Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (10): 2854-2860.doi: 10.3724/SP.J.1006.2023.23064

• RESEARCH NOTES • Previous Articles    

Yield simulation from APSIM-Maize by using the leave-one-out cross validation approach

YANG Xue-Ning1,2(), ZHANG Yong-Qiang1(), ZHANG Xuan-Ze1, MA Ning1, ZHANG Jun-Mei3   

  1. 1Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
    2Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100101, China
    3Dalat Banner Agricultural and Animal Husbandry Technology Extension Center, Dalat 014300, Inner Mongolia, China
  • Received:2023-09-27 Accepted:2023-04-18 Online:2023-10-12 Published:2023-04-27
  • Contact: E-mail: zhangyq@igsnrr.ac.cn
  • Supported by:
    “Science for a Better Development of Inner Mongolia” Program (Integrated Demonstration of Comprehensive Management and Effective Utilization of Water Resources in the Ten Kongduis)(KJXM-EEDS-2020005);Bureau of Science and Technology of the Inner Mongolia Autonomous Region, and the Ordos Science & Technology Plan (Calculation and Evaluation of Carbon Storage and Carbon Sink in Terrestrial Ecosystem in Ordos)(2022EEDSKJZDZX016)

Abstract:

The Agricultural Production Systems Simulator (APSIM) has been extensively used in crop yield estimation and agricultural management. Leave-one-out cross validation is a key way to improve the model simulation capability with the limited filed data. In this study, we evaluate the parameters sensitivity to maize yield and evaluate the reliability of parameters with the leave-one-out cross validation based on the sensitivity rank of parameters. These results showed that: (1) The sensitive parameters for maize yield were ranked in descending order as: transpiration efficiency coefficient, radiation use efficiency, thermal time from flower to maturity, thermal time from emergence to end of juvenile phase, thermal time from flowering to start grain-filling, potential grain growth rate, photoperiod slope, and potential grains per head. (2) The coefficients of variation of parameters fluctuated from 1.06% to 23.32%, which indicates that the variation of parameter was small and the reliability of parameters was high. (3) The adjusted APSIM-Maize model performed well in simulating spring maize yield (R2 = 0.72; RMSE = 401.5 kg hm-2), which indicates that the model had great adaptability in estimating spring maize yield in the Ten Kongduis. Our study provides an insight to improve the reliability of parameters with limited field data.

Key words: APSIM-Maize model, cross validation, spring maize

Table 1

Spring maize yield and field management data from 2012 to 2019"

年份Year 产量Yield (kg hm-2) 种植密度Plant density (plant m-3)
2012 11,801.41 6.30-6.75
2013 12,141.89 6.30-6.75
2014 11,967.90 6.75-7.50
2015 11,237.44 6.75-7.50
2016 11,606.40 6.75-7.50
2017 11,675.40 7.50-8.25
2018 11,859.90 7.50-8.25
2019 12,429.90 7.50-8.25

Fig. 1

Sketch map of the leave-one-out cross validation RMSEi and R2i represent root mean square error and the determination coefficient at the ith cross validation (i = 1, 2, …, 8), respectively. RMSE_Calj and RMSE_Valj represent the jth year's root mean square of calibration and validation at cross validation (j = 2012, 2013, …, 2019), respectively."

Fig. 2

Ranking parameters based on the total sensitivity index in descending order transp_eff_cf: transpiration efficiency coefficient; rue: radiation use efficiency; tt_flower_to_maturity: thermal time from flower to maturity; tt_emerg_to_endjuv: thermal time from emergence to end of juvenile phase; tt_flower_to_start_grain: thermal time from flowering to start grain-filling; grain_gth_rate: potential grain growth rate; photoperiod_slope: photoperiod slope; head_grain_no_ max: potential grains per head."

Fig. 3

Cross validation and calibration of APSIM-Maize model (a): the comparison of the root mean squared error (RMSE) between cross validation and calibration, among them, RMSE_Cal is the RMSE of calibration at cross validation, RMSE_Val is the RMSE of validation at cross validation, and RMSE is the RMSE at calibration. (b): the comparison of simulated and observed yield at cross validation (b1-b8) and calibration (b9)."

Table 2

Cross validation and calibration of parameter sets"

参数名称
Parameter name
交叉验证 Cross validation CV
(%)
率定 Calibration
1 2 3 4 5 6 7 8
transp_eff_cf 0.012 0.013 0.012 0.013 0.012 0.012 0.012 0.012 3.53 0.012
rue 1.84 1.73 1.81 1.81 1.82 1.81 1.8 1.9 2.42 1.82
tt_flower_to_maturity 740 729 733 737 723 740 726 748 1.06 723
tt_emerg_to_endjuv 180 174 187 170 200 192 186 177 5.07 180
tt_flower_to_start_grain 246 142 222 238 225 244 225 268 15.39 225
grain_gth_rate 16.81 9.06 11.37 15.56 11.39 15.55 17.02 19.95 23.32 11.41
photoperiod_slope 14 12.07 14.5 21.67 13.48 13.96 16.06 14.06 18.24 20.08

Fig. 4

Relationship between the coefficient of variation and sensitivity ranking of parameters"

[1] Hao S, Ryu D, Western A, Perry E, Bogena H, Franssen H J H. Performance of a wheat yield prediction model and factors influencing the performance: a review and meta-analysis. Agric Syst, 2021, 194: 103278.
doi: 10.1016/j.agsy.2021.103278
[2] He D, Wang E, Wang J, Robertson M J. Data requirement for effective calibration of process-based crop models. Agric For Meteorol, 2017, 234/235: 136-148.
doi: 10.1016/j.agrformet.2016.12.015
[3] Makowski D, Wallach D, Tremblay M. Using a Bayesian approach to parameter estimation; comparison of the GLUE and MCMC methods. Agron Sustain Dev, 2002, 22: 191-203.
[4] Sheng M, Liu J, Zhu A X, Rossiter D G, Liu H, Liu Z, Zhu L. Comparison of GLUE and DREAM for the estimation of cultivar parameters in the APSIM-maize model. Agric For Meteorol, 2019, 278: 107659.
doi: 10.1016/j.agrformet.2019.107659
[5] Ramirez Villegas J, Koehler A K, Challinor A J. Assessing uncertainty and complexity in regional-scale crop model simulations. Eur J Agron, 2017, 88: 84-95.
doi: 10.1016/j.eja.2015.11.021
[6] Her Y, Chaubey I. Impact of the numbers of observations and calibration parameters on equifinality, model performance, and output and parameter uncertainty. Hydrol Proc, 2015, 29: 4220-4237.
doi: 10.1002/hyp.10487
[7] 李波, 孙翔龙, 姚名泽, 鲍慧, 王俊皓. 温室秸秆不同还田量条件下DSSAT-CROPGRO-Tomato模型的调参与验证. 生态学杂志, 2021, 40: 908-918.
Li B, Sun X L, Yao M Z, Bao H, Wang J H. Parameter estimation and verification of the DSSAT-CROPGRO-Tomato model under the condition of different amounts of staw returned to the field in the greenhouse. Chin J Ecol, 2021, 40: 908-918. (in Chinese with English abstract)
[8] Chipanshi A, Zhang Y, Kouadio L, Newlands N, Davidson A, Hill H, Warren R, Qian B, Daneshfar B, Bedard F, Reichert G. Evaluation of the Integrated Canadian Crop Yield Forecaster (ICCYF) model for in-season prediction of crop yield across the Canadian agricultural landscape. Agric For Meteorol, 2015, 206: 137-150.
doi: 10.1016/j.agrformet.2015.03.007
[9] Mkhabela M S, Bullock P, Raj S, Wang S, Yang Y. Crop yield forecasting on the Canadian prairies using MODIS NDVI data. Agric For Meteorol, 2011, 151: 385-393.
doi: 10.1016/j.agrformet.2010.11.012
[10] Qian B, De Jong R, Warren R, Chipanshi A, Hill H. Statistical spring wheat yield forecasting for the Canadian prairie provinces. Agric For Meteorol, 2009, 149: 1022-1031.
doi: 10.1016/j.agrformet.2008.12.006
[11] Nurulhuda K, Muharam F M, Shahar N a N, Hashim M F C, Ismail M R, Keesman K J, Zulkafli Z. ORYZA (v3) rice crop growth modeling for MR269 under nitrogen treatments: assessment of cross-validation on parameter variability. Comput Electron Agric, 2022, 195: 106809.
doi: 10.1016/j.compag.2022.106809
[12] 赵子龙, 李波, 丰雪, 姚名泽, 解影, 邢经纬, 李长信. 温室环境不同灌水水平条件下DSSAT-CROPGRO-Tomato模型的调参与验证. 应用生态学报, 2018, 29: 2017-2027.
doi: 10.13287/j.1001-9332.201806.012
Zhao Z L, Li B, Feng X, Yao M Z, Xie Y, Xing J W, Li C X. Parameter estimation and verification of DSSAT-CROPGRO- Tomato model under different irrigation levels in greenhouse. J Appl Ecol, 2018, 29: 2017-2027. (in Chinese with English abstract)
[13] 陈召霞, 徐新刚, 徐良骥, 杨贵军, 邢会敏, 贺鹏. 基于新型植被指数的冬小麦覆盖度遥感估算. 麦类作物学报, 2016, 36: 939-944.
Chen Z X, Xu X G, Xu L J, Yang G J, Xing H M, He P. Estimating vegetation coverage of winter wheat based on new vegetation index. J Triticeae Crops, 2016, 36: 939-944. (in Chinese with English abstract)
[14] Keating B A, Carberry P S, Hammer G L, Probert M E, Smith C J. An overview of APSIM, a model designed for farming systems simulation. Eur J Agron, 2003, 18: 267-288.
doi: 10.1016/S1161-0301(02)00108-9
[15] He L, Zha G, Jin N, Zhuang W, Yu Q. Global sensitivity analysis of APSIM-Wheat parameters in different climate zones and yield levels. Trans CSAE, 2015, 31: 148-157.
[16] Saxton K E, Rawls W J, Romberger J S, Papendick R I. Estimating generalized soil-water characteristics from texture. Soil Sci Soc Am J, 1986, 50: 1031-1036.
doi: 10.2136/sssaj1986.03615995005000040039x
[17] 游松财, 邸苏闯, 袁晔. 黄土高原地区土壤田间持水量的计算. 自然资源学报, 2009, 24: 545-552.
doi: 10.11849/zrzyxb.2009.03.020
You S C, Di S C, Yuan Y. Calculation of filed capacity in the Loess Plateau region. J Nat Resour, 2009, 24: 545-552. (in Chinese with English abstract)
[18] Saltelli A, Tarantola S, Chan K P S. A quantitative model- independent method for global sensitivity analysis of model output. Technometrics, 1999, 41: 39-56.
doi: 10.1080/00401706.1999.10485594
[19] 宋明丹, 冯浩, 李正鹏, 高建恩. 基于Morris和EFAST的CERES-Wheat模型敏感性分析. 农业机械学报, 2014, 45(10): 124-131.
Song M D, Feng H, Li Z P, Gao J E. Global sensitivity analyses of DSSAT-CERES-Wheat model using Morris and EFAST methods. Trans CSAM, 2014, 45(10): 124-131. (in Chinese with English abstract)
[20] Li J, Wang L, Luo Z, Wang E, Wang G, Zhou H, Li H, Xu S. Reducing N2O emissions while maintaining yield in a wheat-maize rotation system modelled by APSIM. Agric Syst, 2021, 194: 103277.
doi: 10.1016/j.agsy.2021.103277
[21] Ren X, Sun D, Wang Q. Modeling the effects of plant density on maize productivity and water balance in the Loess Plateau of China. Agric Water Manag, 2016, 171: 40-48.
doi: 10.1016/j.agwat.2016.03.014
[22] Wang N, Wang E, Wang J, Zhang J, Zheng B, Huang Y, Tan M. Modelling maize phenology, biomass growth and yield under contrasting temperature conditions. Agric For Meteorol, 2018, 250-251: 319-329.
[23] Iman R L, Conover W J. A measure of top-down correlation. Technometrics, 1987, 29: 351-357.
[24] Confalonieri R, Bellocchi G, Tarantola S, Acutis M, Donatelli M, Genovese G. Sensitivity analysis of the rice model WARM in Europe: Exploring the effects of different locations, climates and methods of analysis on model sensitivity to crop parameters. Environ Model Software, 2010, 25: 479-488.
doi: 10.1016/j.envsoft.2009.10.005
[25] Ahmed M, Akram M N, Asim M, Aslam M, Hassan F U, Higgins S, Stöckle C O, Hoogenboom G. Calibration and validation of APSIM-Wheat and CERES-Wheat for spring wheat under rainfed conditions: Models evaluation and application. Comput Electron Agric, 2016, 123: 384-401.
doi: 10.1016/j.compag.2016.03.015
[26] Kheir A M S, Alkharabsheh H M, Seleiman M F, Al-Saif A M, Ammar K A, Attia A, Zoghdan M G, Shabana M M A, Aboelsoud H, Schillaci C. Calibration and validation of AQUACROP and APSIM models to optimize wheat yield and water saving in arid regions. Land, 2021, 10: 1375.
doi: 10.3390/land10121375
[27] Wang Y, Lyu J, Wang Y, Sun H, Hannaford J, Su Z, Barker L J, Qu Y. Drought risk assessment of spring maize based on APSIM crop model in Liaoning province, China. Internation J Disast Risk Reduct, 2020, 45: 101483.
[28] Levitan N, Gross B. Utilizing collocated crop growth model simulations to train agronomic satellite retrieval algorithms. Remote Sens, 2018, 10: 1968.
doi: 10.3390/rs10121968
[1] LUAN Yi, BAI Yan, LU Shi, LI Lei-Xin, WANG De-Qiang, GAO Ting-Ting, SHI Jie, YANG Hong-Ming, LU Ming. Multi-disease resistance evaluation of spring maize varieties for the national regional test in Northeast and North China during 2016-2020 [J]. Acta Agronomica Sinica, 2023, 49(4): 1122-1131.
[2] WU Xi, WANG Jia-Rui, HAO Miao-Yi, ZHANG Hong-Jun, ZHANG Ren-He. Effects of planting density on solar and heat resource utilization and yield of maize varieties at different growth stages [J]. Acta Agronomica Sinica, 2023, 49(4): 1065-1078.
[3] GAO Zhen, LIANG Xiao-Gui, ZHANG Li, ZHAO Xue, DU Xiong, CUI Yan-Hong, ZHOU Shun-Li. Effects of irrigating at different growth stages on kernel number of spring maize in the North China Plain [J]. Acta Agronomica Sinica, 2021, 47(7): 1324-1331.
[4] ZHENG Ying-Xia, CHEN Du, WEI Peng-Cheng, LU Ping, YANG Jin-Yue, LUO Shang-Ke, YE Kai-Mei, SONG Bi. Effects of planting density on lodging resistance and grain yield of spring maize stalks in Guizhou province [J]. Acta Agronomica Sinica, 2021, 47(4): 738-751.
[5] ZHU Ya-Li, WANG Chen-Guang, YANG Mei, ZHENG Xue-Hui, ZHAO Cheng-Feng, ZHANG Ren-He. Response of grain filling and dehydration characteristics of kernels located in different ear positions in the different maturity maize hybrids to plant density [J]. Acta Agronomica Sinica, 2021, 47(3): 507-519.
[6] LIU Peng-Zhao,SHI Zu-Jiao,NING Fang,WANG Rui,WANG Xiao-Li,LI Jun. Critical nitrogen dilution curves and nitrogen nutrition diagnosis of spring maize under different precipitation patterns in Weibei dryland [J]. Acta Agronomica Sinica, 2020, 46(8): 1225-1237.
[7] LI Rui-Jie,TANG Hui-Hui,WANG Qing-Yan,XU Yan-Li,WANG Qi,LU Lin,YAN Peng,DONG Zhi-Qiang,ZHANG Feng-Lu. Effects of 5-aminolevulinic acid and ethephon compound on carbon balance of source-sink of spring maize in Northeast China [J]. Acta Agronomica Sinica, 2020, 46(7): 1063-1075.
[8] ZHANG Yu-Qin,YANG Heng-Shan,LI Cong-Feng,ZHAO Ming,LUO Fang,ZHANG Rui-Fu. Effects of strip-till with staggered planting on yield formation and shoot-root characteristics of spring maize in irrigation area of Xiliaohe plain [J]. Acta Agronomica Sinica, 2020, 46(6): 902-913.
[9] Wei BAI,Zhan-Xiang SUN,Li-Zhen ZHANG,Jia-Ming ZHENG,Liang-Shan FENG,Qian CAI,Wu-Yan XIANG,Chen FENG,Zhe ZHANG. Effects of plough layer construction on soil three phase rate and root morphology of spring maize in northeast China [J]. Acta Agronomica Sinica, 2020, 46(5): 759-771.
[10] Fang NING,Yuan-Hong ZHANG,Peng-Fei WEN,Rui WANG,Qian WANG,Zhao-Yang DONG,Guang-Can JIA,Jun LI. Responses of maize growth and yield to nitrogen application in dryland under different precipitation conditions [J]. Acta Agronomica Sinica, 2019, 45(5): 777-791.
[11] Hui-Hui TANG,Yan-Li XU,Qing-Yan WANG,Zheng-Bo MA,Guang-Yan LI,Hui DONG,Zhi-Qiang DONG. Increasing spring maize yield by basic application of PASP chelating nitrogen fertilizer in northeast China [J]. Acta Agronomica Sinica, 2019, 45(3): 431-442.
[12] Hai-Chao FAN,Wan-Rong GU,De-Guang YANG,Ju-Ping YU,Lin PIAO,Qian ZHANG,Li-Guo ZHANG,Xiu-Hong YANG,Shi WEI. Effect of Chemical Regulators on Physical and Chemical Properties and Lodging Resistance of Spring Maize Stem in Northeast China [J]. Acta Agronomica Sinica, 2018, 44(6): 909-919.
[13] BAI Wei, ZHANG Li-Zhen, PANG Huan-Cheng, SUN Zhan-Xiang, NIU Shi-Wei, CAI Qian,AN Jing-Wen. Effects of Straw Returning Combined with Nitrogen Fertilizer on Photosynthetic Performance and Yield of Spring Maize in Northeast China [J]. Acta Agron Sin, 2017, 43(12): 1845-1855.
[14] LI Guang-Yan,WANG Qing-Yan,XU Yan-Li,LU Lin,Jiao Liu,DONG Xue-Rui,DONG Zhi-Qiang. Effect of Plant Growth Regulators on Key Enzymes in Sucrose Metabolism of Ear Leaf and Grain at Filling Stage of Spring Maize [J]. Acta Agron Sin, 2016, 42(08): 1215-1223.
[15] LU Hai-Dong,XUE Ji-Quan,HAO Yin-Chuan,ZHANG Ren-He,GAO Jie. Effects of Sowing Time on Spring Maize (Zea mays L.) Growth and Water Use Efficiency in Rainfed Dryland [J]. Acta Agron Sin, 2015, 41(12): 1906-1914.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .