, 49: 2002-2011 (in Chinese with English abstract).
[17] 李小勇, 黄威, 刘红菊, 李银水, 顾炽明, 代晶, 秦璐. 不同轮作模式下氮肥施用对油菜产量形成及养分利用的影响. 中国农业科学, 2023, 56: 1074-1085.
doi: 10.3864/j.issn.0578-1752.2023.06.005
Li X Y, Huang W, Liu H J, Li Y S, Gu C M, Dai J, Qin L. Effects of nitrogen application on yield formation and nutrient utilization of rape under different rotation patterns. Sci Agric Sin, 2023, 56: 1074-1085 (in Chinese with English abstract).
[18] 卜容燕. 稻油和棉油轮作模式下油菜季土壤氮素供应差异及其机制研究. 华中农业大学博士学位论文, 湖北武汉, 2017.
Bu R Y. Difference and Mechanism of Soil Nitrogen Supply in Oilseed Rape Planting Season under Different Rotation Systems. PhD Dissertation of Huazhong Agriculture University, Wuhan, Hubei, China, 2017 (in Chinese with English abstract).
[19] 方娅婷, 任涛, 张顺涛, 周橡棋, 赵剑, 廖世鹏, 鲁剑巍. 氮磷钾肥对旱地和水田油菜产量及养分利用的影响差异. 作物学报, 2023, 49: 772-783.
doi: 10.3724/SP.J.1006.2023.24061
Fang Y T, Ren T, Zhang S T, Zhou X Q, Zhao J, Liao S P, Lu J W. Differences in the effects of nitrogen, phosphorus, and potassium fertilizers on yield and nutrient utilization of rapeseed in arid and paddy fields. Acta Agron Sin, 2023, 49: 772-783 (in Chinese with English abstract).
[20] 李娟, 张立成, 章明清, 王煌平, 张辉, 张永春. 长期不同施肥模式下赤红壤旱地花生-甘薯轮作体系产量稳定性研究. 植物营养与肥料学报, 2021, 27: 179-190.
Li J, Zhang L C, Zhang M Q, Wang H P, Zhang H, Zhang Y C. Study on yield stability of peanut sweet potato rotation system in red soil dryland under long-term different fertilization modes. J Plant Nutr Fert, 2021, 27: 179-190 (in Chinese with English abstract).
[21] 郭欣. 不同氮肥施用量及施用方式对油菜产量、品质和土壤肥力的影响. 西南大学硕士学位论文, 重庆, 2020.
Gou X. Effects of Different Nitrogen Fertilizer Application Rates and Application Methods on Rapeseed Yield, Quality and Soil. MS Thesis of Southwest University, Chongqing, China, 2020 (in Chinese with English abstract).
[22] Zhang Z, Peng X H. Bio-tillage: a new perspective for sustainable agriculture. Soil Tillage Res, 2021, 206: 104844.
[23] Bouchet A S, Laperche A, Bissuel-Belaygue C, Snowdonr, Nesi N, Stahl A. Nitrogen use efficiency in rapeseed: a review. Agron Sustain Dev, 2016, 36: 38.
[24] 王春丽, 王周礼, 陈婷, 杨建利, 陈文杰, 穆建新, 田建华, 赵小光. 甘蓝型油菜生殖生长期叶片和角果光合与产量关系的研究. 西北植物学报, 2016, 36: 1417-1426.
Wang C L, Wang Z L, Chen T, Yang J L, Chen W J, Mu J X, Tian J H, Zhao X G. A study on the relationship between leaf and pod photosynthesis and yield during the reproductive growth period of Brassica napus. Northwest Bot J, 2016, 36: 1417-1426 (in Chinese with English abstract).
[25] Ren T, Bu R, Liao S P, Zhang M, Li X K, Cong R H, Lu J W. Differences in soil nitrogen transformation and the related seed yield of winter oilseed rape (Brassica napus L.) under paddy- upland and continuous upland rotations. Soil Tillage Res, 2019, 192: 206-214.
[26] 王景. 厌氧和好气条件下作物秸秆的腐解特征研究. 安徽农业大学硕士学位论文, 安徽合肥, 2015.
Wang J. Study on the Decomposition of Crop Straw under Anaerobic and Aerobic Condition. MS Thesis of Anhui Agricultural University, Hefei, Anhui, China, 2015 (in Chinese with English abstract).
[27] 杨丞, 吴耀卿, 李著纲, 张永毅, 龚元成, 李文品, 张万洋, 肖能武. 鄂西北旱地和水田油菜缓释专用肥施用效果比较. 中国农技推广, 2019, 35(增刊1): 108-110.
Yang C, Wu Y Q, Li Z G, Zhang Y Y, Gong Y C, Li W P, Zhang W Y, Xiao N W. Comparison of oilseed rape special fertilizer in upland and paddy fields in northwest Hubei. China Agric Technol Extens, 2019, 35(S1): 108-110 (in Chinese).
[28] 任涛, 鲁剑巍. 中国冬油菜氮素养分管理策略. 中国农业科学, 2016, 49: 3506-3521.
doi: 10.3864/j.issn.0578-1752.2016.18.005
Ren T, Lu J W. Nitrogen nutrient management strategies for winter rapeseed in China. Sci Agric Sin, 2016, 49: 3506-3521 (in Chinese with English abstract).
[29] Gu X, Li Y, Du Y, Zhou C, Yin M, Yang D. Effects of water and nitrogen coupling on nitrogen nutrition index and radiation use efficiency of winter oilseed rape (Brassica napus L.). Trans CSAM, 2016, 47: 122-132.
[30] 刘煜. 氮素管理影响长江中游典型水旱轮作体系氮利用与损失机制. 华中农业大学博士学位论文, 湖北武汉, 2023.
Liu Y. Nitrogen Management Affects Nitrogen Utilization and Loss Mechanisms in Typical Water Drought Rotation Systems in the Middle Reaches of the Yangtze River. PhD Dissertation of Huazhong Agricultural University, Wuhan, Hubei, China, 2023 (in Chinese with English abstract).
[31] 郭子琪, 王慧, 韩上, 李敏, 雷之萌, 张军, 朱林. 氮肥用量对直播油菜产量及氮素吸收利用的影响. 中国土壤与肥料, 2020, (5): 40-44.
Guo Z Q, Wang H, Han S, Li M, Lei Z M, Zhang J, Zhu L. Effect of nitrogen application rate on yield and nitrogen absorption and utilization of direct-seeded rape. Chin Soil Fert, 2020, (5): 40-44 (in Chinese with English abstract).
[32] 张芳芳, 胡跃, 刘士山, 杨云飞, 严红梅, 吴永成. 施氮量对成都平原直播油菜氮肥利用率和农田氮素表观平衡的影响. 四川农业大学学报, 2022, 40: 558-564.
Zhang F F, Hu Y, Liu S S, Yang Y F, Yan H M, Wu Y C. Effect of nitrogen application rate on nitrogen utilization rate of direct-seeded rape and apparent nitrogen balance in farmland in Chengdu Plain. J Sichuan Agric Univ, 2022, 40: 558-564 (in Chinese with English abstract).
[33] Ren T, Li H, Lu J W, Bu R Y, Li X K, Cong R H, Lu M X. Crop rotation-dependent yield responses to fertilization in winter oilseed rape (Brassica napus L.). Crop J, 2015, 3: 396-404.
[34] 卜容燕, 任涛, 廖世鹏, 李小坤, 丛日环, 张洋洋, 鲁剑巍. 不同轮作和氮肥分配季节下土壤氮素供应和油菜氮素吸收差异. 植物营养与肥料学报, 2019, 25: 412-420.
Bu R Y, Ren T, Liao S P, Li X K, Cong R H, Zhang Y Y, Lu J W. Differences in soil nitrogen supply and rapeseed nitrogen absorption under different rotation and nitrogen fertilizer distribution seasons. J Plant Nutr Fert, 2019, 25: 412-420 (in Chinese with English abstract).
[35] 郑淑清, 杨洪艳, 张柏双. 测土配方施肥对玉米养分吸收量的影响. 农业开发与装备, 2019, (5): 127.
Zheng S Q, Yang H Y, Zhang B S. The effect of soil testing formula fertilization on nutrient absorption of corn. Agric Develop Equip, 2019, (5): 127 (in Chinese).
[36] 郜紫依, 鲁剑巍, 任涛, 丛日环, 陆志峰, 张洋洋, 李小坤. 水稻百公斤籽粒养分吸收量及其影响因素整合分析. 植物营养与肥料学报, 2023, 29: 1587-1596.
Gao Z Y, Lu J W, Ren T, Cong R H, Lu Z F, Zhang Y Y, Li X K. Integrated analysis of nutrient absorption and influencing factors in rice grains weighing 100 kilograms. J Plant Nutr Fert, 2023, 29: 1587-1596 (in Chinese with English abstract).
[37] 雷名爵. 氮肥用量对油菜-玉米和油菜-水稻轮作周年氨挥发损失的影响. 华中农业大学硕士学位论文, 湖北武汉, 2019.
Lei M J. Effect of Nitrogen Application Rate on Annual Ammonia Vocalization Loss of Rapeseed-Maize and Rapeseed-Rice Rotation. MS Thesis of Huazhong Agricultural University, Wuhan, Hubei, China, 2019 (in Chinese with English abstract).
[38] 鲁剑巍, 任涛, 李小坤, 丛日环, 陆志峰, 张洋洋, 刘诗诗, 廖世鹏, 朱俊. 我国冬油菜养分精准调控策略与高效施肥技术体系. 华中农业大学学报, 2023, 42(6): 18-25.
Lu J W, Ren T, Li X K, Cong R H, Lu Z F, Zhang Y Y, Liu S S, Liao S P, Zhu J. The precise nutrient regulation strategy and efficient fertilization technology system for winter rapeseed in China. J Huazhong Agric Univ, 2023, 42(6): 18-25 (in Chinese with English abstract).
[39] Wei L, Ge T D, Zhu Z K, Ye R Z, Penuelas J, Li Y H, Lynn T M, Jones D L, Kuzyakov Y. Paddy soils have a much higher microbial biomass content than upland soils: a review of the origin, mechanisms, and drivers. Agric Ecosyst Environ, 2022, 326: 107798.
[40] Chen X B, Hu Y J, Xia Y H, Zheng, S M, Ma C, Rui Y C, He H B, Huang D Y, Zhang Z H, Ge T D, Wu J S, Guggenberger G, Kuzyakov Y, Su Y R. Contrasting pathways of carbon sequestration in paddy and upland soils. Glob Change Biol, 2021, 27: 2478-2490.
[41] Wei L, Ge T D, Zhu Z K, Luo Y, Yang Y H, Xiao M L, Yan Z F, Li Y H, Wu J S, Kuzyakov Y. Comparing carbon and nitrogen stocks in paddy and upland soils: accumulation, stabilization mechanisms, and environmental drivers. Geoderma, 2021, 398: 15121.
[42] De Long J R, Fry E L, Veen G F, Kardol P. Why are plant-soil feedbacks so unpredictable, and what to do about it? Funct Ecol, 2018, 33: 118-128.
[43] 蔡苗, 韩霁昌, 周建斌, 陈竹君. 长期氮肥施用对玉米根茬矿化分解的影响. 中国土壤与肥料, 2017, (1): 33-39.
Cai M, Han J C, Zhou J B, Chen Z J. Effects of long-term nitrogen fertilizer application on stubble mineralization and decomposition of maize roots. Chin Soil Fert, 2017, (1): 33-39 (in Chinese with English abstract).
[44] 李佳燕, 孙良杰, 马南, 王丰, 汪景宽. 不同肥力棕壤玉米根茬和茎叶残体碳氮的固定特征. 中国农业科学, 2022, 55: 4664-4677.
doi: 10.3864/j.issn.0578-1752.2022.23.008
Li J Y, Sun L J, Ma N, Wang F, Wang J K. Carbon and nitrogen fixation characteristics of root stubble and stem and leaf residues of brown soil maize with different fertility. Sci Agric Sin, 2022, 55: 4664-4677 (in Chinese with English abstract).
[45] 冯蕾, 童成立, 石辉, 吴金水, 李勇, 黄铁平, 夏海鳌. 水稻碳氮吸收、分配与积累对施肥的响应. 环境科学, 2011, 32: 574-580.
pmid: 21528586
Feng L, Tong C L, Shi H, Wu J S, Li Y, Huang T P, Xia H A. Response of carbon and nitrogen absorption, distribution and accumulation in rice to fertilization. Environ Sci, 2011, 32: 574-580 (in Chinese with English abstract).
pmid: 21528586
[46] Su J, Zhang H Y, Han X G, Lyu R F, Liu L, Jiang Y, Li H, Kuzyakov Y, Wei C Z. 5300-year-old soil carbon is less primed than young soil organic matter. Glob Change Biol, 2022, 29: 260-275.
[1] SONG Zhi-Wen, ZHAO Lei, BI Jun-Guo, TANG Qing-Yun, WANG Guo-Dong, LI Yu-Xiang. Effects of nitrogen fertilization levels on matter accumulation and nutrient uptake in rice cultivar with different nitrogen efficiency under drip irrigation [J]. Acta Agronomica Sinica, 2024, 50(8): 2025-2038.
[2] WANG Lyu, WU Yu-Hong, QIN Yu-Hang, DAN Ya-Bin, CHEN Hao, HAO Xing-Shun, TIAN Xiao-Hong. Effects of rice straw mulching combined with green manure retention and nitrogen reduction applications on dry matter quality accumulation, nitrogen transport and grain yield of rice [J]. Acta Agronomica Sinica, 2024, 50(3): 756-770.
[3] WU Yu, LIU Lei, CUI Ke-Hui, QI Xiao-Li, HUANG Jian-Liang, PENG Shao-Bing. Changes of root characteristics of super hybrid rice variety contributing to high nitrogen accumulation under low nitrogen application at seedling stage [J]. Acta Agronomica Sinica, 2024, 50(2): 414-424.
[4] SONG Yi, LI Jing, GU He-He, LU Zhi-Feng, LIAO Shi-Peng, LI Xiao-Kun, CONG Ri-Huan, REN Tao, LU Jian-Wei. Effects of application of nitrogen on seed yield and quality of winter oilseed rape (Brassica napus L.) [J]. Acta Agronomica Sinica, 2023, 49(7): 2002-2011.
[5] FANG Ya-Ting, REN Tao, ZHANG Shun-Tao, ZHOU Xiang-Qi, ZHAO Jian, LIAO Shi-Peng, CONG Ri-Huan, LU Jian-Wei. Different effects of nitrogen, phosphorus and potassium fertilizers on oilseed rape yield and nutrient utilization between continuous upland and paddy-upland rotations [J]. Acta Agronomica Sinica, 2023, 49(3): 772-783.
[6] LIU Qiu-Xia, DONG Er-Wei, HAUNG Xiao-Lei, WANG Jin-Song, WANG Yuan, JIAO Xiao-Yan. Response of sorghum grain yield and quality to nitrogen application in different ecozones [J]. Acta Agronomica Sinica, 2023, 49(10): 2766-2776.
[7] LIU Kun, HUANG Jian, ZHOU Shen-Qi, ZHANG Wei-Yang, ZHANG Hao, GU Jun-Fei, LIU Li-Jun, YANG Jian-Chang. Effects of panicle nitrogen fertilizer rates on grain yield in super rice varieties with different panicle sizes and their mechanism [J]. Acta Agronomica Sinica, 2022, 48(8): 2028-2040.
[8] QIN Lu, HAN Pei-Pei, CHANG Hai-Bin, GU Chi-Ming, HUANG Wei, LI Yin-Shui, LIAO Xiang-Sheng, XIE Li-Hua, LIAO Xing. Screening of rapeseed germplasms with low nitrogen tolerance and the evaluation of its potential application as green manure [J]. Acta Agronomica Sinica, 2022, 48(6): 1488-1501.
[9] YAN Yu-Ting, SONG Qiu-Lai, YAN Chao, LIU Shuang, ZHANG Yu-Hui, TIAN Jing-Fen, DENG Yu-Xuan, MA Chun-Mei. Nitrogen accumulation and nitrogen substitution effect of maize under straw returning with continuous cropping [J]. Acta Agronomica Sinica, 2022, 48(4): 962-974.
[10] TIAN Ming-Hui, YANG Shuo, DU Jia-Qi, ZHANG Chen-Xi, HE Tang-Qing, ZHANG Xue-Lin. Effects of arbuscular mycorrhizal fungi on phosphorus and potassium absorption at grain filling stage under different nitrogen fertilizer input in maize [J]. Acta Agronomica Sinica, 2022, 48(12): 3166-3178.
[11] DING Yong-Gang, CHEN Li, DONG Jin-Xing, ZHU Min, LI Chun-Yan, ZHU Xin-Kai, DING Jin-Feng, GUO Wen-Shan. Characteristics of yield components, nitrogen accumulation and translocation, and grain quality of semi-winter cultivars with high-yield and high-efficiency [J]. Acta Agronomica Sinica, 2022, 48(12): 3144-3154.
[12] ZHANG Qian, HAN Ben-Gao, ZHANG Bo, SHENG Kai, LI Lan-Tao, WANG Yi-Lun. Reduced application and different combined applications of loss-control urea on summer maize yield and fertilizer efficiency improvement [J]. Acta Agronomica Sinica, 2022, 48(1): 180-192.
[13] WANG Jian-Guo, ZHANG Jia-Lei, GUO Feng, TANG Zhao-Hui, YANG Sha, PENG Zhen-Ying, MENG Jing-Jing, CUI Li, LI Xin-Guo, WAN Shu-Bo. Effects of interaction between calcium and nitrogen fertilizers on dry matter, nitrogen accumulation and distribution, and yield in peanut [J]. Acta Agronomica Sinica, 2021, 47(9): 1666-1679.
[14] Tian-Yao MENG,Jia-Lin GE,Xu-Bin ZHANG,Huan-He WEI,Yu LU,Xin-Yue LI,Yuan TAO,En-Hao DING,Gui-Sheng ZHOU,Qi-Gen DAI. A dynamic model and its characteristics for nitrogen accumulation after transplanting in medium-maturity types of Yongyou japonica/indica hybrids [J]. Acta Agronomica Sinica, 2020, 46(5): 798-806.
[15] HAN Kang, YU Jing, SHI Xiao-Hua, CUI Shi-Xin, FAN Ming-Shou. Inversion of nitrogen accumulation in potato leaf with different spectral indices [J]. Acta Agronomica Sinica, 2020, 46(12): 1979-1990.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[2] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[3] Hu Yuqi;Liao Xiaohai. A STUDY ON THE COEFFICIENT OF LEAVES SHAPE OF MAIZE[J]. Acta Agron Sin, 1986, (01): 71 -72 .
[4] LIANG Tai-Bo;YIN Yan-Ping;CAI Rui-Guo;YAN Su-Hui;LI Wen-Yang;GENG Qing-Hui;WANG Ping;WANG Zhen-Lin. Starch Accumulation and Related Enzyme Activities in Superior and Inferior Grains of Large Spike Wheat[J]. Acta Agron Sin, 2008, 34(01): 150 -156 .
[5] WANG Cheng-Zhang;HAN Jin-Feng;SHI Ying-Hua;LI Zhen-Tian;LI De-Feng. Production Performance in Alfalfa with Different Classes of Fall Dormancy[J]. Acta Agron Sin, 2008, 34(01): 133 -141 .
[6] TIAN Zhi-Jian;Yi Rong;CHEN Jian-Rong;GUO Qing-Quan;ZHANG Xue-Wen;. Cloning and Expression of Cellulose Synthase Gene in Ramie [Boehme- ria nivea (Linn.) Gaud.][J]. Acta Agron Sin, 2008, 34(01): 76 -83 .
[7] ZHAO Xiu-Qin;ZHU Ling-Hua;XU Jian-Long;LI Zhi-Kang. QTL Mapping of Yield under Irrigation and Rainfed Field Conditions for Advanced Backcrossing Introgression Lines in Rice[J]. Acta Agron Sin, 2007, 33(09): 1536 -1542 .
[8] WU Ying ; SONG Feng-Sun ; LU Xu-Zhong; ZHAO Wei; YANG Jian-Bo; LI Li ;. Detecting Genetically Modified Soybean by Real-time Quantitative PCR Technique[J]. Acta Agron Sin, 2007, 33(10): 1733 -1737 .
[9] GOU Ling ; HUANG Jian-Jun; ZHANG Bin; LI Tao; SUN Rui; ZHAO Ming ;. Effects of Population Density on Stalk Lodging Resistant Mechanism and Agronomic Characteristics of Maize[J]. Acta Agron Sin, 2007, 33(10): 1688 -1695 .
[10] YU Jing;ZHANG Lin;CUI Hong;ZHANG Yong-Xia;CANG Jing;HAO Zai-Bin;LI Zhuo-Fu. Physiological and Biochemical Characteristics of Dongnongdongmai 1 before Wintering in High-Cold Area[J]. Acta Agron Sin, 2008, 34(11): 2019 -2025 .