Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2024, Vol. 50 ›› Issue (6): 1584-1596.doi: 10.3724/SP.J.1006.2024.34123

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Effects of planting density with nitrogen rate on regulation of nitrogen utilization in summer direct seeded cotton

XU Ze(), WU Xin-Ling, LIU Zhen-Yu, LI Han-Jia, LENG Xin-Hua, WU Tian-Fan, CHEN Yuan, ZHANG Xiang, CHEN De-Hua*()   

  1. Jiangsu Key Laboratory of Crop Genetics and Physiology / Co-innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, Jiangsu, China
  • Received:2023-07-14 Accepted:2024-01-12 Online:2024-06-12 Published:2024-02-20
  • Contact: * E-mail: cdh@yzu.edu.cn
  • Supported by:
    National Key Research and Development Program of China(2018YFD0100400);National Key Research and Development Program of China(2017YFD0201300)

Abstract:

In order to clarify the effects of planting density with nitrogen rate on regulation of nitrogen utilization in summer direct seeded cotton, the CCRI 425 were used as the experimental materials in the Key Laboratory of Genetics and Physiology of Yangzhou University in 2019 and 2020. Density were used as the main treatments in 2019 and three levels of density of 60,000 plants hm-2, 90,000 plants hm-2, and 120,000 plants hm-2 were set. Nitrogen application rate as the secondary treatments and four levels of convention nitrogen application rate (0 kg hm-2, 90 kg hm-2, 150 kg hm-2, and 210 kg hm-2) were conducted. Production application (90,000 plants hm-2, 180 kg hm-2 nitrogen application rate) was used as the CK. Under the density of 120,000 plants hm-2, there were four levels of convention nitrogen application rate (0 kg hm-2, 90 kg hm-2, 150 kg hm-2, and 210 kg hm-2). The results showed that cotton seed yield was increased, reaching 4147.8-5119.2 kg hm-2, at the density of 12×104 plants hm-2 with nitrogen application of 150 kg hm-2. The dry matter of reproductive organs was 2605.6-2863.6 kg hm-2 and accounted for over 50% of the total dry matter weight. Nitrogen accumulation in reproductive organs was significantly increased, reaching 45.97-60.70 kg hm-2. Nitrogen use efficiency was significantly increased, nitrogen recovery efficiency (NRE) was 42.58%-44.17%, agronomic nitrogen use efficiency (aNUE) was 7.16-21.34 kg (kg N)-1, physiological nitrogen use efficiency (pNUE) was 19.16-24.03 kg (kg N)-1, partial productivity of nitrogen fertilizer (NPP) was 21.12-34.13 kg (kg N) -1. Regression analysis further showed that nitrogen recovery efficiency, nitrogen agronomic efficiency, nitrogen physiological efficiency, and physiological efficiency were linearly positively correlated with yield. The percentage of open bolls reached 43.59%-60.76% before spraying defoliation and ripening agent and the normal flocculation rate could be achieved after spraying defoliation and ripening agent. Therefore, high-density with medium nitrogen rate is beneficial to nitrogen absorption and utilization, which provides the technical support for high yield, high efficient production, and nitrogen reduction in cotton.

Key words: summer direct seeded cotton, planting density, nitrogen, nitrogen utilization rate

Table 1

Effect of density and nitrogen on the yield and composition in summer seeded cotton in 2019"

处理
Treatment
密度
Density
(plant hm-2)
单株成铃数
Bolls per plant
单铃重
Single boll weight (g)
籽棉产量
Seed cotton yield (kg hm-2)
皮棉产量
Lint yield
(kg hm-2)
衣分
Lint percentage
(%)
P1N0 56,415.8 a 7.4 cd 4.8 c 2760.6 ef 911.0 e 33.17 b
P1N1 58,013.7 a 8.9 abc 5.4 ab 2983.6 e 963.4 d 33.41 b
P1N2 56,036.9 a 9.5 ab 5.5 ab 3135.0 de 1061.9 cd 33.87 b
P1N3 57,748.0 a 10.0 a 5.7 a 3420.0 d 1078.3 cd 31.53 b
P2N0 84,812.1 a 6.3 d 4.7 c 2841.1 e 909.2 e 32.47 b
P2N1 85,022.4 a 7.5 cd 5.3 ab 3577.5 c 1308.7 b 36.58 a
P2N2 86,184.3 a 8.2 bc 5.7 a 4206.6 b 1360.7 b 32.35 a
P2N3 85,439.6 a 7.5 cd 5.4 ab 3645.0 c 1288.9 b 35.36 ab
P3N0 118,675.7 a 6.2 de 4.7 c 2818.0 e 1134.4 c 33.25 b
P3N1 116,442.3 a 7.9 cd 5.2 b 4929.6 a 1840.5 a 37.34 a
P3N2 116,574.7 a 7.9 cd 5.4 ab 5119.2 a 1972.8 a 38.54 a
P3N3 117,684.5 a 6.4 d 5.3 ab 4070.4 b 1470.4 b 36.12 a
FF-value
密度处理Density (P) NS 50.94** NS 121.96** 147.43** NS
氮处理Nitrogen (N) NS NS 4.21* 6.81* 6.07* NS
密度处理×氮处理P×N NS NS NS 7.23** 6.77** NS

Table 2

Effect of density and nitrogen on the yield and composition in summer seeded cotton in 2020"

处理
Treatment
密度
Density
(plants hm-2)
单株成铃数
Bolls per plant
单铃重
Single boll weight (g)
籽棉产量
Seed cotton yield (kg hm-2)
皮棉产量
Lint yield
(kg hm-2)
衣分
Lint percentage
(%)
CK 85,366.4 a 9.1 a 4.5 ab 3685.5 b 1405.9 b 38.15 a
P3N0 117,457.9 a 5.6 d 4.1 b 2755.2 c 1019.7 c 37.01 b
P3N1 115,698.3 a 6.9 bc 4.6 ab 3808.8 ab 1558.4 ab 40.92 a
P3N2 116,637.4 a 7.1 b 4.9 a 4174.8 a 1718.0 a 41.15 a
P3N3 118,547.8 a 6.5 c 4.5 ab 3510.0 b 1325.9 bc 37.77 ab

Fig. 1

Changes in precipitation during cotton growth period (from June to October) in 2019-2020"

Table 3

Effect of density and nitrogen on rotten bolls and shedding rate in summer seeded cotton in 2019"

处理
Treatment
烂铃个数
Rotten bolls
烂铃率
Rate of rotten bolls (%)
脱落率
Shedding rate (%)
P1N0 0.5 a 2.6 a 63.2 ab
P1N1 0.4 a 1.9 a 57.1 b
P1N2 0.4 a 2.5 a 61.3 ab
P1N3 0.3 ab 2.4 a 58.8 b
P2N0 0.3 ab 1.9 a 63.6 ab
P2N1 0.4 a 1.8 a 68.2 a
P2N2 0.3 ab 1.5 a 65.6 ab
P2N3 0.3 ab 1.5 a 65.5 ab
P3N0 0.3 ab 1.4 a 71.4 a
P3N1 0.2 ab 1.1 b 72.2 a
P3N2 0.2 ab 1.1 b 70.1 a
P3N3 0.3 ab 1.4 a 69.5 a
FF-value
密度处理Density (P) NS NS 13.56*
氮处理Nitrogen (N) NS NS NS
密度处理×氮处理P×N NS NS NS

Table 4

Effect of density and nitrogen on rotten bolls and shedding rate in summer seeded cotton in 2020"

处理
Treatment
烂铃个数
Rotten bolls
烂铃率
Rate of rotten bolls (%)
脱落率
Shedding rate (%)
CK 0.3 a 1.5 a 65.5 a
P3N0 0.2 a 1.3 a 67.4 a
P3N1 0.2 a 1.8 a 62.7 a
P3N2 0.2 a 1.7 a 69.5 a
P3N3 0.3 a 2.2 a 65.3 a

Table 5

Effect of density and nitrogen on accumulation of dry matter in reproductive organs in 2019 (kg hm-2)"

处理
Treatment
日期Date (month/day)
7/30 8/15 8/30 9/20
P1N0 17.5 cd 164.1 f 1196.8 cd 1857.9 e
P1N1 19.6 c 196.4 d 1348.6 b 2203.4 c
P1N2 20.8 c 239.0 cd 1567.0 b 2290.8 c
P1N3 25.4 bc 257.0 bcd 1609.4 ab 2668.8 b
P2N0 19.4 c 180.9 e 1205.8 c 2021.7 d
P2N1 25.8 bc 224.4 cd 1533.2 b 2269.8 c
P2N2 32.0 bc 356.0 bc 1500.4 b 2507.0 bc
P2N3 34.2 ab 271.4 bcd 1476.6 b 2824.6 a
P3N0 18.6 c 176.1 e 1208.6 c 2064.9 d
P3N1 36.2 ab 390.2 b 1744.5 ab 2848.8 a
P3N2 44.6 a 588.4 a 1955.5 a 2863.6 a
P3N3 35.4 ab 191.2 d 1156.4 c 1940.4 de
FF-value
密度处理Density (P) 20.71** 314.05** 49.90** 269.40**
氮处理Nitrogen (N) NS 17.08** 14.51** 11.14**
密度处理×氮处理P×N 3.82* 17.75** 12.83** 9.79**

Table 6

Effect of density and nitrogen on accumulation of dry matter in reproductive organs in 2020 (kg hm-2)"

处理
Treatment
日期Date (month/day)
7/30 8/15 8/30 9/20
CK 29.0 b 235.6 b 1671.7 b 2079.9 ab
P3N0 18.2 d 205.9 d 1314.0 c 1593.6 b
P3N1 31.3 b 283.0 ab 1722.6 ab 2392.9 ab
P3N2 38.1 a 331.7 a 1922.6 a 2605.6 a
P3N3 30.3 b 200.1 c 1438.8 c 1896.3 b

Fig. 2

Effect of density and nitrogen on proportion of dry matter in reproductive organs Treatments are the same as those given in Tables 1 and 2."

Table 7

Effect of density and nitrogen on amount of nitrogen accumulation in summer seeded cotton in 2019 (kg hm-2)"

处理
Treatment
营养器官Nutritive organ 生殖器官Reproductive organ
7/30 8/15 8/30 9/20 7/30 8/15 8/30 9/20
P1N0 24.76 f 58.54 c 59.82 d 65.27 bc 3.37 cd 6.80 ef 23.05 e 28.18 e
P1N1 36.97 d 57.92 c 68.54 c 69.69 b 3.69 c 10.28 e 24.87 e 34.02 de
P1N2 39.67 d 63.53 c 72.79 c 73.35 b 3.99 c 10.62 e 31.13 d 41.71 cd
P1N3 46.15 c 66.57 c 75.86 c 78.50 b 4.17 c 12.38 de 34.10 cd 42.04 cd
P2N0 23.46 f 51.3 cd 56.86 de 74.35 b 3.41 cd 7.75 ef 28.96 de 34.40 de
P2N1 55.62 b 77.28 b 89.55 b 98.10 a 5.68 b 14.15 cd 34.73 cd 44.68 c
P2N2 59.07 b 77.60 b 93.65 ab 99.86 a 6.64 ab 16.27 bc 38.59 bc 45.67 c
P2N3 60.32 b 81.11 b 96.98 ab 100.46 a 6.21 ab 15.86 c 35.85 cd 45.32 c
P3N0 27.07 e 42.56 d 65.43 cd 75.23 b 2.53 d 9.43 e 24.69 e 38.92 d
P3N1 81.64 a 91.98 a 105.82 ab 110.95 a 6.98 ab 18.32 b 44.14 ab 52.35 bc
P3N2 80.80 a 90.97 a 104.39 ab 107.32 a 8.07 a 20.42 a 45.71 a 60.70 a
P3N3 83.71 a 95.21 a 109.41 a 113.39 a 6.80 ab 16.36 bc 40.71 abc 54.80 b
FF-value
密度处理Density (P) 111.07** 168.49** 342.37** NS 594.45** 664.34** 482.56** 1248.50**
氮处理Nitrogen (N) 69.14** 38.46** 34.45** 17.43* 43.41** 374.36** 257.34** 47.17**
密度处理×氮处理P×N 21.75** 34.64** 26.38** NS 22.17** 38.16** 45.60** 16.49**

Table 8

Effect of density and nitrogen on amount of nitrogen accumulation in summer seeded cotton in 2020 (kg hm-2)"

处理
Treatment
营养器官Nutritive organ 生殖器官Reproductive organ
7/30 8/15 8/30 9/20 8/15 8/30 9/20
CK 43.18 ab 71.62 bc 91.28 a 109.33 a 17.10 ab 26.33 a 34.98 b
P3N0 27.59 c 61.20 c 75.12 b 86.59 b 13.89 b 18.72 b 25.24 d
P3N1 45.90 ab 88.53 ab 93.20 a 110.91 a 19.17 a 27.17 a 43.89 ab
P3N2 37.55 b 70.98 bc 86.81 ab 107.13 a 19.80 a 31.36 a 45.97 a
P3N3 49.09 a 90.60 a 100.65 a 112.23 a 14.04 b 24.82 a 32.60 bc

Fig. 3

Relationship between amount of nitrogen accumulation in reproductive organs at different growth stages and seed cotton yield"

Table 9

Effect of density and nitrogen on nitrogen use efficiency in summer seeded cotton in 2019"

处理
Treatment
氮肥回收利用率
NRE (%)
氮肥农学利用率
aNUE (kg kg-1N)
氮素生理利用率
pNUE (kg kg-1N)
氮肥偏生产力
NPP (kg kg-1N)
P1N1 14.41 d 2.48 de 10.26 d 33.15 bc
P1N2 12.90 de 2.50 de 15.61 cde 20.90 d
P1N3 11.40 e 3.14 d 17.09 cd 16.29 de
P2N1 37.81 b 8.18 bc 18.03 c 39.75 b
P2N2 24.52 c 9.10 b 20.78 b 28.04 c
P2N3 17.63 cd 3.83 d 17.03 cd 17.36 d
P3N1 35.72 bc 23.46 a 21.70 b 54.77 a
P3N2 42.58 a 21.34 ab 24.03 a 34.13 bc
P3N3 30.50 bc 5.96 c 16.56 cd 19.38 d
FF-value
密度处理Density (P) 262.64** 693.04** 90.25** 41.93**
氮处理Nitrogen (N) 42.92** 108.94** 51.24** 726.10**
密度处理×氮处理P×N 62.92** 503.38** 31.32** 56.97**

Table 10

Effect of density and nitrogen on nitrogen use efficiency in summer seeded cotton in 2020"

处理
Treatment
氮肥回收利用率
NRE (%)
氮肥农学利用率
aNUE (kg kg-1N)
氮素生理利用率
pNUE (kg kg-1N)
氮肥偏生产力
NPP (kg kg-1N)
CK 18.34 bc 3.80 b 15.09 b 15.43 c
P3N1 54.28 a 8.72 a 15.79 b 32.00 a
P3N2 44.17 a 7.16 ab 19.16 a 21.12 b
P3N3 22.61 b 2.74 b 12.55 b 12.71 d

Table 11

Relationship between nitrogen use efficiency and seed cotton yield"

年份
Year
氮肥利用率
Nitrogen use efficiency
与籽棉产量的回归关系
Correlation between nitrogen use efficiency and seed cotton yield
相关系数
Correlation coefficient
2019 氮肥回收利用率Nitrogen recovery efficiency y = 0.0128x-24.508 0.8104**
氮肥农学利用率Agronomic nitrogen use efficiency y = 0.01x-29.964 0.9291**
氮素生理利用率Physiological nitrogen use efficiency y = 0.0048x-0.6406 0.8938**
氮肥偏生产力Partial productivity of nitrogen fertilizer y = 0.0086x-4.3975 0.2627
2020 氮肥回收利用率Nitrogen recovery efficiency y = 1028.5x+3439.9 0.6343*
氮肥农学利用率Agronomic nitrogen use efficiency y = 69.857x+3403.2 0.7026**
氮素生理利用率Physiological nitrogen use efficiency y = 102.4x+2192.4 0.9989**
氮肥偏生产力Partial productivity of nitrogen fertilizer y = 14.479x+3500.6 0.4453*

Table 12

Effect of density and nitrogen on open boll percentages in summer seeded cotton (%)"

处理
Treatment
2019 2020
喷施前
Before application of harvest aid
喷施后
After application of
harvest aid
喷施前
Before application of harvest aid
喷施后
After application of
harvest aid
P1N0 58.23 b 81.02 a
P1N1 60.95 ab 83.01 a
P1N2 69.97 a 85.28 a
P1N3 64.96 ab 81.73 a
P2N0 56.54 b 76.47 ab
P2N1 57.29 b 80.95 a
P2N2 60.12 ab 84.96 a
P2N3 58.90 b 82.11 a
P3N0 51.25 bc 74.18 ab 35.60 b 69.97 ab
P3N1 53.28 bc 73.57 ab 43.62 ab 68.08 ab
P3N2 60.76 ab 81.83 a 43.59 ab 78.95 a
P3N3 59.25 ab 82.41 a 42.48 ab 75.53 a
CK 49.58 a 83.22 a
[1] 汪宏伟. 我国棉花产业现状及长江流域棉区转型升级的思考. 棉花科学, 2019, 41(3): 2-5.
Wang H W. The current situation of China’s cotton industry and reflections on the transformation and upgrading of cotton areas in the Yangtze River Basin. Cotton Sci, 2019, 41(3): 2-5. (in Chinese with English abstract)
[2] Luo Z, Liu H, Li W P, Zhao Q, Dai J L, Tian L W, Dong H Z. Effects of reduced nitrogen rate on cotton yield and nitrogen use efficiency as mediated by application mode or plant density. Field Crops Res, 2018, 218: 150-157.
[3] 王雷山. 播期和密度对夏直播棉花氮代谢的影响. 华中农业大学硕士学位论文,湖北武汉, 2016.
Wang L S. Effect of Sowing Date and Planting Density on Nitrogen Metabolism of Cotton under Summer Direct Sowing. MS Thesis of Huazhong Agricultural University, Wuhan, Hubei, China, 2016. (in Chinese with English abstract)
[4] 姬攀攀, 李洪菊, 罗冬玉, 侯玲, 罗艳萍, 杨芳, 王富, 吴吉平, 周家华. 种植密度对夏直播棉花生长及产量的影响. 湖北农业科学, 2019, 58(12): 31-33.
Ji P P, Li H J, Luo D Y, Hou L, Luo Y P, Yang F, Wang F, Wu J P, Zhou J H. Effects of planting density on growth and yield of summer direct-seeding cotton. Hubei Agric Sci, 2019, 58(12): 31-33. (in Chinese with English abstract)
[5] Dai J L, Li W J, Tang W, Zhang D M, Li Z H, Lu H Q, Egrinya E A, Dong H Z. Manipulation of dry matter accumulation and partitioning with plant density in relation to yield stability of cotton under intensive management. Field Crops Res, 2015, 180: 207-215.
[6] 王子胜, 吴晓东, 郭文琦, 徐敏, 那艳斌, 张雷, 周治国. 种植密度对东北特早熟棉区棉花生物量和氮素累积的影响. 棉花学报, 2012, 24: 35-43.
doi: 10.11963/cs120105
Wang Z S, Wu X D, Guo W Q, Xu M, Na Y B, Zhang L, Zhou Z G. Effects of planting density on biomass and nitrogen accumulation in cotton, northeast China. Cotton Sci, 2012, 24: 35-43. (in Chinese with English abstract)
[7] 娄善伟, 高云光, 郭仁松, 赵强, 张巨松. 不同栽培密度对棉花植株养分特征及产量的影响. 植物营养与肥料学报, 2010, 16: 953-958.
Lou S W, Gao Y G, Guo R S, Zhao Q, Zhang J S. Effects of planting density on nutrition characteristics and yield of cotton. Plant Nutr Fert Sci, 2010, 16: 953-958. (in Chinese with English abstract)
[8] 李鹏程, 董合林, 刘爱忠, 刘敬然, 李如义, 孙淼, 李亚兵, 毛树春. 应用15N研究氮肥运筹对棉花氮素吸收利用及产量的影响. 植物营养与肥料学报, 2015, 21: 590-599.
Li P C, Dong H L, Liu A Z, Liu J R, Li R Y, Sun M, Li Y B, Mao S C. Effects of nitrogen fertilizer application strategy on N uptake, utilization and yield of cotton using 15N trace technique. J Plant Nutr Fert, 2015, 21: 590-599. (in Chinese with English abstract)
[9] Fu Q L, Yu J Y, Chen Y X. Effect of nitrogen applications on dry matter and nitrogen partitioning in rice and nitrogen fertilizer requirements for rice production. J Zhejiang Univ, 2000, 26: 399-403.
[10] 王士红, 杨中旭, 史加亮, 李海涛, 宋宪亮, 孙学振. 增密减氮对棉花干物质和氮素积累分配及产量的影响. 作物学报, 2020, 46: 395-407.
doi: 10.3724/SP.J.1006.2020.94074
Wang S H, Yang Z X, Shi J L, Li H T, Song X L, Sun X Z. Effects of increasing planting density and decreasing nitrogen rate on dry matter, nitrogen accumulation and distribution, and yield of cotton. Acta Agron Sin, 2020, 46: 395-407. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2020.94074
[11] 张田野. 化肥零增长行动实施效果及问题研究. 中国农业科学院硕士学位论文,北京, 2021.
Zhang T Y. Study on the Effect and Problems of Zero Growth Action of Chemical Fertilizer. MS Thesis of Chinese Academy of Agricultural Sciences, Beijing, China, 2021. (in Chinese with English abstract)
[12] 朱倩倩, 武雪萍, 张淑香, 许咏梅, 吉丽丽, 赵来明, 李小伟, 马文新. 化肥减量有机替代对新疆滴灌棉花产量及土壤养分的影响. 新疆农业科学, 2020, 57: 2135-2143.
doi: 10.6048/j.issn.1001-4330.2020.11.022
Zhu Q Q, Wu X P, Zhang S X, Xu Y M, Ji L L, Zhao L M, Li X W, Ma W X. Effects of reducing chemical fertilizer and organic fertilizer supplement on the yield and soil nutrient of drip irrigation cotton in Xinjiang. Xinjiang Agric Sci, 2020, 57: 2135-2143. (in Chinese with English abstract)
[13] 唐江华, 苏丽丽, 徐文修, 孟令贻, 王晨, 田文强, 张俊尧, 王家勇. 氮肥减施对棉花产量、干物质生产与氮素吸收利用的影响. 干旱地区农业研究, 2023, 41(2): 86-95.
Tang J H, Su L L, Xu W X, Meng L Y, Wang C, Tian W Q, Zhang J Y, Wang J Y. Effects of nitrogen fertilizer reduction on cotton yield, dry matter production and nitrogen uptake and utilization. Agric Res Arid Areas, 2023, 41(2): 86-95. (in Chinese with English abstract)
[14] Zhang D M, Li W J, Xin C S, Tang W, Egrinya E A, Dong H Z. Lint yield and nitrogen use efficiency of field-grown cotton vary with soil salinity and nitrogen application rate. Field Crops Res, 2012, 138: 63-70.
[15] 张允昔, 陈宜, 崔爱花, 夏绍南, 杨磊, 鲁速明, 董合林. 不同施氮量对棉花产量和氮肥利用率的影响. 江西农业大学学报, 2014, 36: 1202-1206.
Zhang Y X, Chen Y, Cui A H, Xia S N, Yang L, Lu S M, Dong H L. The effects of different nitrogen application rates on cotton yield and nitrogen use efficiency. Acta Agric Univ Jiangxiensis, 2014, 36: 1202-1206. (in Chinese with English abstract)
[16] 宋兴虎. 氮肥用量对夏直播棉花产量形成和养分利用的影响. 华中农业大学硕士学位论文,湖北武汉, 2017.
Song X H. Effect of N Rate on Yield Formation and Nutrients Utilization of Summer Direct Seeding Cotton. MS Thesis of Huazhong Agricultural University, Wuhan, Hubei, China, 2017. (in Chinese with English abstract)
[17] 刘佳敏, 汪洋, 褚旭, 齐欣, 王慢慢, 赵亚南, 叶优良, 黄玉芳. 种植密度和施氮量对小麦-玉米轮作体系下周年产量及氮肥利用率的影响. 作物杂志, 2021, (1): 143-149.
Liu J M, Wang Y, Chu X, Qi X, Wang M M, Zhao Y N, Ye Y L, Huang Y F. Effects of planting density and nitrogen application rate on annual yield and nitrogen use efficiency of wheat-maize rotation system. Crops, 2021, (1): 143-149. (in Chinese with English abstract)
[18] 薛晓萍, 王建国, 郭文琦, 陈兵林, 尤军, 周治国. 氮素水平对初花后棉株生物量、氮素累积特征及氮素利用率动态变化的影响. 生态学报, 2006, 26: 3631-3640.
Xue X P, Wang J G, Guo W Q, Chen B L, You J, Zhou Z G. Effect of nitrogen applied levels on the dynamics of biomass, nitrogen accumulation and nitrogen fertilization recovery rate of cotton after initial flowering. Acta Ecol Sin, 2006, 26: 3631-3640. (in Chinese with English abstract)
[19] 谭京红, 张露萍, 吴启侠, 朱建强, 张在镇. 基于不同肥源的棉花减氮施肥效果比较研究. 作物杂志, 2019, (1): 134-140.
Tan J H, Zhang L P, Wu Q X, Zhu J Q, Zhang Z Z. Comparative research on the effects of reducing nitrogen from different fertilizers on cotton. Crops, 2019, (1): 134-140. (in Chinese with English abstract)
[20] 王士红. 增密减氮对棉花产量品质的影响及氮高效生理基础研究. 山东农业大学博士学位论文,山东泰安, 2019.
Wang S H. Effects of Increasing Plant Density and Decreasing Nitrogen Rate on Yield and Quality of Cotton, and Physiological Mechanisms of Nitrogen Efficient Utilization. PhD Dissertation of Shandong Agricultural University, Tai’an, Shandong, China, 2019. (in Chinese with English abstract)
[21] 刘瑞显, 史伟, 徐立华, 杨长琴, 郭文琦, 张培通. 种植密度对棉花干物质、氮素累积与分配的影响. 江苏农业学报, 2011, 27: 250-257.
Liu R X, Shi W, Xu L H, Yang C Q, Guo W Q, Zhang P T. Effects of planting density on dry matter and nitrogen accumulation and distribution of cotton. Jiangsu J Agric Sci, 2011, 27: 250-257. (in Chinese with English abstract)
[22] 刘瑞显, 史伟, 徐立华, 杨长琴, 郭文琦, 张培通. 长江下游棉区抗虫杂交棉适宜密度研究. 棉花学报, 2010, 22: 634-638.
doi: 10.11963/cs100620
Liu R X, Shi W, Xu L H, Yang C Q, Guo W Q, Zhang P T. Planting density of insect-resistant hybrid cotton in lower reaches of Yangtze River Valley. Cotton Sci, 2010, 22: 634-638. (in Chinese with English abstract)
[23] 支晓宇, 毛树春, 韩迎春, 李亚兵, 杜文丽, 李小新, 王国平, 范正义, 杨北方, 冯璐. 密度对棉花产量及棉铃内部产量构成的影响. 棉花学报, 2015, 27: 216-222.
doi: 10.11963/issn.1002-7807.201503004
Zhi X Y, Mao S C, Han Y C, Li Y B, Du W L, Li X X, Wang G P, Fan Z Y, Yang B F, Feng L. Effects of cultivars and planting density on yield components and seed characteristics in cotton. Cotton Sci, 2015, 27: 216-222. (in Chinese with English abstract)
doi: 10.11963/issn.1002-7807.201503004
[24] 董合林, 李鹏程, 刘爱忠, 王润珍. 华北平原一熟春棉干物质积累与养分吸收特性. 中国棉花, 2012, 39(12): 19-22.
doi: 10.11963/issn.1000-632X.20121206
Dong H L, Li P C, Liu A Z, Wang R Z. Characteristics of dry matter accumulation and nutrients uptake of spring-sown cotton under sole cropping in the north China Plain. China Cotton, 2012, 39(12): 19-22. (in Chinese with English abstract)
[25] 郑剑超, 闫曼曼, 张巨松, 高丽丽, 石洪亮, 郑慧, 张玉玲. 遮荫条件下氮肥运筹对棉花生长和氮素积累的影响. 植物营养与肥料学报, 2016, 22: 94-103.
Zheng J C, Yan M M, Zhang J S, Gao L L, Shi H L, Zheng H, Zhang Y L. Effects of nitrogen application on growth and nitrogen accumulation of cotton under shading condition. Plant Nutr Fert Sci, 2016, 22: 94-103. (in Chinese with English abstract)
[26] Chen W P, Hou Z N, Wu L S, Liang Y C, Wei C Z. Effects of salinity and nitrogen on cotton growth in arid environment. Plant Soil, 2010, 326: 61-73.
[27] 陈广桂, 韦林洪. 我国化肥产业氮磷污染及防治对策. 农业环境与发展, 2012, 29(5): 63-66.
Chen G G, Wei L H. Nitrogen and phosphorus pollution in China’s fertilizer industry and its prevention and control measures. Agro-Environ Dev, 2012, 29(5): 63-66. (in Chinese with English abstract)
[28] 龚双凤, 马兴旺, 索俊宇, 陈宝燕, 朱靖蓉, 何万义, 杨涛. 氮肥运筹对机采棉养分吸收及产量的影响. 新疆农业科学, 2015, 52: 1216-1223.
Gong S F, Ma X W, Suo J Y, Chen B Y, Zhu J R, He W Y, Yang T. Nitrogen fertilizer management of regulation of cotton yield and nutrient uptake in the machine pick cotton patterns. Xinjiang Agric Sci, 2015, 52: 1216-1223. (in Chinese with English abstract)
[29] Ahmad S. 氮肥和种植密度对晚播棉花根系生长和氮代谢的影响. 华中农业大学硕士学位论文,湖北武汉, 2020.
Ahmad S. Effect of Nitrogen Fertilizer and Planting Density on Root Growth and Nitrogen Metabolism in Late Sown Cotton. MS Thesis of Huazhong Agricultural University, Wuhan, Hubei, China, 2020. (in Chinese with English abstract)
[30] 平文超, 张永江, 刘连涛, 孙红春, 李存东. 不同密度对棉花根系生长与分布的影响. 棉花学报, 2011, 23: 522-528.
doi: 10.11963/cs110606
Ping W C, Zhang Y J, Liu L T, Sun H C, Li C D. Effects of planting densities on the growth and distribution of root in cotton. Cotton Sci, 2011, 23: 522-528. (in Chinese with English abstract)
[31] 张宸, 梁悦, 殷昊, 张应榕, 陈波浪. 氮肥形态和品种对棉花根系形态与氮素积累的影响. 新疆农业科学, 2023, 60: 823-831.
doi: 10.6048/j.issn.1001-4330.2023.04.005
Zhang C, Liang Y, Yin H, Zhang Y R, Chen B L. Effects of nitrogen forms and varieties on root morphology and nitrogen accumulation of cotton. Xinjiang Agric Sci, 2023, 60: 823-831. (in Chinese with English abstract)
doi: 10.6048/j.issn.1001-4330.2023.04.005
[1] FU Jing, MA Meng-Juan, ZHANG Qi-Fei, DUAN Ju-Qi, WANG Yue-Tao, WANG Fu-Hua, WANG Sheng-Xuan, BAI Tao, YIN Hai-Qing, WANG Ya. Effects of alternate wetting and drying irrigation and different nitrogen application levels on photosynthetic characteristics and nitrogen absorption and utilization of japonica rice [J]. Acta Agronomica Sinica, 2024, 50(7): 1787-1804.
[2] CAO Zi-Qi, ZHAO Xiao-Qing, ZHANG Xiang-Qian, WANG Jian-Guo, LI Juan, HAN Yun-Fei, LIU Dan, GAO Yan-Hua, LU Zhan-Yuan, REN Yong-Feng. Effects of nitrogen application levels on the accumulation, distribution of nitrogen, phosphorus and potassium, and the corresponding yield of Cyperus esculentus in sandy soil#br#
#br#
[J]. Acta Agronomica Sinica, 2024, 50(7): 1805-1817.
[3] GUO Song, GUO Hui-Ting, ZHANG Yu-Liang, QIAN Zi-Hui, WANG Zi-Jun, LU Jia-Ming, WANG Yuan, ZHAO Can, WANG Wei-Ling, ZHANG Hong-Cheng, YANG Feng-Ping, HUO Zhong-Yang. Effects of side deep placement of controlled release nitrogen management on rice yield, NH3, and greenhouse gas emissions [J]. Acta Agronomica Sinica, 2024, 50(6): 1525-1539.
[4] NING Ning, YU Xin-Ying, QIN Meng-Qian, LOU Hong-Xiang, WANG Zong-Kai, WANG Chun-Yun, JIA Cai-Hua, XU Zheng-Hua, WANG Jing, KUAI Jie, WANG Bo, ZHAO Jie, ZHOU Guang-Sheng. Effect of key cultivated measures on rapeseed oil comprehensive quality [J]. Acta Agronomica Sinica, 2024, 50(6): 1554-1567.
[5] TANG Qing-Yun, YANG Jing-Jing, ZHAO Lei, SONG Zhi-Wen, WANG Guo-Dong, LI Yu-Xiang. Effect of nitrogen application on morphological conformation and fractal characteristics of drip irrigated rice roots [J]. Acta Agronomica Sinica, 2024, 50(6): 1540-1553.
[6] WANG Fei-Er, GUO Yao, LI Pan, WEI Jin-Gui, FAN Zhi-Long, HU Fa-Long, FAN Hong, HE Wei, YIN Wen, CHEN Gui-Ping. Compensation mechanism of increased maize density on yield with water and nitrogen reduction supply in oasis irrigation areas [J]. Acta Agronomica Sinica, 2024, 50(6): 1616-1627.
[7] LU Ru-Hua, WANG Wen-Xuan, CAO Qiang, TIAN Yong-Chao, ZHU Yan, CAO Wei-Xing, LIU Xiao-Jun. Research on the effects of nitrogen fertilizer and rice straw return on wheat yield and N2O emission and recommended fertilization under rice-wheat rotation pattern [J]. Acta Agronomica Sinica, 2024, 50(5): 1300-1311.
[8] YANG Chun-Ju, TANG Dao-Bin, ZHANG Kai, DU Kang, HUANG Hong, QIAO Huan-Huan, WANG Ji-Chun, LYU Chang-Wen. Effect of reducing nitrogen and potassium application on yield and quality in sweet potato [J]. Acta Agronomica Sinica, 2024, 50(5): 1341-1350.
[9] LIU Cheng-Min, MEN Ya-Qi, QIN Du-Lin, YAN Xiao-Yu, ZHANG Le, MENG Hao, SU Xun-Ya, SUN Xue-Zhen, SONG Xian-Liang, MAO Li-Li. Effects of nitrogen application rate on cotton yield and nitrogen utilization under long-term straw return to the field [J]. Acta Agronomica Sinica, 2024, 50(4): 1043-1052.
[10] LOU Fei, ZUO Yi-Ping, LI Meng, DAI Xin-Meng, WANG Jian, HAN Jin-Ling, WU Shu, LI Xiang-Ling, DUAN Hui-Jun. Effects of organic fertilizer substituting chemical fertilizer nitrogen on yield, quality, and nitrogen efficiency of waxy maize [J]. Acta Agronomica Sinica, 2024, 50(4): 1053-1064.
[11] WANG Rui, ZHANG Fu-Yao, ZHAN Peng-Jie, CHU Jian-Qiang, JIN Min-Shan, ZHAO Wei-Jun, CHENG Qing-Jun. Identification of candidate genes implicated in low-nitrogen-stress tolerance based on RNA-Seq in sorghum [J]. Acta Agronomica Sinica, 2024, 50(3): 669-685.
[12] DAI Yu-Yang, YUE Ye, LIU Zhen-Yu, HE Run, LIU Yu-Ting, ZHANG Xiang, CHEN De-Hua, CHEN Yuan. Effects of low temperature on the expression of insecticidal protein in Bt cotton fibers and its physiological mechanism [J]. Acta Agronomica Sinica, 2024, 50(3): 709-720.
[13] WANG Lyu, WU Yu-Hong, QIN Yu-Hang, DAN Ya-Bin, CHEN Hao, HAO Xing-Shun, TIAN Xiao-Hong. Effects of rice straw mulching combined with green manure retention and nitrogen reduction applications on dry matter quality accumulation, nitrogen transport and grain yield of rice [J]. Acta Agronomica Sinica, 2024, 50(3): 756-770.
[14] ZHANG Bao-Hua, LIU Jia-Jing, TIAN Xiao, TIAN Xu-Zhao, DONG Kuo, WU Yu-Jie, XIAO Kai, LI Xiao-Juan. Cloning, expression, and functional analysis of wheat (Triticum aestivum L.) TaSPX1 gene in low nitrogen stress tolerance [J]. Acta Agronomica Sinica, 2024, 50(3): 576-589.
[15] NIE Xiao-Yu, LI Zhen, WANG Tian-Yao, ZHOU Yuan-Wei, XU Zheng-Hua, WANG Jing, WANG Bo, KUAI Jie, ZHOU Guang-Sheng. Effect of planting density and weak light stress at pod-filling stage on seed oil accumulation in rapeseed [J]. Acta Agronomica Sinica, 2024, 50(2): 493-505.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[4] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[5] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[6] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[7] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[8] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[9] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .
[10] XING Guang-Nan, ZHOU Bin, ZHAO Tuan-Jie, YU De-Yue, XING Han, HEN Shou-Yi, GAI Jun-Yi. Mapping QTLs of Resistance to Megacota cribraria (Fabricius) in Soybean[J]. Acta Agronomica Sinica, 2008, 34(03): 361 -368 .