Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (10): 2833-2844.doi: 10.3724/SP.J.1006.2023.21069

• RESEARCH NOTES • Previous Articles     Next Articles

Yield and dry matter accumulation of wheat in response to spring irrigation water in uniform sowing and strip sowing

YU Hui-Ling1(), KAN Ming-Xi1, XU Zhe-Li2, MA Rui-Qi1, LIU A-Kang1,3, WANG De-Mei1, WANG Yan-Jie1, YANG Yu-Shuang1, ZHAO Guang-Cai1, CHANG Xu-Hong1()   

  1. 1Institute of Crop Sciences, Chinese Academy of Agricultural Sciences / Key Laboratory of Crop Physiology and Ecology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
    2Shijiazhuang Academy of Agricultural and Forestry Sciences, Shijiazhuang 051530, Hebei, China
    3National Agro-Tech Extension and Service Center Grain Crop Technology Division, Beijing 100125, China
  • Received:2022-10-30 Accepted:2023-04-18 Online:2023-10-12 Published:2023-04-28
  • Contact: E-mail: changxuhong@caas.cn
  • Supported by:
    National Natural Science Foundation of China(32071952);China Agriculture Research System of MOF and MARA(CARS-03-16);Agricultural Science and Technology Innovation Program(CAAS-ZDRW202002)

Abstract:

The objective of this study is to clarify the dry matter accumulation and water use of wheat under the new sowing method of tridimensional uniform sowing and to explore the water saving potential of the sowing method. The experiment was conducted in two pilot sites in Shijiazhuang and Beijing during growing season of winter wheat from 2020 to 2021, using medium gluten and water-saving wheat Lunxuan 103 as the experimental variety. To study the differences of wheat response to spring irrigation under different sowing methods from the perspectives of yield composition, material accumulation and transport, and water utilization, and to provide the theoretical basis and technical support for water-saving wheat, the experiment was conducted with three irrigation rates in the main zone [600 m3 hm-2(W1), 900 m3 hm-2 (W2), and 1200 m3 hm-2 (W3)] and two sowing methods [tridimensional uniform sowing (S1) and conventional strip sowing (S2)] in the secondary zone. The results showed that, under the same irrigation rate, the yield of tridimensional uniform sowing was higher than that of conventional strip sowing, mainly because leaf area index (LAI) was higher and changed more steadily with the advancement of the reproductive process. Meanwhile, the photosynthetic performance of the functional leaves of uniform sowing wheat was better than that of strip sowing, which facilitated the synthesis of more organic matter, resulting in higher dry matter accumulation and post-flowering photosynthetic accumulation of all organs of uniform sowing wheat than that of strip sowing, and improved WUE and IWUE, showing a better yield advantage. When the irrigation rate was 600 m3 hm-2 (W1), compared with the strip sowing, the yield of uniform sowing increased the most by 832.0 kg hm-2 with an increase of 9.89%. The dry matter mass of stem sheath, leaf, and spike increased by 25.15%, 27.64%, and 18.68%, and WUE and IWUE increased by 11.16% and 9.92%, respectively. The maximum relative growth rate of different sowing methods was the highest when the irrigation amount was 900 m3 hm-2 (W2), the maximum relative growth rate of dry matter accumulation (0.021-0.025 g plant-1 day-1) occurred earlier than strip sowing, and the maximum relative growth rate of dry matter accumulation at the irrigation rate appeared earlier (tm), and the duration of the rapid growth period (Δt) was the shortest, and appeared earlier in Shijiazhuang than Beijing. The post-flowering photosynthetic accumulation at 1200 m3 hm-2 (W3) was significantly higher than strip sowing, and the average yield increase was 4.37%. The gray correlation analysis showed that the number of spikes and 1000-grain weight of uniform sowing wheat were closely related to yield, while the net photosynthetic rate of strip sowing wheat was more correlated with yield in both sites. These results revealed that, under the same irrigation amount, compared with the conventional strip sowing, uniformly sown wheat could increase its yield by increasing LAI to prolong the duration of high values, or increasing net photosynthetic rate, or promoting dry matter accumulation. Especially under the condition of lower irrigation amount, the method of uniform sowing could achieve higher yield and increase benefit by efficient water use with the same irrigation input. Therefore, the uniform sowing was more suitable for areas with insufficient irrigation conditions in production, and could give full play to its efficient water-saving function.

Key words: sowing pattern, irrigation, dry matter accumulation, yield

Table 1

Test site overview"

试点
Experimental site
经纬度
Latitude and longitude
海拔
Altitude
(m)
种植生态区
Ecological area
全年≥10℃积温
Accumulated temperature (≥10℃) of growth period (℃)
生育期>0℃积温
Accumulated temperature (>0℃) of growth period (℃)
无霜期
Frost-free period
(d)
河北石家庄 Shijiazhuang, Hebei 37°27'N, 113°30'E 78 黄淮冬麦区
Huang-Huai winter wheat region
4844 2206 197
北京
Beijing
39°57'N, 116°19'E 46 北部冬麦区
Northern winter wheat region
4777 2330 211

Table 2

Soil basic nutrient content"

试点
Experimental site
有机质
Organic matter
(g kg-1)
全氮
Total nitrogen
(g kg-1)
碱解氮
Alkali-hydrolytic
nitrogen
(mg kg-1)
速效磷
Available
phosphorus
(mg kg-1)
速效钾
Available
potassium
(mg kg-1)
pH
河北石家庄 Shijiazhuang, Hebei 19.2 1.2 109.8 28.8 183.7 8.4
北京Beijing 23.5 1.2 95.3 22.1 206.8 8.3

Fig. 1

Precipitation and temperature during wheat growth period in two experimental sites"

Table 3

Effects of different treatments on yield and yield components"

试点
Experimental site
灌水量
Irrigation amount
播种方式
Sowing
pattern
产量
Yield
(kg hm-2)
穗粒数
Grain per spike
穗数
Spikes
(×104 hm-2)
千粒重
1000-grain weight (g)
经济系数
HI
(%)
河北石家庄 Shijiazhuang, Hebei W1 S1 9292.6 c 42.5 b 613.6 a 46.61 c 0.48 b
S2 8556.7 d 46.2 a 480.4 b 46.59 c 0.50 a
W2 S1 9311.8 c 42.3 b 619.2 a 47.65 bc 0.50 a
S2 9264.9 c 46.7 a 487.4 b 47.54 bc 0.50 a
W3 S1 9898.0 a 40.9 c 654.4 a 48.12 b 0.50 a
S2 9500.9 b 46.8 a 509.3 b 49.99 a 0.51 a
北京
Beijing
W1 S1 9188.2 ab 43.6 c 576.0 b 48.24 ab 0.53 c
S2 8260.1 c 47.5 b 531.0 d 44.87 c 0.55 b
W2 S1 9480.2 a 44.0 c 585.6 b 48.86 ab 0.54 c
S2 8823.9 b 47.8 b 578.1 bcd 46.30 bc 0.56 ab
W3 S1 9679.6 a 44.4 c 629.9 a 49.84 a 0.54 c
S2 9256.3 ab 49.2 a 606.1 cd 47.12 abc 0.56 a

Fig. 2

Changes in leaf area index and net photosynthetic rate of different treatments JS: jointing stage; AS: anthesis stage; FS: filling stage. Treatments are the same as those given in Table 3."

Fig. 3

Changes in dry matter accumulation of each organ in different treatments JS: jointing stage; AS: anthesis stage; FS: filling stage; MS: maturity stage. Treatments are the same as those given in Table 3."

Fig. 4

Proportion of dry matter allocated to each organ in different treatments at maturity stage Different lowercase letters of the same organ in the same pilot indicate significant differences between treatments at the 0.05 probability level. Treatments are the same as those given in Table 3."

Table 4

Logistic equations and their eigenvalues of dry matter accumulation of winter wheat shoot after jointing stage"

试点
Experimental
site
处理
Treatment
Logistic方程
Logistic equation
Vm
(g plant-1 d-1)
持续时间Duration (d) R2
t1 t2 tm Δt
河北石家庄 Shijiazhuang, Hebei W1S1 y = 7.7773/[1+e(2.2386−0.110050t)] 0.214 8.4 32.3 20.3 23.9 0.99529
W1S2 y = 7.7246/[1+e(2.3212−0.106414t)] 0.206 9.4 34.2 21.8 24.8 0.99413
W2S1 y = 8.2821/[1+e(2.3029−0.118371t)] 0.245 8.3 30.6 19.5 22.3 0.99686
W2S2 y = 8.1885/[1+e(2.3087−0.109060t)] 0.223 9.1 33.2 21.2 24.2 0.99151
W3S1 y = 8.9725/[1+e(1.8837−0.098018t)] 0.220 5.8 32.7 19.2 26.9 1.00000
W3S2 y = 8.5896/[1+e(1.9501−0.098988t)] 0.213 6.4 33.0 19.7 26.6 0.98269
北京
Beijing
W1S1 y = 9.4237/[1+e(2.2775 −0.079217t)] 0.187 12.1 45.4 28.8 33.3 0.97068
W1S2 y = 8.9926/[1+e(2.1281−0.074001t)] 0.166 11.0 46.6 28.8 35.6 0.99002
W2S1 y = 9.6812/[1+e(2.1887−0.084410t)] 0.204 10.3 41.5 25.9 31.2 0.99465
W2S2 y = 9.2403/[1+e(2.1876−0.079164t)] 0.183 11.0 44.3 27.6 33.3 0.98808
W3S1 y = 10.2497/[1+e(2.3078−0.087897t)] 0.225 11.3 41.2 26.3 30.0 0.99057
W3S2 y = 9.7650/[1+e(2.3659−0.090817t)] 0.222 11.5 40.6 26.1 29.0 0.98864

Table 5

Differences in pre-flowering dry matter transport of each organ in different treatments"

部位
Part
处理
Treatment
河北石家庄 Shijiazhuang, Hebei 北京Beijing
T (kg hm-2) TE (%) TC (%) T (kg hm-2) TE (%) TC (%)
茎秆+叶鞘 W1S1 2480.33 b 22.89 b 23.33 cd 1190.14 b 11.45 c 11.16 c
Stem + Leaf sheath W1S2 1830.17 c 22.51 b 21.98 d 1487.92 b 15.66 bc 16.20 bc
W2S1 4009.69 a 31.26 a 35.59 a 3100.64 a 23.27 ab 26.86 a
W2S2 2492.18 b 27.24 ab 27.62 bc 2094.88 b 18.79 abc 20.49 ab
W3S1 3715.23 a 25.79 b 29.08 b 3878.56 a 25.91 a 28.96 a
W3S2 2584.30 b 25.97 b 27.32 bcd 3555.99 a 26.02 a 28.15 a
叶片 W1S1 1440.37 a 38.41 a 13.49 a 1908.97 a 49.97 ab 17.81 a
Leaf W1S2 783.01 a 29.32 a 8.98 a 1850.48 a 55.08 ab 20.25 a
W2S1 1384.25 a 30.96 a 12.02 a 1938.08 a 47.78 ab 16.81 a
W2S2 733.50 a 27.26 a 8.30 a 2101.66 a 55.68 a 19.68 a
W3S1 1236.14 a 28.82 a 9.58 a 2111.02 a 44.10 b 15.78 a
W3S2 869.68 a 28.14 a 9.20 a 2228.60 a 50.30 ab 17.63 a
颖壳+穗轴 W1S1 533.18 a 19.20 a 5.10 a 630.97 ab 24.87 ab 5.90 a
Glume + Spike axis W1S2 391.59 a 19.15 a 4.71 a 237.94 ab 9.60 bc 2.62 ab
W2S1 236.26 a 8.55 a 2.06 a 435.55 ab 16.24 abc 3.73 ab
W2S2 186.01 a 8.83 a 2.12 a 137.04 b 4.61 c 1.32 b
W3S1 349.33 a 12.36 a 2.76 a 437.61 ab 16.09 abc 3.26 ab
W3S2 222.93 a 9.87 a 2.34 a 707.35 a 28.39 a 5.60 ab
总量 W1S1 4453.88 bc 25.78 a 41.92 ab 3730.08 c 20.82 c 34.87 c
Total W1S2 3004.78 d 23.53 a 35.67 b 3576.35 c 22.15 bc 39.07 bc
W2S1 5630.20 a 28.55 a 49.67 a 5474.27 ab 25.81 abc 47.40 ab
W2S2 3411.69 cd 24.53 a 38.03 b 4333.58 bc 23.25 bc 42.36 abc
W3S1 5300.70 ab 24.54 a 41.42 ab 6427.19 a 26.89 ab 48.00 ab
W3S2 3676.91 cd 24.08 a 38.87 b 6491.95 a 29.40 a 51.37 a

Table 6

Differences in post-flowering dry matter accumulation among the treatments"

灌水量
Irrigation amount
播种方式
Sowing
pattern
河北石家庄 Shijiazhuang, Hebei 北京Beijing
光合积累量
Photosynthetic
accumulation (kg hm-2)
贡献率
Contribution rate
(%)
光合积累量
Photosynthetic
accumulation (kg hm-2)
贡献率
Contribution rate
(%)
W1 S1 6215.76 ab 58.08 ab 6956.28 a 65.14 a
S2 5393.83 b 64.33 a 5570.03 b 60.93 a
W2 S1 5647.64 b 50.33 b 6375.93 ab 55.12 ab
S2 5560.77 b 61.97 a 5910.61 ab 54.77 ab
W3 S1 7512.80 a 58.58 ab 6390.22 ab 48.07 b
S2 5848.15 b 61.13 a 5642.73 ab 44.42 b

Fig. 5

Changes in soil water content before sowing and after harvest in two experimental sites Treatments are the same as those given in Table 3."

Table 7

Characteristics of water use in different treatments"

灌水量
Irrigation amount
播种方式
Sowing pattern
河北石家庄 Shijiazhuang, Hebei 北京 Beijing
ETa
(mm)
WUE
(kg hm-2 mm-1)
IWUE
(kg hm-2 mm-1)
ETa
(mm)
WUE
(kg hm-2 mm-1)
IWUE
(kg hm-2 mm-1)
W1 S1 337.4 c 27.54 a 61.95 a 277.5 c 33.12 a 61.25 a
S2 338.6 c 25.27 c 57.04 b 282.8 c 29.22 bc 55.07 b
W2 S1 361.4 b 25.77 b 51.73 c 311.9 b 30.40 b 52.67 bc
S2 365.6 b 25.34 bc 51.47 c 318.7 b 27.69 c 49.02 cd
W3 S1 396.1 a 24.99 c 47.13 d 339.9 a 28.48 bc 46.09 d
S2 400.7 a 23.71 d 45.24 e 345.2 a 26.87 c 44.08 d

Fig. 6

Correlation analysis between water use efficiency and yield of winter wheat with different sowing methods"

Table 8

Gray correlation analysis of characters and yield of wheat with different sowing patterns"

试点
Experimental
site
指标
Indicator
匀播Uniforming 条播Drilling
关联度
Correlation degree
关联度排序
Relevance ranking
关联度Correlation degree 关联度排序Relevance ranking
河北石家庄
Shijiazhuang, Hebei
穗粒数Grain per spike 0.8371 3 0.5790 6
穗数Spikes 0.9796 1 0.6363 4
千粒重1000-grain weight 0.8887 2 0.6680 3
花前干物质转运量Pre-flowering dry matter transfer 0.6150 6 0.6323 5
花后干物质积累量Post-flowering dry matter accumulation 0.6870 5 0.7117 2
净光合速率Photosynthetic rate 0.7640 4 0.7590 1
北京
Beijing
穗粒数Grain per spike 0.9473 3 0.8841 5
穗数Spikes 0.9500 2 0.9626 1
千粒重1000-grain weight 0.9631 1 0.9122 4
花前干物质转运量Pre-flowering dry matter transfer 0.5893 6 0.6803 6
花后干物质积累量Post-flowering dry matter accumulation 0.8189 5 0.9145 3
净光合速率Photosynthetic rate 0.8901 4 0.9481 2
[1] 赵广才. 小麦立体匀播技术-绿色节本高产高效. 农民科技培训, 2016, (1): 42-44.
Zhao G C. Wheat stereoscopic sowing technology: green, cost-saving and high-yielding. Technol Train Farm, 2016, (1): 42-44. (in Chinese)
[2] 常旭虹, 王艳杰, 陶志强, 王德梅, 马少康, 杨玉双, 徐哲莉, 张燕, 赵广才. 小麦立体匀播栽培技术体系. 作物杂志, 2019, (2): 168-172.
Chang X H, Wang Y J, Tao Z Q, Wang D M, Ma S K, Yang Y S, Xu Z L, Zhang Y, Zhao G C. Tridimensional uniform sowing cultivation system of wheat. Crops, 2019, (2): 168-172. (in Chinese with English abstract)
[3] 徐袁博, 李援农, 银敏华, 任全茂, 王星垚, 陈紫薇. 不同微喷灌灌水量对冬小麦生长、产量和水分利用效率的影响. 干旱地区农业研究, 2018, 36(1): 121-125.
Xu Y B, Li Y N, Yin M H, Ren Q M, Wang X Y, Chen Z W. Effect of micro-sprinkler irrigation on growth, yield and water use efficiency of winter wheat. Agric Res Arid Areas, 2018, 36(1): 121-125. (in Chinese with English abstract)
[4] 加孜拉, 张燕, 白云岗. 滴灌下水肥耦合对北疆冬小麦干物质积累和产量的影响. 灌溉排水学报, 2014, 33(4): 77-80.
Jia Z L, Zhang Y, Bai Y G. Effects of water and fertilizer coupling on dry matter accumulation and yield of winter in northern Xinjiang under drip irrigation. J Irrig Drain, 2014, 33(4): 77-80. (in Chinese with English abstract)
[5] 刘强, 比拉力·艾力, 王冀川, 高振, 李同蕊, 党旭伟, 张利庭. 不同播种方式与密度对滴灌冬小麦干物质积累及光合特性的影响. 塔里木大学学报, 2021, 33(1): 66-76.
Liu Q, Bilali A, Wang J C, Gao Z, Li T R, Dang X W, Zhang L T. Effects of different sowing methods and densities on dry matter accumulation and photosynthetic characteristics of winter wheat under drip irrigation. J Tarim Univ, 2021, 33(1): 66-76. (in Chinese with English abstract)
[6] 谭维娜, 戴廷波, 荆奇, 曹卫星, 姜东. 花后渍水对小麦旗叶光合特性及产量的影响. 麦类作物学报, 2007, 27: 314-317.
Tan W N, Dai T B, Jing Q, Cao W X, Jiang D. Effect of post-anthesis water logging on flag leaf photosynthetic characteristics and yield in wheat. J Triticeae Crops, 2007, 27: 314-317. (in Chinese with English abstract)
[7] 崔月, 张宏芝, 赵奇, 刘建鹤. 水肥运筹对滴灌冬小麦干物质积累和产量调控效应研究. 新疆农业科学, 2018, 55: 618-626.
doi: 10.6048/j.issn.1001-4330.2018.04.004
Cui Y, Zhang H Z, Zhao Q, Liu J H. Effect of irrigation and fertilization on dry matter accumulation and yield control of drip irrigation winter wheat. Xinjiang Agric Sci, 2018, 55: 618-626. (in Chinese with English abstract)
[8] Mon J, Bronson K F, Hunsaker D J, Thorp K R, White J W, French A N. Interactive effects of nitrogen fertilization and irrigation on grain. Field Crops Res, 2016, 191: 54-65.
doi: 10.1016/j.fcr.2016.02.011
[9] 张廷龙, 陈建平, 陈桂平, 胡发龙, 殷文, 赵财, 樊志龙. 春小麦耗水特征对播种方式及播种量的响应. 灌溉排水学报, 2021, 40(9): 11-16.
Zhang T L, Chen J P, Chen G P, Hu F L, Yin W, Zhao C, Fan Z L. Planting pattern and seeding rate combine to affect water consumption of spring wheat. J Irrig Drain, 2021, 40(9): 11-16. (in Chinese with English abstract)
[10] 李俊红, 姚宇卿, 丁志强, 吕军杰, 张洁, 吴剑峰, 于新峰. 沟播对冬小麦群体干物质、土壤水分利用效率及土壤温度的影响. 作物研究, 2010, 24(1): 16-18.
Li J H, Yao Y Q, Ding Z Q, Lyu J J, Zhang J, Wu J F, Yu X F. Effect of furrow sowing on dry matter, soil water use efficiency and soil temperature of winter wheat population. Crop Res, 2010, 24(1): 16-18. (in Chinese)
[11] 吴祯, 张保军, 海江波, 董永利, 陈军晓, 马娟娟, 韩雪冰. 不同种植方式对冬小麦花后干物质积累与分配特征及产量的影响. 麦类作物学报, 2017, 37: 1377-1382.
Wu Z, Zhang B J, Hai J B, Dong Y L, Chen J X, Ma J J, Han X B. Effect of different planting patterns on dry matter accumulation and distribution post-anthesis and yield of winter wheat. J Triticeae Crops, 2017, 37: 1377-1382. (in Chinese with English abstract)
[12] 刘阿康. 播期及调控措施对小麦苗期生长的影响. 中国农业科学院硕士学位论文, 北京, 2021.
Liu A K. Effects of Sowing Date and Regulation Measures on Wheat Seedling Growth. MS Thesis of Chinese Academy of Agricultural Sciences, Beijing, China, 2021. (in Chinese with English abstract)
[13] 李晓航, 杨丽娟, 盛坤, 蒋志凯. 不同灌水处理下小麦干物质分配、转运及其产量的研究. 中国农学通报, 2015, 31(30): 33-37.
doi: 10.11924/j.issn.1000-6850.casb15050183
Li X H, Yang L J, Sheng K, Jiang Z K. Effects of different irrigation models on yield, distribution and transport of dry-matter of wheat plant. Chinese Agric Sci Bull, 2015, 31(30): 33-37. (in Chinese with English abstract)
[14] 黄彩霞, 柴守玺, 赵德明, 李志贤, 常磊, 王婷. 不同水分处理对冬小麦产量和水分利用效率的影响. 草业学报, 2010, 19(5): 196-203.
Huang C X, Chai S X, Zhao D M, Li Z X, Chang L, Wang T. Effects of irrigation on grain yield and water use efficiency of winter wheat. Acta Pratac Sin, 2010, 19(5): 196-203. (in Chinese with English abstract)
[15] 雷锦雯. 不同播种方式与播量对冬小麦群体质量与产量构成的调控效应. 河南农业大学硕士学位论文, 河南郑州, 2017.
Lei J W. Effects of Different Sowing Methods and Planting Densities on Group Quality and Yield Components of Winter Wheat. MS Thesis of Henan Agricultural University, Zhengzhou, Henan, China, 2017. (in Chinese with English abstract)
[16] 周勋波, 孙淑娟, 陈雨海, 李全起, 杨国敏. 冬小麦不同行距下水分特征与产量构成的初步研究. 土壤学报, 2008, 45: 188-191.
Zhou X B, Sun S J, Chen Y H, Li Q Q, Yang G M. Moisture characteristics and yield composition of winter wheat different in row spacing. Acta Pedol Sin, 2008, 45: 188-191. (in Chinese with English abstract)
[17] 张金汕, 贾永红, 李鹏, 孙鹏, 蒋文, 石书兵. 立体匀播和密度对冬小麦光合、干物质积累分配及产量的影响. 麦类作物学报, 2021, 41: 438-447.
Zhang J S, Jia Y H, Li P, Sun P, Jiang W, Shi S B. Effect of uniforming sowing pattern and planting density on photosynthesis, dry matter accumulation and distribution and yield of winter wheat. J Triticeae Crops, 2021, 41: 438-447. (in Chinese with English abstract)
[18] 赵凯男, 常旭虹, 王德梅, 陶志强, 杨玉双, 马瑞琦, 朱英杰, 徐哲莉, 张保军, 赵广才. 立体匀播和施氮量对冬小麦产量构成及旗叶光合性能的影响. 作物杂志, 2019, (1): 103-110.
Zhao K N, Chang X H, Wang D M, Tao Z Q, Yang Y S, Ma R Q, Zhu Y J, Xu Z L, Zhang B J, Zhao G C. Effects of tridimensional uniform sowing and fertilizer on grain and physiological characteristics of winter wheat. Crops, 2019, (1): 103-110. (in Chinese with English abstract)
[19] Javad H, Jalal S. Deficit irrigation of rapeseed for water-saving: Effects on biomass accumulation, light interception and radiation use efficiency under different N rates. Agric Ecosyst Environ, 2012, 155: 153-160.
doi: 10.1016/j.agee.2012.04.003
[20] 石玉华. 不同栽培技术体系对冬小麦产量品质和光能水氮利用效率的影响. 山东农业大学博士学位论文, 山东泰安, 2011.
Shi Y H. Effects of Different Cultivation System on Grain Yield, Quality, LUE, WUE, and NUE of Winter Wheat. PhD Dissertation of Shandong Agricultural University, Tai'an, Shandong, China, 2011. (in Chinese with English abstract)
[21] 郝艳茹, 赵香莲. 不同播种方式和施氮量对小麦生长发育及产量的影响. 基层农技推广, 2017, 5(10): 13-14.
Hao Y R, Zhao X L. Effects of different sowing methods and N application on growth and yield of wheat. Prim Agric Technol Extens, 2017, 5(10): 13-14. (in Chinese)
[22] 朱元刚, 朱勇, 王运智, 刘慧, 吴儒刚, 肖岩岩, 王士岭, 戴忠民. 立体匀播影响小麦光合生产和产量形成的研究进展. 安徽农学通报, 2021, 27(19): 20-22.
Zhu Y G, Zhu Y, Wang Y Z, Liu H, Wu R G, Xiao Y Y, Wang S L. Dai Z M. Research progress on effects of tridimensional uniform sowing on photosynthetic production and yield formation of wheat. Anhui Agric Sci Bull, 2021, 27(19): 20-22. (in Chinese with English abstract)
[23] 雷钧杰, 张永强, 赛力汗·赛, 薛丽华, 梁玉超, 张宏芝, 陈兴武, 王志敏. 施氮量对滴灌冬小麦干物质积累、分配与转运的影响. 麦类作物学报, 2017, 37: 1078-1086.
Lei J J, Zhang Y Q, Sailihan·S, Xue L H, Liang Y C, Zhang H Z, Chen X W, Wang Z M. Effect of nitrogen application rate on dry matter accumulation, distribution and translocation of winter wheat under drip irrigation. J Triticeae Crops, 2017, 37: 1078-1086. (in Chinese with English abstract)
[24] 杨佳佳, 程宏波, 柴守玺, 张博, 李瑞. 不同覆盖栽培方式对冬小麦干物质分配与转运的影响. 麦类作物学报, 2021, 41: 745-751.
Yang J J, Cheng H B, Chai S X, Zhang B, Li R. Effect of different mulching cultivation methods on dry matter distribution and translocation in winter wheat. J Triticeae Crops, 2021, 41: 745-751. (in Chinese with English abstract)
[25] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响. 作物学报, 2022, 48: 942-951.
doi: 10.3724/SP.J.1006.2022.14045
Li R D, Yin Y Y, Song W W, Wu T T, Sun S, Han T F, Xu C L, Wu C X, Hu S X. Effects of close planting densities on assimilate accumulation and yield of soybean with different plant branching types. Acta Agron Sin, 2022, 48: 942-951. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2022.14045
[26] Zhang X Y, Wang Y Z, Sun H Y, Chen S Y, Shao L W. Optimizing the yield of winter wheat by regulating water consumption during vegetative and reproductive stages under limited water supply. Irrig Sci, 2013, 31: 1103-1112.
doi: 10.1007/s00271-012-0391-8
[27] 王德梅, 于振文, 张永丽, 王东. 灌水对不同小麦品种物质生产及水分利用的影响. 麦类作物学报, 2010, 30: 366-371.
Wang D M, Yu Z W, Zhang Y L, Wang D. Effects of irrigation on dry matter production and water use of different wheat cultivars. J Triticeae Crops, 2010, 30: 366-371. (in Chinese with English abstract)
[28] 孟凡德, 马林, 石书兵, 郭飞, 刘兴强, 朱军, 毛吉贤, 刘正兴. 不同耕作条件下春小麦干物质积累动态及其相关性状的研究. 麦类作物学报, 2007, 156: 693-698.
Meng F D, Ma L, Shi S B, Guo F, Liu X Q, Zhu J, Mao J X, Liu Z X. Dynamics change of dry matter accumulation and relative characteristics of spring wheat under different tillage. J Triticeae Crops, 2007, 156: 693-698. (in Chinese with English abstract)
[29] 常磊, 韩凡香, 柴雨葳, 王仕娥, 杨德龙, 程宏波, 黄彩霞, 柴守玺. 秸秆带状覆盖下冬小麦干物质积累及氮磷钾素的吸收利用. 麦类作物学报, 2019, 39: 487-494.
Chang L, Han F X, Chai Y W, Wang S E, Yang D L, Cheng H B, Huang C X, Chai S X. Dry matter accumulation and N, P and K absorption and utilization under bundled straw mulching. J Triticeae Crops, 2019, 39: 487-494 (in Chinese with English abstract).
[30] 仝锦, 孙敏, 任爱霞, 林文, 余少波, 王强, 冯玉, 任婕, 高志强. 高产小麦品种植株干物质积累运转、土壤耗水与产量的关系. 中国农业科学, 2020, 53: 3467-3478.
doi: 10.3864/j.issn.0578-1752.2020.17.005
Tong J, Sun M, Ren A X, Lin W, Yu S B, Wang Q, Feng Y, Ren J, Gao Z Q. Relationship between plant dry matter accumulation, translocation, soil water consumption and yield of high-yielding wheat cultivars. Sci Agric Sin, 2020, 53: 3467-3478. (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2020.17.005
[31] 石学萍, 刘伊明, 王九明, 兰印超, 檀海斌. 灌水量对冬小麦产量和水分利用效率的影响. 安徽农业科学, 2021, 49(11): 51-52.
Shi X P, Liu Y M, Wang J M, Lan Y C, Tan H B. Effects of irrigation amount on the yield and water use efficiency of winter wheat. J Anhui Agric Sci, 2021, 49(11): 51-52. (in Chinese with English abstract)
[32] 赵炳梓, 徐富安, 周刘宗, 徐梦熊. 水肥(N)双因素下的小麦产量及水分利用率. 土壤, 2003, (2): 122-125.
Zhao B Z, Xu F A, Zhou L Z, Xu M X. Wheat yield and water-use efficiency as influenced by different combinations of irrigation water and nitrogen fertilizer. Soils, 2003, (2): 122-125. (in Chinese with English abstract)
[33] 梁云娟, 郜庆炉, 薛香. 小麦单株产量、收获指数与主要农艺性状的灰色关联度分析. 生物数学学报, 2013, 28: 355-360.
Liang Y J, Gao Q L, Xue X. Grey correlation analysis of harvest index and agronomic traits in wheat. J Biomathem, 2013, 28: 355-360. (in Chinese with English abstract)
[34] 黄锦, 程加省, 王志伟, 乔祥梅, 杨金华, 程耿, 胡银星, 谭泽林, 李菊湘, 于亚雄. 利用灰色关联度分析云南田麦新品系产量和产量构成因素. 西南农业学报, 2014, 27: 2282-2285.
Huang J, Cheng J S, Wang Z W, Qiao X M, Yang J H, Cheng G, Hu Y X, Tan Z L, Li J X, Yu Y X. Grey correlation degree used to analyze yield and yield component factors of irrigated new wheat line of Yunnan Province. Southwest China J Agric Sci, 2014, 27: 2282-2285. (in Chinese with English abstract)
[35] 李龙, 李宝强, 孔令国, 王靖, 周忠新, 樊青峰. 鲁南经济带小麦产量与主要农艺性状的灰色关联度分析. 陕西农业科学, 2021, 67(3): 5-8.
Li L, Li B Q, Kong L G, Wang J, Zhou Z X, Fan Q F. Grey correlation analysis of wheat yield and main agronomic characters in South Shandong economic belt. Shaanxi J Agric Sci, 2021, 67(3): 5-8. (in Chinese with English abstract)
[36] 周青, 范阳, 徐淑霞, 昝凯, 王凤菊, 杨慧凤, 张志民, 陈亚光. 安豆203主要农艺性状与产量的灰色关联度分析. 耕作与栽培, 2020, 40(2): 42-44.
Zhou Q, Fan Y, Xu S X, Zan K, Wang F J, Yang H F, Zhang Z M, Chen Y G. Grey correlation analysis of main agronomic characters and yield of Antu 203. Tillage Culti, 2020, 40(2): 42-44. (in Chinese with English abstract)
[37] 窦士树, 马海涛, 朱红彩, 王玲燕, 张素平, 李军利, 郑秋道. 河南省夏大豆新品种产量与主要农艺性状的灰色关联度分析. 浙江农业科学, 2020, 61: 2535-2538.
Dou S S, Ma H T, Zhu H C, Wang L Y, Zhang S P, Li J L, Zheng Q D. Grey correlation degree analysis between yield and main agronomic traits of new summer soybean varieties in Henan province. J Zhejiang Agric Sci, 2020, 61: 2535-2538. (in Chinese with English abstract)
[38] 孟静娇, 张树明, 刘婷婷, 陈国斌. 玉米杂交种主要农艺性状与产量的灰色关联度分析. 农业科技通讯, 2021, (4): 128-129.
Meng J J, Zhang S M, Liu T T, Chen G B. Grey correlation analysis of main agronomic characters and yield of maize hybrids. Bull Agric Sci Technol, 2021, (4): 128-129. (in Chinese)
[39] 杨婷婷, 崔金凤, 吴文革, 杨安中. 21个杂交水稻品种主要农艺性状与产量的灰色关联度分析. 安徽科技学院学报, 2015, 29(3): 1-5.
Yang T T, Cui J F, Wu W G, Yang A Z. Grey correlation analysis on main agronomic characters of 21 rice varieties. J Anhui Sci Technol Univ, 2015, 29(3): 1-5. (in Chinese with English abstract)
[1] HU Yan-Juan, XUE Dan, GENG Di, ZHU Mo, WANG Tian-Qiong, WANG Xiao-Xue. Mutation effects of OsCDF1 gene and its genomic variations in rice [J]. Acta Agronomica Sinica, 2023, 49(9): 2362-2372.
[2] FANG Meng-Ying, REN Liang, LU Lin, DONG Xue-Rui, WU Zhi-Hai, YAN Peng, DONG Zhi-Qiang. Effect of ethylene-chlormequat-potassium on root morphological structure and grain yield in sorghum [J]. Acta Agronomica Sinica, 2023, 49(9): 2528-2538.
[3] LI Yi-Yang, LI Yuan, ZHAO Zi-Xu, ZHANG Ding-Shun, DU Jia-Ning, WU Shu-Juan, SUN Si-Qi, CHEN Yuan, ZHANG Xiang, CHEN De-Hua, LIU Zhen-Yu. Effects of increased nitrogen on Bt protein expression and nitrogen metabolism in the leaf subtending to cotton boll [J]. Acta Agronomica Sinica, 2023, 49(9): 2505-2516.
[4] ZHANG Li-Hua, ZHANG Jing-Ting, DONG Zhi-Qiang, HOU Wan-Bin, ZHAI Li-Chao, YAO Yan-Rong, LYU Li-Hua, ZHAO Yi-An, JIA Xiu-Ling. Effect of water management on yield and its components of winter wheat in different precipitation years [J]. Acta Agronomica Sinica, 2023, 49(9): 2539-2551.
[5] ZHANG Diao-Liang, YANG Zhao, HU Fa-Long, YIN Wen, CHAI Qiang, FAN Zhi-Long. Effects of multiple cropping green manure on grain quality and yield of wheat with different irrigation levels [J]. Acta Agronomica Sinica, 2023, 49(9): 2572-2581.
[6] YANG Yi, HE Zhi-Qiang, LIN Jia-Hui, LI Yang, CHEN Fei, LYU Chang-Wen, TANG Dao-Bin, ZHOU Quan-Lu, WANG Ji-Chun. Effects of coconut bran application rate on soil physicochemical properties and sweet-potato yield [J]. Acta Agronomica Sinica, 2023, 49(9): 2517-2527.
[7] CAO Yu-Jun, LIU Zhi-Ming, LAN Tian-Jiao, LIU Xiao-Dan, WEI Wen-Wen, YAO Fan-Yun, LYU Yan-Jie, WANG Li-Chun, WANG Yong-Jun. Responses of photosynthetic physiological characteristics of maize varieties released in different decades to nitrogen application rate in Jilin province [J]. Acta Agronomica Sinica, 2023, 49(8): 2183-2195.
[8] YANG Xiao-Hui, WANG Bi-Sheng, SUN Xiao-Lu, HOU Jin-Jin, XU Meng-Jie, WANG Zhi-Jun, FANG Quan-Xiao. Modeling the response of winter wheat to deficit drip irrigation for optimizing irrigation schedule [J]. Acta Agronomica Sinica, 2023, 49(8): 2196-2209.
[9] LI Yu-Xing, MA Liang-Liang, ZHANG Yue, QIN Bo-Ya, ZHANG Wen-Jing, MA Shang-Yu, HUANG Zheng-Lai, FAN Yong-Hui. Effects of exogenous trehalose on physiological characteristics and yield of wheat flag leaves under high temperature stress at grain filling stage [J]. Acta Agronomica Sinica, 2023, 49(8): 2210-2224.
[10] LIU Shi-Jie, YANG Xi-Wen, MA Geng, FENG Hao-Xiang, HAN Zhi-Dong, HAN Xiao-Jie, ZHANG Xiao-Yan, HE De-Xian, MA Dong-Yun, XIE Ying-Xin, WANG Li-Fang, WANG Chen-Yang. Effects of water and nitrogen application on root characteristics and nitrogen utilization in winter wheat [J]. Acta Agronomica Sinica, 2023, 49(8): 2296-2307.
[11] WEI Jin-Gui, GUO Yao, CHAI Qiang, YIN Wen, FAN Zhi-Long, HU Fa-Long. Yield and yield components of maize response to high plant density under reduced water and nitrogen supply [J]. Acta Agronomica Sinica, 2023, 49(7): 1919-1929.
[12] ZHANG Zhen, SHI Yu, ZHANG Yong-Li, YU Zhen-Wen, WANG Xi-Zhi. Effects of different soil water content on water consumption by wheat and analysis of senescence characteristics of root and flag leaf [J]. Acta Agronomica Sinica, 2023, 49(7): 1895-1905.
[13] ZHANG Lu-Lu, ZHANG Xue-Mei, MU Wen-Yan, HUANG Ning, GUO Zi-Kang, LUO Yi-Nuo, WEI Lei, SUN Li-Qian, WANG Xing-Shu, SHI Mei, WANG Zhao-Hui. Grain Mn concentration of wheat in main wheat production regions of China: Effects of cultivars and soil factors [J]. Acta Agronomica Sinica, 2023, 49(7): 1906-1918.
[14] DONG Zhi-Qiang, LYU Li-Hua, YAO Yan-Rong, ZHANG Jing-Ting, ZHANG Li-Hua, YAO Hai-Po, SHEN Hai-Ping, JIA Xiu-Ling. Yield and quality of strong gluten wheat Shiluan 02-1 under water and nitrogen interaction [J]. Acta Agronomica Sinica, 2023, 49(7): 1942-1953.
[15] DENG Ai-Xing, LI Ge-Xing, LYU Yu-Ping, LIU You-Hong, MENG Ying, ZHANG Jun, ZHANG Wei-Jian. Effect of shading duration after heading on grain yield and quality of japonica rice in northwest China [J]. Acta Agronomica Sinica, 2023, 49(7): 1930-1941.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .