Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (10): 2845-2853.doi: 10.3724/SP.J.1006.2023.33005

• RESEARCH NOTES • Previous Articles     Next Articles

Impact of foliar organic selenium application on selenium uptake and grain anthocyanins, iron, manganese, copper, and zinc concentrations of black waxy corn

HUANG Ting-Miao(), ZHAN Xin, LU Nai-Kun, QIAO Yue-Jing, CHEN Jie, YANG Zhen-Ping(), GAO Zhi-Qiang   

  1. College of Agronomy, Shanxi Agricultural University / Ministerial and Provincial Co-Innovation Centre for Endemic Crops Production with High-quality and Efficiency in Loess Plateau, Taigu 030801, Shanxi, China
  • Received:2023-01-16 Accepted:2023-04-18 Online:2023-10-12 Published:2023-04-24
  • Contact: E-mail: yangzp.2@163.com
  • Supported by:
    Ministerial and Provincial Co-Innovation Centre for Endemic Crops Production with High-quality and Efficiency in Loess Plateau(SBGJXTZX-42);National Key Research and Development Program of China(2021YFD1900700);Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi(2021L167);Incentive Funding Research Program for Doctor Graduates Working in Shanxi Province, China(SXBYKY2021030);Science and Technology Innovation Fund Program by Shanxi Agricultural University(2020BQ72)

Abstract:

It is of great significance to explore the responses of selenium (Se) uptake and grain nutritional quality to foliar application of organic Se fertilizer in black waxy corn, so as to provide a scientific basis for the rational application of Se fertilizer, and then guarantee the high-quality development of ‘Special' and ‘Excellent' agriculture in Shanxi, China. A two-year field experiment was conducted at Jinzhong in Shanxi Province, located in the typical growing region of black waxy corn from 2020 to 2021. The cultivar of Jinxiannuo 8 was used as the test crop. There were four treatments of three Se spraying rates of 0, 6, and 12 g hm-2 at early filling stage, and spraying Se in twice under Se rate of 12 g hm-2. The objective of this study is to clarify the impact of spraying rates and times of organic Se fertilizer on grain yield, Se uptake, and utilization in aerial plant part, grain anthocyanins and iron (Fe), manganese (Mn), copper (Cu), and zinc (Zn) concentrations. These results showed that grain yield at fresh stage and biomass in aerial part at maturity stage were influenced by neither Se spraying rates nor spraying times. Compared with the control, foliar Se application remarkably increased both Se concentration and accumulation in grain and each organ of aerial plant part at fresh and maturity stages, respectively. Grain Se concentration at 12 g Se hm-2 was observed to be the highest with a range of 110-181 μg kg-1, which reaching the minimum recommended value of 100 μg kg-1 for better human health. At maturity stage, Se accumulation in different organ of aerial part showed the following ranking: leaf > grain > stem > bract > cob. At the rate of 12 g Se hm-2, the average grain Se biofortification index and Se recovery were 6.95 (μg kg-1) (g hm-2) -1 and 2.4% under the condition of spraying twice, respectively, which were higher than spraying one time. Also, the highest grain anthocyanin and Fe, Mn, Zn concentrations were found when spraying Se twice at 12 g hm-2, they were 209, 27.9, 15.9, and 22.8 mg kg-1, respectively, whereas there was no difference for grain Cu concentration among the treatments at fresh stage. Therefore, the organic Se rate should be at least 12 g hm-2 with spraying twice, for better promoting Se uptake and utilization and grain nutritional quality synchronously during black waxy corn production in Jinzhong of Shanxi province.

Key words: organic selenium fertilizer, black waxy corn, foliar application, Se concentration, anthocyanins, micro-element

Fig. 1

Monthly precipitation and average temperature at the experimental sites from 2020 to 2021"

Fig. 2

Grain yield and dry weight in aerial part of black waxy corn affected by different Se spraying treatments at fresh (A) and maturity (B) stages, respectively CK, Se1, Se2, and Se2-2 represent the treatments of Se spraying rates of 0, 6, 12 g hm-2 at early filling stage, and spraying Se in twice under Se rate of 12 g hm-2, respectively. Different lowercase letters in the same year indicate significant difference among four treatments at the 0.05 probability level."

Table 1

Se concentration in grain at fresh stage, and in aerial part at maturity affected by different Se spraying treatments"

年份
Year
(Y)
处理
Treatment
(T)
鲜食期
Fresh stage
成熟期
Maturity
籽粒 Grain
(μg kg-1)
籽粒 Grain
(μg kg-1)
苞叶 Bract
(μg kg-1)
穗轴 Cob
(μg kg-1)
茎秆 Stem
(μg kg-1)
叶片 Leaf
(μg kg-1)
2020 CK 67 c 73 c 88 b 56 b 118 b 172 c
Se1 89 b 99 b 93 ab 65 ab 126 ab 306 b
Se2 110 a 99 b 96 a 66 ab 135 ab 324 b
Se2-2 114 a 119 a 99 a 73 a 147 a 377 a
2021 CK 61 d 52 c 81 b 53 b 128 a 221 c
Se1 82 c 95 b 102 a 66 ab 145 a 319 ab
Se2 138 b 103 b 105 a 64 ab 149 a 370 ab
Se2-2 181 a 156 a 117 a 75 a 151 a 399 a
年份Y * NS NS ** NS NS
处理T ** ** ** ** * **
Y×T ** ** NS NS NS NS

Fig. 3

Se accumulation in grain (A) and aerial part (B) of black waxy corn affected by different Se spraying treatment at fresh and maturity stages, respectively Different lowercase letters in the same year indicate significant difference among four treatments at the 0.05 probability level. Treatments are the same as those given in Fig. 2."

Table 2

Grain Se biofortification index, grain Se recovery, Se use efficiency, and accumulative Se use efficiency of black waxy corn affected by different Se spraying treatments"

年份
Year
(Y)
处理
Treatment
(T)
籽粒硒强化指数
Grain Se biofortification index
[(μg kg-1) (g hm-2)-1]
籽粒硒回收率
Grain Se recovery
(%)
硒肥利用率
Se use efficiency
(%)
硒肥累计利用率
Accumulative Se use efficiency
(%)
2020 Se1 3.75 a 1.86 a 9.02 a
Se2 3.55 a 0.96 b 5.39 b
Se2-2 3.95 a 1.72 a 7.81 ab
2021 Se1 3.47 c 2.73 a 5.45 a 7.44 a
Se2 6.39 b 1.53 a 3.42 a 4.66 a
Se2-2 9.96 a 3.15 a 5.65 a 6.70 a
年份Y * NS *
处理T ** NS **
Y×T ** NS NS

Table 3

Grain anthocyanins and Fe, Mn, Cu, and Zn concentrations of black waxy corn affected by different Se spraying treatments"

年份
Year
(Y)
处理
Treatment
(T)
花青素
Anthocyanin
(mg kg-1)

Fe
(mg kg-1)

Mn
(mg kg-1)

Cu
(mg kg-1)

Zn
(mg kg-1)
2020 CK 117.6 a 15.76 b 9.50 c 1.52 a 15.06 c
Se1 135.3 a 15.85 b 10.24 bc 1.63 a 16.61 b
Se2 141.8 a 18.34 a 11.72 b 1.67 a 17.12 ab
Se2-2 144.6 a 19.48 a 13.80 a 1.70 a 18.10 a
2021 CK 152.8 b 22.34 b 14.65 b 3.31 a 19.88 c
Se1 174.6 b 26.77 ab 14.87 b 3.33 a 23.20 bc
Se2 196.7 b 35.56 a 16.94 ab 3.48 a 24.52 ab
Se2-2 273.0 a 36.25 a 18.14 a 4.15 a 27.41 a
年份Y NS ** ** ** **
处理T NS * ** * **
Y×T NS NS NS NS NS
[1] Roman M, Jitaru P, Barbante C. Selenium biochemistry and its role for human health. Metallomics, 2014, 6: 25-54.
doi: 10.1039/c3mt00185g pmid: 24185753
[2] Graham L. Biofortification of cereals with foliar selenium and iodine could reduce hypothyroidism. Front Plant Sci, 2018, 9: 730.
doi: 10.3389/fpls.2018.00730 pmid: 29951072
[3] Dinh Q T, Cui Z W, Huang J, Tran T A T, Wang D, Yang W X, Zhou F, Wang M K, Yu D S, Liang D L. Selenium distribution in the Chinese environment and its relationship with human health: a review. Environ Int, 2018, 112: 294-309.
doi: S0160-4120(17)31741-5 pmid: 29438838
[4] Hawkesford M J, Zhao F J. Strategies for increasing the selenium content of wheat. J Cereal Sci, 2007, 46: 282-292.
doi: 10.1016/j.jcs.2007.02.006
[5] Keskinen R, Raty M, Markku Y H. Selenium fractions in selenate-fertilized field soils of Finland. Nutr Cycl Agroecosys, 2011, 91: 17-29.
doi: 10.1007/s10705-011-9435-3
[6] Shultz C D, Bailey Ryan T, Gates T K, Heesemann B E, Morway E D. Simulating selenium and nitrogen fate and transport in coupled stream-aquifer systems of irrigated regions. J Hydrol, 2018, 560: 512-529.
doi: 10.1016/j.jhydrol.2018.02.027
[7] Haug A, Graham R D, Christophersen O A, Lyons G H. How to use the world's scarce selenium resources efficiently to increase the selenium concentration in food. Microb Ecol Health Dis, 2007, 19: 209-228.
pmid: 18833333
[8] Kushwaha A, Goswami L, Lee J, Sonne C, Brown R J C, Kim K H. Selenium in soil-microbe-plant systems: Sources, distribution, toxicity, tolerance, and detoxification. Crit Rev Environ Sci Technol, 2021, 52: 2383-2420.
doi: 10.1080/10643389.2021.1883187
[9] Ros G H, van Rottredam A M D, Bussink D W, Bindraban P S. Selenium fertilization strategies for bio-fortification of food: an agro-ecosystem approach. Plant Soil, 2016, 404: 99-112.
doi: 10.1007/s11104-016-2830-4
[10] 雷红量, 丛文宇, 蔡照磊, 米亚赛尔·阿布都赛买提, 赵建云, 王笑鸽, 高国英, 王云奇, 张睿. 植物根系与叶片吸收硒的关键过程及影响因素. 植物营养与肥料学报, 2021, 27: 1456-1467.
Lei H L, Cong W Y, Cai Z L, Miyasser A, Zhao J Y, Wang X G, Gao G Y, Wang Y Q, Zhang R. Main process and factors affecting selenium absorption by plant roots and leaves. J Plant Nutr Fert, 2021, 27: 1456-1467. (in Chinese with English abstract)
[11] Yuan Z Q, Long W X, Liang T, Zhu M H, Zhu A Y, Luo X Y, Fu L, Hu Z L, Zhu R S, Wu X T. Effect of foliar spraying of organic and inorganic selenium fertilizers during different growth stages on selenium accumulation and speciation in rice. Plant Soil, 2022, 486: 87-101.
doi: 10.1007/s11104-022-05567-2
[12] Wang M K, Dinh Q T, Qi M X, Wang M, Yang W X, Zhou F, Liang D L. Radicular and foliar uptake, and xylem- and phloem- mediated transport of selenium in maize (Zea mays L.): a comparison of five Se exogenous species. Plant Soil, 2019, 446: 111-123.
doi: 10.1007/s11104-019-04346-w
[13] Kikkert J, Berkelaar E. Plant uptake and translocation of inorganic and organic forms of selenium. Arch Environ Con Tox, 2013, 65: 458-465.
doi: 10.1007/s00244-013-9926-0 pmid: 23793939
[14] Wang Q, Yu Y, Li J X, Wan Y N, Huang Q Q, Guo Y B, Li H F. Effects of different forms of selenium fertilizers on Se accumulation, distribution, and residual effect in winter wheat-summer maize rotation system. J Agric Food Chem, 2017, 65: 1116-1123.
doi: 10.1021/acs.jafc.6b05149
[15] 孟俊文, 马海林, 王笑, 卢保红. 山西省甜糯等特用玉米研究进展及发展前景. 山西农业科学, 2020, 48: 110-113.
Meng J W, Ma H L, Wang X, Lu B H. Research progress and development prospect of sweet and waxy maize in Shanxi province. J Shanxi Agric Sci, 2020, 48: 110-113. (in Chinese with English abstract)
[16] Liu D D, Li H, Wang Y Z, Ying Z Z, Bian Z W, Zhu W L, Liu W, Yang L F, Jiang D H. How exogenous selenium affects anthocyanin accumulation and biosynthesis-related gene expression in purple lettuce. Polish J Environ Stud, 2017, 26: 717-722.
doi: 10.15244/pjoes/66707
[17] 胡莹, 黄益宗, 黄艳超, 刘云霞, 梁建宏. 硒对水稻吸收积累和转运锰、铁、磷和硒的影响. 环境科学, 2013, 34: 4119-4125.
Hu Y, Huang Y Z, Huang Y C, Liu Y X, Liang J H. Effect of selenium on the uptake and translocation of manganese, iron, phosphorus and selenium in rice (Oryza sativa L.). Environ Sci, 2013, 34: 4119-4125. (in Chinese with English abstract)
[18] Wang J W, Wang Z H, Mao H, Zhao H B, Huang D L. Increasing Se concentration in maize grain with soil- or foliar-applied selenite on the Loess Plateau in China. Field Crops Res, 2013, 150: 83-90.
doi: 10.1016/j.fcr.2013.06.010
[19] Li Z, Liang D L, Peng Q, Cui Z W, Huang J, Lin Z Q. Interaction between selenium and soil organic matter and its impact on soil selenium bioavailability: a review. Geoderma, 2017, 295: 69-79.
doi: 10.1016/j.geoderma.2017.02.019
[20] 中华人民共和国国家卫生和计划生育委员会, 食品安全国家标准: 食品中多元素的测定: GB 5009.268-2016. 北京, 2016.
National Health and Family Planning Commission of the People's Republic of China. National standard for food safety: determination of multiple in food:GB 5009.268-2016. Beijing, 2016. (in Chinese)
[21] 褚宏欣, 牟文燕, 党海燕, 王涛, 孙蕊卿, 侯赛宾, 黄婷苗, 黄倩楠, 石美, 王朝辉. 我国主要麦区小麦籽粒微量元素含量及营养评价. 作物学报, 2022, 48: 2853-2865.
doi: 10.3724/SP.J.1006.2022.11099
Chu H X, Mou W Y, Dang H Y, Wang T, Sun R Q, Hou S B, Huang T M, Huang Q N, Shi M, Wang Z H. Evaluation on concentration and nutrition of micro-elements in wheat grains in major wheat production regions of China. Acta Agron Sin, 2022, 48: 2853-2865. (in Chinese with English abstract)
[22] Bloem E, Haneklaus S, Haensch R, Schnug E. EDTA application on agricultural soils affects microelement uptake of plants. Sci Total Environ, 2017, 577: 166-173.
doi: 10.1016/j.scitotenv.2016.10.153
[23] 李洁雅, 李红艳, 叶广继, 苏旺, 孙海宏, 王舰. 马铃薯储藏期花青素变化及合成相关基因表达分析. 作物学报, 2022, 48: 1669-1682.
doi: 10.3724/SP.J.1006.2022.14111
Li J Y, Li H Y, Ye G J, Su W, Sun H H, Wang J. Changes of anthocyanins and expression analysis of synthesis-related genes in potato during storage period. Acta Agron Sin, 2022, 48: 1669-1682. (in Chinese with English abstract)
[24] 鲍士旦, 土壤农化分析(第3版). 北京: 中国农业出版社, 2000.
Bao S D. Soil and Agricultural Chemistry Analysis, 3rd. Beijing: China Agriculture Press, 2000. (in Chinese)
[25] Martens D A, Suarez D L. Selenium speciation of soil/sediment determined with sequential extractions and hydride generation atomic absorption spectrophotometry. Environ Sci Technol, 1997, 31: 133-139.
doi: 10.1021/es960214+
[26] 刘慧, 杨月娥, 王朝辉, 李富翠, 李可懿, 杨宁, 王森, 王慧, 何刚, 戴健. 中国不同麦区小麦籽粒硒的含量及调控. 中国农业科学, 2016, 49: 1715-1728.
doi: 10.3864/j.issn.0578-1752.2016.09.008
Liu H, Yang Y E, Wang Z H, Li F C, Li K Y, Yang N, Wang S, Wang H, He G, Dai J. Selenium content of wheat grain and its regulation in different wheat production regions of China. Sci Agric Sin, 2016, 49: 1715-1728. (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2016.09.008
[27] 黄婷苗, 于荣, 王朝辉, 黄冬琳, 王森, 靳静静. 不同硒形态和施硒方式对小麦硒吸收利用的影响及残效. 作物学报, 2022, 48: 1516-1525.
doi: 10.3724/SP.J.1006.2022.11038
Huang T M, Yu R, Wang Z H, Huang D L, Wang S, Jin J J. Effects of different forms and application methods of selenium fertilizers on wheat selenium uptake and utilization and its residual availability. Acta Agron Sin, 2022, 48: 1516-1525. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2022.11038
[28] Schiavon M, Nardi S, Dalla Vecchia F, Ertani A. Selenium biofortification in the 21st century: status and challenges for healthy human nutrition. Plant Soil, 2020, 453: 245-270.
doi: 10.1007/s11104-020-04635-9
[29] Jiang Y, Zeng Z H, Bu Y, Ren C Z, Li J Z, Han J J, Tao C, Zhang K, Wang X X, Lu G X, Li Y J, Hu Y G. Effects of selenium fertilizer on grain yield, Se uptake and distribution in common buckwheat (Fagopyrum esculentum Moench). Plant Soil Environ, 2015, 61: 371-377.
doi: 10.17221/284/2015-PSE
[30] 蒋曦龙, 乔月彤, 李晓靖, 王澜, 薛燕慧, 夏海勇. 叶面过量施硒对玉米产量、硒和矿质营养元素含量的影响. 核农学报, 2021, 35: 2841-2849.
doi: 10.11869/j.issn.100-8551.2021.12.2841
Jiang X L, Qiao Y T, Li X J, Wang L, Xue Y H, Xia H Y. Effects of foliar spraying of excessive selenium on yields and contents of selenium and mineral elements of maize. J Nucl Agric Sci, 2021, 35: 2841-2849. (in Chinese with English abstract)
doi: 10.11869/j.issn.100-8551.2021.12.2841
[31] Prom-u-thai C, Rashid A, Ram H, Zou C Q, Guilherme L R G, Corguinha A P B, Guo S W, Kaur C, Naeem A, Yamuangmorn S, Ashraf M Y, Sohu V S, Zhang Y Q, Martins F A D, Jumrus S, Tutus Y, Yazici M A, Cakmak I. Simultaneous biofortification of rice with zinc, iodine, iron and selenium through foliar treatment of a micronutrient cocktail in five countries. Front Plant Sci, 2020, 11: 589835.
doi: 10.3389/fpls.2020.589835
[32] Zou C Q, Du Y F, Rashid A, Ram H, Savasli E, Pieterse P J, Ortiz-Monasterio I, Yazici A, Kaur C, Mahmood K, Singh S, Le Roux M R, Kuang W, Onder O, Kalayci M, Cakmak I. Simultaneous biofortification of wheat with zinc, iodine, selenium, and iron through foliar treatment of a micronutrient cocktail in six countries. J Agric Food Chem, 2019, 67: 8096-8106.
doi: 10.1021/acs.jafc.9b01829
[33] 刘浩, 庞婕, 李欢欢, 强小嫚, 张莹莹, 宋嘉雯. 叶面喷施硒与土壤水分耦合对番茄产量和品质的影响. 中国农业科学, 2022, 55: 4433-4444.
doi: 10.3864/j.issn.0578-1752.2022.22.009
Liu H, Pang J, Li H H, Qiang X M, Zhang Y Y, Song J W. Effects of Foliar-spraying exogenous selenium coupled with soil moisture on the yield and quality of tomato. Sci Agric Sin, 2022, 55: 4433-4444. (in Chinese with English abstract)
[34] Lyons G. Selenium in cereals: improving the efficiency of agronomic biofortification in the UK. Plant Soil, 2010, 332: 1-4.
doi: 10.1007/s11104-010-0282-9
[35] Newman R, Waterland N, Moon Y, Tou J C. Selenium biofortification of agricultural crops and effects on plant nutrients and bioactive compounds important for human health and disease prevention—a review. Plant Food Hum Nutr, 2019, 74: 449-460.
doi: 10.1007/s11130-019-00769-z
[36] Galinha C, Sánchez-Martínez M, Pacheco, A M G, Freitas, M D C, Coutinho J, Maçãs B, Almeida A S, Pérez-Corona M T, Madrid Y, Wolterbeek H T. Characterization of selenium-enriched wheat by agronomic biofortification. J Food Sci Technol, 2015, 52: 4236-4245.
doi: 10.1007/s13197-014-1503-7 pmid: 26139888
[37] Dinh Q T, Wang M K, Tran T A T, Zhou F, Wang D, Zhai H, Peng Q, Xue M Y, Du Z K, Bañuelos G S, Lin Z Q, Liang D L. Bioavailability of selenium in soil-plant system and a regulatory approach. Crit Rev Environ Sci Technol, 2018, 49: 443-517.
doi: 10.1080/10643389.2018.1550987
[38] 胡华锋, 刘太宇, 郭孝, 介晓磊, 胡承孝, 李明, 鲁剑巍, 赵京. 基施硒肥对不同生育期紫花苜蓿吸收、转化及利用硒的影响. 草地学报, 2015, 23: 101-106.
doi: 10.11733/j.issn.1007-0435.2015.01.016
Hu H F, Liu T Y, Guo X, Jie X L, Hu X C, Li M, Lu J W, Zhao J. Effects of Se as basal fertilizer on the selenium absorption, conversion and utilization of Alfalfa at different growth stages. Acta Agrest Sin, 2015, 23: 101-106. (in Chinese with English abstract)
[39] Pu Z E, Wei G H, Liu Z H, Chen L, Guo H, Li Y, Li Y, D S F, Wang J R, Li W, Jiang Q T, Wei Y M, Zheng Y L. Selenium and anthocyanins share the same transcription factors R2R3MYB and bHLH in wheat. Food Chem, 2021, 356: 129699.
doi: 10.1016/j.foodchem.2021.129699
[40] Zhang F J, Li X Y, Wu Q Q, Lu P, Kang Q F, Zhao M Y, Wang A P, Dong Q, Sun M, Yang Z P, Gao Z Q. Selenium application enhances the accumulation of flavones and anthocyanins in bread wheat (Triticum aestivum L.) grains. J Agric Food Chem, 2022, 70: 13431-13444.
doi: 10.1021/acs.jafc.2c04868
[41] Zhao Q Y, Xu S J, Zhang W S, Zhang Z, Yao Z, Chen X P, Zou C Q. Identifying key drivers for geospatial variation of grain micronutrient concentrations in major maize production regions of China. Environ Pollut, 2020, 266: 115114.
doi: 10.1016/j.envpol.2020.115114
[42] Bouis H E, Hotz C, Mcclafferty B, Meenakshi J V, Pfeiffer W H. Biofortification: a new tool to reduce micronutrient malnutrition. Food Nutr Bull, 2014, 32: 202-215.
[43] Xia Q, Yang W P, Shui Y, Liu X L, Chen J, Khan S, Wang J M, Gao Z Q. Methods of selenium application differentially modulate plant growth, selenium accumulation and speciation, protein, anthocyanins and concentrations of mineral elements in purple-grained wheat. Front Plant Sci, 2020, 11: 1114.
doi: 10.3389/fpls.2020.01114 pmid: 32849686
[44] 刘庆, 田侠, 史衍玺. 施硒对小麦籽粒硒富集、转化及蛋白质与矿质元素含量的影响. 作物学报, 2016, 42: 778-783.
doi: 10.3724/SP.J.1006.2016.00778
Liu Q, Tian X, Shi Y X. Effects of Se application on Se accumulation and transformation and content of gross protein and mineral elements in wheat grain. Acta Agron Sin, 2016, 42: 778-783. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2016.00778
[45] Wang L, Gao F, Zhang L G, Zhao L, Deng Y, Guo H X, Qin L X, Wang C Y. Effects of basal selenium fertilizer application on agronomic traits, yield, quality, and Se content of dryland maize. Plants, 2022, 11: 3099.
doi: 10.3390/plants11223099
[46] Zhao Q Y, Cao W Q, Chen X P, Stomph T J, Zou C Q. Global analysis of nitrogen fertilization effects on grain zinc and iron of major cereal crops. Glob Food Secur, 2022, 33: 100631.
doi: 10.1016/j.gfs.2022.100631
[1] LI Jie-Ya, LI Hong-Yan, YE Guang-Ji, SU Wang, SUN Hai-Hong, WANG Jian. Changes of anthocyanins and expression analysis of synthesis-related genes in potato during storage period [J]. Acta Agronomica Sinica, 2022, 48(7): 1669-1682.
[2] HUANG Ting-Miao, YU Rong, WANG Zhao-Hui, HUANG Dong-Lin, WANG Sen, JIN Jing-Jing. Effects of different forms and application methods of selenium fertilizers on wheat selenium uptake and utilization and its residual availability [J]. Acta Agronomica Sinica, 2022, 48(6): 1516-1526.
[3] ZHOU Tian-Shan,WANG Xin-Chao,YU You-Ben,XIAO Yao,QIAN Wen-Jun,XIAO Bin,YANG Ya-Jun. Correlation Analysis between Total Catechins (or Anthocyanins) and Expression Levels of Genes Involved in Flavonoids Biosynthesis in Tea Plant with Purple Leaf [J]. Acta Agron Sin, 2016, 42(04): 525-531 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .