Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2024, Vol. 50 ›› Issue (8): 2025-2038.doi: 10.3724/SP.J.1006.2024.32061

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Effects of nitrogen fertilization levels on matter accumulation and nutrient uptake in rice cultivar with different nitrogen efficiency under drip irrigation

SONG Zhi-Wen1(), ZHAO Lei1, BI Jun-Guo2, TANG Qing-Yun1, WANG Guo-Dong3,*(), LI Yu-Xiang1,*()   

  1. 1Key Laboratory of Oasis Ecological Agriculture, College of Agriculture, Shihezi University / Xinjiang Production and Construction Corps, Shihezi 832000, Xinjiang, China
    2Shanghai Agrobiological Gene Center, Shanghai 201106, China
    3Key Laboratory of Water-saving Agriculture in Northwest Oasis / Key Laboratory of Efficient Utilization of Water and Fertilizer Resources, Ministry of Agriculture and Rural Affairs, Xinjiang Academy of Agricultural Reclamation Sciences, Shihezi 832000, Xinjiang, China
  • Received:2023-12-21 Accepted:2024-04-01 Online:2024-08-12 Published:2024-04-24
  • Contact: * E-mail: yxli@shzu.edu.cn;E-mail: 664812734@qq.com
  • Supported by:
    National Natural Science Foundation of China(32360527);National Natural Science Foundation of China(31460541);Science and Technology Plan Project of Tumushuke City, the Third Division(KJ2023CG03);Young Innovative Top Talents Project of Shihezi University(CXBJ202003);Independent Support Scientific Research Project of Shihezi University(ZZZC2022008)

Abstract:

The objective of this study is to explore the effects of nitrogen application levels on dry matter accumulation, nitrogen absorption and transport, and yield of rice varieties with different nitrogen efficiency during key growth stages under drip irrigation conditions, which can provide the technical reference for high-yield and efficient rice production under drip irrigation in arid and semi-arid areas. The experiment was conducted from 2021 to 2022, using high nitrogen efficient cultivar (T-43) and low nitrogen efficient cultivar (LX-3) as the test materials. The split zone design was conducted with four nitrogen application levels, namely N0 (0 kg hm-2), N1 (150 kg hm-2), N2 (300 kg hm-2), and N3 (450 kg hm-2). The differences in dry matter accumulation, nitrogen absorption and utilization, and yield response to nitrogen application in drip irrigated rice at heading and maturity stages were analyzed. The results showed as follows: (1) Applying nitrogen fertilizer can increase the dry matter accumulation (1.99%-26.02%) and nitrogen accumulation (25.67%-97.69%) of rice under drip irrigation, and increase rice yield (23.75%-66.75%). However, the excessive nitrogen application (450 kg hm-2) reduced the promoting effect on dry matter accumulation, leading to a decrease in seed setting rate and grain number per spike, mainly concentrating nitrogen in straw, ultimately reducing the nitrogen utilization efficiency of rice. (2) Under the same nitrogen application conditions, the effective number of panicles, seed setting rate, dry matter and nitrogen accumulation in leaves and panicles of T-43 were higher than LX-3 by 1.65%-5.19%, 0.42%-8.47%, 7.61%-19.68%, 19.81%-40.73%, 19.81%-30.23%, and 20.14%-49.65%, respectively, and the final yield was higher than LX-3 by 4.23%-28.47%. (3) The response of nitrogen utilization efficiency varies among varieties at P < 0.05. Compared with LX-3, T-43 had higher N Agronomic efficiency, N recovery efficiency, and N partial factor productivity higher by 1.05%-25.23%, 5.86%-20.05%, and 10.09%-18.01%, respectively. In conclusion, under drip irrigation cultivation, the selection of high nitrogen efficient cultivar (T-43) and the application of 300 kg hm-2 nitrogen showed better nitrogen uptake and transport capacity and higher yield, and could better utilize nutrient resources, which was the best combination of variety and nitrogen application rate in this experiment.

Key words: drip irrigation of rice, cultivar with high nitrogen efficiency, dry matter accumulation, nitrogen accumulation, nitrogen utilization

Fig. 1

Maximum temperature, minimum temperature, and precipitation in 2021 and 2022"

Table 1

Fertilizer application amount and distribution ratio during the whole growth period"

指标
Index
处理
Treatment
播种期
Seeding stage
播种-穗始期
Seeding-panicle
initiation stage
穗始-抽穗期
Panicle initiation -heading stage
抽穗-成熟前15 d
Heading-15 d
before maturity
成熟前15 d-收获期
15 d before
maturation-harvest
总量
Total
施氮量
Nitrogen application levels (kg hm-2)
N0 0 0 0 0 0 0
N1 0 66.3 41.8 41.8 0 150
N2 0 140.8 79.6 79.6 0 300
N3 0 198.8 125.6 125.6 0 450
施肥次数Fertilization times 0 3 2 2 0 7

Table 2

Effect of nitrogen application levels on the yield and composition factors of drip irrigated rice"

年份
Year
品种
Cultivar
施氮量
Nitrogen
有效穗数
Effective panicle
(×104 hm-2)
穗粒数
Spikelets per panicle
千粒重
1000-grain weight (g)
结实率
Filled grain rate (%)
产量
Yield
(t hm-2)
2021 氮高效品种T-43 N0 371.74±30.2 4 b 72.00±0.82 c 22.51±0.83 a 80.08±5.61 b 4.81±0.39 c
N1 396.84±10.10 b 85.33±1.89 b 22.43±0.21 a 82.45±2.31 ab 6.34±0.09 b
N2 417.53±10.08 a 99.67±1.25 a 22.83±1.06 a 88.29±4.64 a 8.37±0.36 a
N3 409.54±16.96 a 95.33±1.25 a 22.90±0.82 a 87.09±3.63 ab 7.88±0.34 ab
氮低效品种LX-3 N0 360.91±12.34 c 72.33±2.87 c 23.50±0.10 a 74.53±4.68 b 4.59±0.58 c
N1 382.73±4.55 b 79.33±2.05 b 23.83±0.33 a 78.58±1.93 ab 5.68±0.22 b
N2 406.75±26.67 a 92.00±0.82 a 24.80±1.43 a 81.91±3.60 a 7.60±0.83 a
N3 402.88±14.32 a 84.67±2.49 b 25.06±0.91 a 80.29±1.33 a 7.56±0.91 a
2022 氮高效品种T-43 N0 365.27±11.20 c 84.00±1.00 b 22.41±0.44 a 78.15±3.26 a 5.37±0.26 c
N1 387.90±13.71 b 95.33±1.70 a 22.61±0.08 a 81.84±1.52 a 6.84±0.24 b
N2 427.33±13.13 a 104.00±3.56 a 22.85±0.34 a 83.08±3.56 a 8.43±0.46 a
N3 419.49±15.29 a 99.00±5.35 a 22.70±0.35 a 82.58±2.55 a 8.12±0.28 a
氮低效品种LX-3 N0 351.37±23.97 c 65.00±3.56 c 23.61±0.29 b 77.44±1.47 a 4.18±0.49 c
N1 380.14±15.27 b 74.00±1.41 bc 23.93±0.26 ab 81.50±1.98 a 5.48±0.26 b
N2 407.78±16.86 a 89.00±7.48 a 24.81±0.60 a 81.80±2.44 a 7.32±0.16 a
N3 398.79±8.78 ab 80.67±6.65 ab 24.34±0.32 ab 79.53±3.20 a 6.97±0.20 a
FF-value
年份Year (Y) 0.080 1.179 0.962 0.175 0.014
品种Cultivar (C) 7.445* 105.336** 14.131** 72.629** 44.159**
施氮量Nitrogen (N) 24.398** 67.165** 8.203** 4.711** 135.965**
Y×C 0.261 27.240** 5.352* 0.074 7.802**
Y×N 0.466 0.276 1.178 0.508 0.372
C×N 0.036 0.966 0.406 1.285 0.340
Y×C×N 0.209 1.542 0.044 0.172 0.284

Fig. 2

Effect of nitrogen application levels on dry matter accumulation in drip irrigated rice Treatments are the same as those given in Table 2. T-43: high-NUEs cultivar; LX-3: low-NUEs cultivar. Different lowercase letters indicated significant differences among treatments in the same year at P < 0.05. * and ** indicate significant differences at P < 0.05 and P < 0.01, respectively; ns indicates no significance."

Fig. 3

Effect of nitrogen application levels on dry matter redistribution in drip irrigated rice Treatments are the same as those given in Table 2. T-43: high-NUEs cultivar; LX-3: low-NUEs cultivar."

Fig. 4

Effect of nitrogen application levels on nitrogen accumulation in drip irrigated rice Treatments are the same as those given in Table 2. T-43: high-NUEs cultivar; LX-3: low-NUEs cultivar. Different lowercase letters indicated significant differences among treatments in the same year at P < 0.05. * and ** indicate significant differences at P < 0.05 and P < 0.01, respectively; ns indicates no significance."

Fig. 5

Effect of nitrogen application levels on the distribution of nitrogen accumulation in drip irrigated rice Treatments are the same as those given in Table 2. T-43: high-NUEs cultivar; LX-3: low-NUEs cultivar."

Fig. 6

Effect of nitrogen application levels on nitrogen transport in drip irrigated rice Treatments are the same as those given in Table 2. T-43: high-NUEs cultivar; LX-3: low-NUEs cultivar. Different lowercase letters indicated significant differences among treatments in the same year at P < 0.05. * and ** indicate significant differences at P < 0.05 and P < 0.01, respectively; ns indicates no significance."

Fig. 7

Effect of nitrogen application levels on nitrogen transport rate in drip irrigated rice Treatments are the same as those given in Table 2. T-43: high-NUEs cultivar; LX-3: low-NUEs cultivar. Different lowercase letters indicated significant differences among treatments in the same year at P < 0.05. * and ** indicate significant differences at P < 0.05 and P < 0.01, respectively; ns indicates no significance."

Fig. 8

Effect of nitrogen application levels on nitrogen utilization characteristics of drip irrigated rice Treatments are the same as those given in Table 2. T-43: high-NUEs cultivar; LX-3: low-NUEs cultivar. Different lowercase letters indicated significant differences among treatments in the same year at P < 0.05. NAE, NPE, NRG, NRE, NPFP, and NGPE represent the N agronomic efficiency, N physiological efficiency, N requirement for 100 kg grain, N recovery efficiency, N partial factor productivity, and N grain production efficiency, respectively. * and ** indicate significant differences at P < 0.05 and P < 0.01, respectively; ns indicates no significance."

Fig. 9

Effect of nitrogen application levels on the normalized values of rice yield, plant dry matter and nitrogen accumulation under drip irrigation Treatments are the same as those given in Table 2. T-43: high-NUEs cultivar; LX-3: low-NUEs cultivar."

Fig. 10

Principal component analysis between yield, plant dry matter and nitrogen accumulation, and nitrogen use efficiency Treatments are the same as those given in Table 2. T-43: high-NUEs cultivar; LX-3: low-NUEs cultivar. HS: PDW, MS: PDW, HS: PNA, MS: PNA represent dry matter accumulation during heading, dry matter accumulation at maturity stage, nitrogen accumulation at heading stage, and nitrogen accumulation at maturity stage, respectively. NAE, NPE, NRG, NRE, NPFP, and NGPE represent the N agronomic efficiency, N physiological efficiency, N requirement for 100 kg grain, N recovery efficiency, N partial factor productivity, and N grain production efficiency, respectively."

Table 3

Correlation coefficient between yield, dry matter and nitrogen accumulation, and nitrogen use efficiency"

品种
Cultivar
指标
Index
产量
Yield
百千克籽粒需氮量
NRG
氮素稻谷
生产效率
NGPE
氮素
回收率
NRE
氮肥偏
生产力
NPFP
氮肥农学
利用效率
NAE
氮肥生理
利用率
NPE
氮高效
品种T-43
百千克籽粒需氮量 NRG 0.390
氮素稻谷生产效 NGPE -0.431* -0.991**
氮素回收率 NRE 0.548** 0.701** -0.702**
氮肥偏生产力 NPFP 0.445* 0.566** -0.580** 0.943**
氮肥农学利用效率 NAE 0.725** 0.511* -0.549** 0.837** 0.860**
氮肥生理利用率 NPE 0.853** 0.481* -0.527** 0.645** 0.671** 0.916**
氮高效
品种T-43
抽穗期干物质积累量HS: PDW 0.880** 0.428* -0.446* 0.451* 0.341 0.594** 0.771**
成熟期干物质积累量MS: PDW 0.709** 0.621** -0.648** 0.759** 0.638** 0.729** 0.655**
抽穗期氮素积累量HS: PNA 0.893** 0.555** -0.579** 0.453* 0.345 0.594** 0.808**
成熟期氮素积累量MS: PNA 0.935** 0.687** -0.713** 0.682** 0.544** 0.747** 0.845**
氮低效
品种LX-3
百千克籽粒需氮量 NRG -0.111
氮素稻谷生产效 NGPE 0.077 -0.993**
氮素回收率 NRE 0.473* 0.502* -0.510*
氮肥偏生产力 NPFP 0.403 0.375 -0.393 0.959**
氮肥农学利用效率 NAE 0.709** 0.055 -0.101 0.676** 0.743**
氮肥生理利用率 NPE 0.824** -0.011 -0.044 0.543** 0.586** 0.952**
抽穗期干物质积累量HS: PDW 0.800** 0.076 -0.094 0.237 0.109 0.320 0.499*
成熟期干物质积累量MS: PDW 0.716** 0.489* -0.491* 0.694** 0.547** 0.603** 0.639**
抽穗期氮素积累量HS: PNA 0.808** 0.370 -0.398 0.579** 0.455* 0.598** 0.713**
成熟期氮素积累量MS: PNA 0.866** 0.392 -0.414* 0.668** 0.531** 0.662** 0.745**
[1] 李亚贞, 韩天富, 曲潇琳, 马常宝, 都江雪, 柳开楼, 黄晶, 刘淑军, 刘立生, 申哲, 张会民. 我国水稻的肥料贡献率时空变化及影响因素. 中国农业科学, 2023, 56: 674-685.
doi: 10.3864/j.issn.0578-1752.2023.04.007
Li Y Z, Han T F, Qu X L, Ma C B, Du J X, Liu K L, Huang J, Liu S J, Liu L S, Shen Z, Zhang H M. Spatio-temporal variations of fertilizer contribution rate for rice in China and its influencing factors. Sci Agric Sin, 2023, 56: 674-685 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2023.04.007
[2] 江立庚, 曹卫星, 甘秀芹, 韦善清, 徐建云, 董登峰, 陈念平, 陆福勇, 秦华东. 不同施氮水平对南方早稻氮素吸收利用及其产量和品质的影响. 中国农业科学, 2004, 37: 490-496.
Jiang L G, Cao W X, Gan X Q, Wei S Q, Xu J Y, Dong D F, Chen N P, Lu F Y, Qin H D. Nitrogen uptake and utilization under different nitrogen management and influence on grain yield and quality in rice. Sci Agric Sin, 2004, 37: 490-496 (in Chinese with English abstract).
[3] 闫湘, 金继运, 梁鸣早. 我国主要粮食作物化肥增产效应与肥料利用效率. 土壤, 2017, 49: 1067-1077.
Yan X, Jin J Y, Liang M Z. Fertilizer use efficiencies and yield-increasing rates of grain crops in China. Soils, 2017, 49: 1067-1077 (in Chinese with English abstract).
[4] 李敏, 张洪程, 李国业, 魏海燕, 殷春渊, 马群, 杨雄. 水稻氮效率基因型差异及其机理研究进展. 核农学报, 2011, 25: 1057-1063.
Li M, Zhang H C, Li G Y, Wei H Y, Yin C Y, Ma Q, Yang X. Genotypic difference of nitrogen use efficiency in rice its morphological and physiological mechanisms. J Nucl Agric Sci, 2011, 25: 1057-1063 (in Chinese with English abstract).
doi: 10.11869/hnxb.2011.05.1057
[5] Broadbent F E, De Datta S K, Laureles E V. Measurement of nitrogen utilization efficiency in rice genotypes. Agron J, 1987, 79: 786-791.
[6] 魏海燕, 张洪程, 杭杰, 戴其根, 霍中洋, 许轲, 张胜飞, 马群, 张庆, 张军. 不同氮素利用效率基因型水稻氮素积累与转移的特性. 作物学报, 2008, 34: 119-125.
doi: 10.3724/SP.J.1006.2008.00119
Wei H Y, Zhang H C, Hang J, Dai Q G, Huo Z Y, Xu K, Zhang S F, Ma Q, Zhang Q, Zhang J. Characteristics of N accumulation and translocation in rice genotypes with different N use efficiencies. Acta Agron Sin, 2008, 34: 119-125 (in Chinese with English abstract).
[7] 孙永健, 孙园园, 徐徽, 李玥, 严奉君, 蒋明金, 马均. 水氮管理模式对不同氮效率水稻氮素利用特性及产量的影响. 作物学报, 2014, 40: 1639-1649.
doi: 10.3724/SP.J.1006.2014.01639
Sun Y J, Sun Y Y, Xu H, Li Y, Yan F J, Jiang M J, Ma J. Effects of water-nitrogen management patterns on nitrogen utilization characteristics and yield in rice cultivars with different nitrogen use efficiencies. Acta Agron Sin, 2014, 40: 1639-1649 (in Chinese with English abstract).
[8] Wang J F, Fawibe O O, Fawibe K O, Isoda A. Water productivity, sink production and varietal differences in panicle structure of rice (Oryza sativa L.) under drip irrigation with plastic-film mulch. Field Crops Res, 2023, 291: 108790.
[9] Ringler C, Zhu T. Water resources and food security. Agron J, 2015, 107: 1533-1538.
[10] Zhang J, Hou J W, Zhang H Y, Meng C R, Zhang X J, Wei C Z. Low soil temperature inhibits yield of rice under drip irrigation. J Soil Sci Plant Nutr, 2019, 19: 228-236.
[11] 余锋, 李思宇, 邱园园, 卓鑫鑫, 黄健, 汪浩, 朱安, 刘昆, 刘立军. 稻田甲烷排放的微生物学机理及节水栽培对甲烷排放的影响. 中国水稻科学, 2022, 36: 1-12.
doi: 10.16819/j.1001-7216.2022.201202
Yu F, Li S Y, Qiu Y Y, Zhuo X X, Huang J, Wang H, Zhu A, Liu K, Liu L J. Microbiological mechanism of methane emission in paddy field and influence of water-saving cultivation on methane emission. Chin J Rice Sci, 2022, 36: 1-12 (in Chinese with English abstract).
doi: 10.16819/j.1001-7216.2022.201202
[12] Zhang J X, Liu X W, Wu Q, Qiu Y Z, Chi D C, Xia G M, Arthur E. Mulched drip irrigation and maize straw biochar increase peanut yield by regulating soil nitrogen, photosynthesis and root in arid regions. Agric Water Manag, 2023, 289: 108565.
[13] 唐文雪, 马忠明, 罗双龙, 段誉. 河西绿洲灌区膜下滴灌水稻氮素平衡及氮肥投入阈值研究. 农业资源与环境学报, 2023, 40: 763-771.
Tang W X, Ma Z M, Luo S L, Duan Y. Research on nitrogen equilibrium and nitrogen fertilizer input threshold in rice soil with drip irrigation in the Hexi Oasis irrigation area. J Agric Resour Environ, 2023, 40: 763-771 (in Chinese with English abstract).
[14] Samoy-Pascual K, Lampayan R M, Remocal A T, Orge R F, Tokida T, Mizoguchi M. Optimizing the lateral dripline spacing of drip-irrigated aerobic rice to increase water productivity and profitability under the water-limited condition. Field Crops Res, 2022, 287: 108669.
[15] He H B, Ma F Y, Yang R, Chen L, Jia B, Cui J, Fan H, Wang X, Li L. Rice performance and water use efficiency under plastic mulching with drip irrigation. PLoS One, 2013, 8: e83103.
[16] Zheng J, Zhou M H, Zhu B, Fan J L, Lin H Y, Ren B, Zhang F C. Drip fertigation sustains crop productivity while mitigating reactive nitrogen losses in Chinese agricultural systems: evidence from a meta-analysis. Sci Total Environ, 2023, 886: 163804.
[17] Zhao L, Tang Q Y, Song Z W, Yin Y G, Wang G D, Li Y X. Increasing the yield of drip-irrigated rice by improving photosynthetic performance and enhancing nitrogen metabolism through optimizing water and nitrogen management. Front Plant Sci, 2023, 14: 1075625.
[18] Tang Q Y, Ma Y D, Zhao L, Song Z W, Yin Y G, Wang G D, Li Y X. Effects of water and nitrogen management on root morphology, nitrogen metabolism enzymes, and yield of rice under drip irrigation. Agronomy, 2023, 13: 1118.
[19] 鲍士旦. 土壤农化分析(第3版). 北京: 中国农业出版社, 2000. pp 44-49.
Bao S D. Agricultural Chemistry Analysis in Soil, 3rd edn. Beijing: China Agriculture Press, 2000. pp 44-49 (in Chinese).
[20] 王吕, 吴玉红, 秦宇航, 淡亚彬, 陈浩, 郝兴顺, 田霄鸿. 紫云英稻秸秆协同还田与氮肥减量配施对水稻干物质积累、氮素转运及产量的影响. 作物学报, 2024, 50: 756-770.
doi: 10.3724/SP.J.1006.2024.32013
Wang L, Wu Y H, Qin Y H, Dan Y B, Chen H, Hao X S, Tian X H. Effects of rice straw mulching combined with green manure retention and nitrogen reduction applications on dry matter quality accumulation, nitrogen transport and grain yield of rice. Acta Agron Sin, 2024, 50: 756-770 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2024.32013
[21] 黄恒, 姜恒鑫, 刘光明, 袁嘉琦, 汪源, 赵灿, 王维领, 霍中洋, 许轲, 戴其根, 张洪程, 李德剑, 刘国林. 侧深施氮对水稻产量及氮素吸收利用的影响. 作物学报, 2021, 47: 2232-2249.
doi: 10.3724/SP.J.1006.2021.02086
Huang H, Jiang H X, Liu G M, Yuan J Q, Wang Y, Zhao C, Wang W L, Huo Z Y, Xu K, Dai Q G, Zhang H C, Li D J, Liu G L. Effects of side deep placement of nitrogen on rice yield and nitrogen use efficiency. Acta Agron Sin, 2021, 47: 2232-2249 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2021.02086
[22] 陈天祥, 杨顺瑛, 苏彦华. 基于高氮投入和基因型差异的水稻氮素营养特征. 土壤, 2023, 55: 954-963.
Chen T X, Yang S Y, Su Y H. Characteristics of nitrogen nutrition in rice based on high nitrogen input and genotype differences. Soils, 2023, 55: 954-963 (in Chinese with English abstract).
[23] 李立江, 蒋明金, 何星雷, 姬广梅, 张佳凤, 罗丹秋, 江学海, 田晋钰, 黎勇, 李敏. 施氮量对优质稻G优325氮肥利用率和产量的影响. 四川农业大学学报, 42: 515-522.
Li L J, Jiang M J, He X L, Ji G M, Zhang J F, Luo D Q, Jiang X H, Tian J Y, Li Y, Li M. Effect of nitrogen application rate on nitrogen efficiency and grain yield of high-quality indica rice variety Gyou 325. J Sichuan Agric Univ, 42: 515-522.
[24] 杨建昌, 杜永, 吴长付, 刘立军, 王志琴, 朱庆森. 超高产粳型水稻生长发育特性的研究. 中国农业科学, 2006, 39: 1336-1345.
Yang J C, Du Y, Wu C F, Liu L J, Wang Z Q, Zhu Q S. Growth and development characteristics of super-high-yielding mid- season japonica rice. Sci Agric Sin, 2006, 39: 1336-1345 (in Chinese with English abstract).
[25] 薛亚光, 王康君, 颜晓元, 尹斌, 刘立军, 杨建昌. 不同栽培模式对杂交粳稻常优3号产量及养分吸收利用效率的影响. 中国农业科学, 2011, 44: 4781-4792.
doi: 10.3864/j.issn.0578-1752.2011.23.003
Xue Y G, Wang K J, Yan X Y, Yin B, Liu L J, Yang J C. Effects of different cultivation patterns on grain yield and nutrient absorption and utilization efficiency of japonica hybrid rice Changyou 3. Sci Agric Sin, 2011, 44: 4781-4792 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2011.23.003
[26] 张洪程, 王夫玉. 中国水稻群体研究进展. 中国水稻科学, 2001, 15: 52-57.
Zhang H C, Wang F Y. Recent progress on research of rice population in China. Chin J Rice Sci, 2001, 15: 52-57 (in Chinese with English abstract).
[27] 王振洋, 王冀川, 郭子扬, 袁杰, 张凯雨, 王奉斌, 康德锐. 施氮量与栽插密度对南疆水稻氮素利用率及产量的影响. 华中农业大学学报, 2023, 42(5):72-81.
Wang Z Y, Wang J C, Guo Z Y, Yuan J, Zhang K Y, Wang F B, Kang D R. Effects of nitrogen application rate and planting density on nitrogen use efficiency and yield of rice in Southern Xinjiang. J Huazhong Agric Univ, 2023, 42(5): 72-81 (in Chinese with English abstract).
[28] 周群, 袁锐, 朱宽宇, 王志琴, 杨建昌. 不同施氮量下籼/粳杂交稻甬优2640产量和氮素吸收利用的特点. 作物学报, 2022, 48: 2285-2299.
doi: 10.3724/SP.J.1006.2022.12070
Zhou Q, Yuan R, Zhu K Y, Wang Z Q, Yang J C. Characteristics of grain yield and nitrogen absorption and utilization of indica/japonica hybrid rice Yongyou 2640 under different nitrogen application rates. Acta Agron Sin, 2022, 48: 2285-2299 (in Chinese with English abstract).
[29] 王艳, 米国华, 陈范骏, 张福锁. 玉米自交系氮效率基因型差异的比较研究. 应用与环境生物学报, 2002, 8: 361-365.
Wang Y, Mi G H, Chen F J, Zhang F S. Genotypic difference in nitrogen efficiency of five maize inbred lines as affected by nitrate levels. Chin J Appl Environ Biol, 2002, 8: 361-365 (in Chinese with English abstract).
[30] 殷春渊, 张庆, 魏海燕, 张洪程, 戴其根, 霍中洋, 许轲, 马群, 杭杰, 张胜飞. 不同产量类型水稻基因型氮素吸收、利用效率的差异. 中国农业科学, 2010, 43: 39-50.
Yin C Y, Zhang Q, Wei H Y, Zhang H C, Dai Q G, Huo Z Y, Xu K, Ma Q, Hang J, Zhang S F. Differences in nitrogen absorption and use efficiency in rice genotypes with different yield performance. Sci Agric Sin, 2010, 43: 39-50 (in Chinese with English abstract).
[31] 从夕汉, 施伏芝, 阮新民, 罗玉祥, 王元垒, 许有尊, 罗志祥. 施氮量对不同品种水稻氮素利用及碳氮代谢关键酶的影响. 河南农业大学学报, 2019, 53: 325-330.
Cong X H, Shi F Z, Ruan X M, Luo Y X, Wang Y L, Xu Y Z, Luo Z X. Effects of nitrogen application rate on nitrogen use efficiency and key enzymes for carbon and nitrogen metabolism in different rice varieties. J Henan Agric Univ, 2019, 53: 325-330 (in Chinese with English abstract).
[32] 张亚丽, 樊剑波, 段英华, 王东升, 叶利庭, 沈其荣. 不同基因型水稻氮利用效率的差异及评价. 土壤学报, 2008, 45: 267-273.
Zhang Y L, Fan J B, Duan Y H, Wang D S, Ye L T, Shen Q R. Variation of nitrogen use efficiency of rice different in genotype and Its evaluation. Acta Pedol Sin, 2008, 45: 267-273 (in Chinese with English abstract).
[33] 韩志丽, 许桂玲, 冯跃华, 王晓珂, 卢苇, 李杰, 高钰琪, 任红军, 由晓璇. 不同地力条件下施氮量对杂交籼稻干物质积累、氮肥利用率和产量的影响. 中国稻米, 2023, 29(2):34-39.
doi: 10.3969/j.issn.1006-8082.2023.02.007
Han Z L, Xu G L, Feng Y H, Wang X K, Lu W, Li J, Gao Y Q, Ren H J, You X X. Effects of nitrogen application rate on dry matter accumulation, nitrogen use efficiency and yield of hybrid indica rice under different soil fertility condition. J Chin Rice, 2023, 29(2): 34-39 (in Chinese with English abstract).
[34] 陈天祥, 杨顺瑛, 王书伟, 苏彦华. 水稻氮素利用效率的基因型差异与调控途径. 土壤, 2022, 54: 873-881.
Chen T X, Yang S Y, Wang S W, Su Y H. Genotypic differences and regulatory strategies of nitrogen use efficiency in rice. Soils, 2022, 54: 873-881 (in Chinese with English abstract).
[35] 吕腾飞, 谌洁, 马鹏, 代邹, 杨志远, 徐徽, 郑传刚, 马均. 氮肥缓速配施对机插杂交稻氮素利用特征的影响. 中国农业科学, 2021, 54: 1410-1423.
doi: 10.3864/j.issn.0578-1752.2021.07.008
Lyu T F, Shen J, Ma P, Dai Z, Yang Z Y, Xu H, Zheng C G, Ma J. Effects of combined application of slow release nitrogen fertilizer and urea on the nitrogen utilization characteristics in machine transplanted hybrid rice. Sci Agric Sin, 2021, 54: 1410-1423 (in Chinese with English abstract).
[1] LIU Chen, WANG Kun-Kun, LIAO Shi-Peng, YANG Jia-Qun, CONG Ri-Huan, REN Tao, LI Xiao-Kun, LU Jian-Wei. Effects of nitrogen fertilizer application levels on yield and nitrogen absorption and utilization of oilseed rape under maize-oilseed rape and rice-oilseed rape rotation fields [J]. Acta Agronomica Sinica, 2024, 50(8): 2067-2077.
[2] WANG Fei-Er, GUO Yao, LI Pan, WEI Jin-Gui, FAN Zhi-Long, HU Fa-Long, FAN Hong, HE Wei, YIN Wen, CHEN Gui-Ping. Compensation mechanism of increased maize density on yield with water and nitrogen reduction supply in oasis irrigation areas [J]. Acta Agronomica Sinica, 2024, 50(6): 1616-1627.
[3] XU Ze, WU Xin-Ling, LIU Zhen-Yu, LI Han-Jia, LENG Xin-Hua, WU Tian-Fan, CHEN Yuan, ZHANG Xiang, CHEN De-Hua. Effects of planting density with nitrogen rate on regulation of nitrogen utilization in summer direct seeded cotton [J]. Acta Agronomica Sinica, 2024, 50(6): 1584-1596.
[4] ZHANG Zhen, ZHAO Jun-Ye, SHI Yu, ZHANG Yong-Li, YU Zhen-Wen. Effects of different sowing space on photosynthetic characteristics after anthesis and grain yield of wheat [J]. Acta Agronomica Sinica, 2024, 50(4): 981-990.
[5] LIU Cheng-Min, MEN Ya-Qi, QIN Du-Lin, YAN Xiao-Yu, ZHANG Le, MENG Hao, SU Xun-Ya, SUN Xue-Zhen, SONG Xian-Liang, MAO Li-Li. Effects of nitrogen application rate on cotton yield and nitrogen utilization under long-term straw return to the field [J]. Acta Agronomica Sinica, 2024, 50(4): 1043-1052.
[6] WANG Lyu, WU Yu-Hong, QIN Yu-Hang, DAN Ya-Bin, CHEN Hao, HAO Xing-Shun, TIAN Xiao-Hong. Effects of rice straw mulching combined with green manure retention and nitrogen reduction applications on dry matter quality accumulation, nitrogen transport and grain yield of rice [J]. Acta Agronomica Sinica, 2024, 50(3): 756-770.
[7] SHANG Yong-Pan, YU Ai-Zhong, WANG Yu-Long, WANG Peng-Fei, LI Yue, CHAI Jian, LYU Han-Qiang, YANG Xue-Hui, WANG Feng. Effects of green manure application methods on dry matter accumulation, distribution, and yield of maize in oasis irrigation area [J]. Acta Agronomica Sinica, 2024, 50(3): 686-694.
[8] WU Yu, LIU Lei, CUI Ke-Hui, QI Xiao-Li, HUANG Jian-Liang, PENG Shao-Bing. Changes of root characteristics of super hybrid rice variety contributing to high nitrogen accumulation under low nitrogen application at seedling stage [J]. Acta Agronomica Sinica, 2024, 50(2): 414-424.
[9] YANG Li-Da, REN Jun-Bo, PENG Xin-Yue, YANG Xue-Li, LUO Kai, CHEN Ping, YUAN Xiao-Ting, PU Tian, YONG Tai-Wen, YANG Wen-Yu. Crop growth characteristics and its effects on yield formation through nitrogen application and interspecific distance in soybean/maize strip relay intercropping [J]. Acta Agronomica Sinica, 2024, 50(1): 251-264.
[10] WEI Jin-Gui, GUO Yao, CHAI Qiang, YIN Wen, FAN Zhi-Long, HU Fa-Long. Yield and yield components of maize response to high plant density under reduced water and nitrogen supply [J]. Acta Agronomica Sinica, 2023, 49(7): 1919-1929.
[11] LIU Xin-Meng, CHENG Yi, LIU Yu-Wen, PANG Shang-Shui, YE Xiu-Qin, BU Yan-Xia, ZHANG Ji-Wang, ZHAO Bin, REN Bai-Zhao, REN Hao, LIU Peng. Difference analysis of yield and resource use efficiency of modern summer maize varieties in Huang-Huai-Hai region [J]. Acta Agronomica Sinica, 2023, 49(5): 1363-1371.
[12] WU Dong-Qing, LI Zhou, GUO Chun-Lin, ZOU Jing-Nan, PANG Zi-Qin, LIN Fei-Fan, HE Hai-Bin, LIN Wen-Xiong. Dry matter partitioning properties and mechanism of ratooning rice and main crop (late season) synchronized in rice heading time [J]. Acta Agronomica Sinica, 2023, 49(3): 755-771.
[13] CHAI Jian, YU Ai-Zhong, LI Yue, WANG Yu-Long, WANG Feng, WANG Peng-Fei, LYU Han-Qiang, YANG Xue-Hui, SHANG Yong-Pan. Effects of green manure incorporation combined with nitrogen fertilizer reduction on wheat yield and nitrogen utilization in oasis irrigated area [J]. Acta Agronomica Sinica, 2023, 49(11): 3131-3140.
[14] LIU Qiu-Xia, DONG Er-Wei, HAUNG Xiao-Lei, WANG Jin-Song, WANG Yuan, JIAO Xiao-Yan. Response of sorghum grain yield and quality to nitrogen application in different ecozones [J]. Acta Agronomica Sinica, 2023, 49(10): 2766-2776.
[15] YU Hui-Ling, KAN Ming-Xi, XU Zhe-Li, MA Rui-Qi, LIU A-Kang, WANG De-Mei, WANG Yan-Jie, YANG Yu-Shuang, ZHAO Guang-Cai, CHANG Xu-Hong. Yield and dry matter accumulation of wheat in response to spring irrigation water in uniform sowing and strip sowing [J]. Acta Agronomica Sinica, 2023, 49(10): 2833-2844.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[2] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[3] Hu Yuqi;Liao Xiaohai. A STUDY ON THE COEFFICIENT OF LEAVES SHAPE OF MAIZE[J]. Acta Agron Sin, 1986, (01): 71 -72 .
[4] LIANG Tai-Bo;YIN Yan-Ping;CAI Rui-Guo;YAN Su-Hui;LI Wen-Yang;GENG Qing-Hui;WANG Ping;WANG Zhen-Lin. Starch Accumulation and Related Enzyme Activities in Superior and Inferior Grains of Large Spike Wheat[J]. Acta Agron Sin, 2008, 34(01): 150 -156 .
[5] WANG Cheng-Zhang;HAN Jin-Feng;SHI Ying-Hua;LI Zhen-Tian;LI De-Feng. Production Performance in Alfalfa with Different Classes of Fall Dormancy[J]. Acta Agron Sin, 2008, 34(01): 133 -141 .
[6] TIAN Zhi-Jian;Yi Rong;CHEN Jian-Rong;GUO Qing-Quan;ZHANG Xue-Wen;. Cloning and Expression of Cellulose Synthase Gene in Ramie [Boehme- ria nivea (Linn.) Gaud.][J]. Acta Agron Sin, 2008, 34(01): 76 -83 .
[7] ZHAO Xiu-Qin;ZHU Ling-Hua;XU Jian-Long;LI Zhi-Kang. QTL Mapping of Yield under Irrigation and Rainfed Field Conditions for Advanced Backcrossing Introgression Lines in Rice[J]. Acta Agron Sin, 2007, 33(09): 1536 -1542 .
[8] WU Ying ; SONG Feng-Sun ; LU Xu-Zhong; ZHAO Wei; YANG Jian-Bo; LI Li ;. Detecting Genetically Modified Soybean by Real-time Quantitative PCR Technique[J]. Acta Agron Sin, 2007, 33(10): 1733 -1737 .
[9] GOU Ling ; HUANG Jian-Jun; ZHANG Bin; LI Tao; SUN Rui; ZHAO Ming ;. Effects of Population Density on Stalk Lodging Resistant Mechanism and Agronomic Characteristics of Maize[J]. Acta Agron Sin, 2007, 33(10): 1688 -1695 .
[10] YU Jing;ZHANG Lin;CUI Hong;ZHANG Yong-Xia;CANG Jing;HAO Zai-Bin;LI Zhuo-Fu. Physiological and Biochemical Characteristics of Dongnongdongmai 1 before Wintering in High-Cold Area[J]. Acta Agron Sin, 2008, 34(11): 2019 -2025 .