Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2024, Vol. 50 ›› Issue (6): 1568-1583.doi: 10.3724/SP.J.1006.2024.31037

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Difference in germination characteristics of different winter wheat cultivars under drought stress

QIAO Zhi-Xin1(), ZHANG Jie-Dao2, WANG Yu1, GUO Qi-Fang1, LIU Yan-Jing1, CHEN Rui1, HU Wen-Hao1, SUN Ai-Qing1,*()   

  1. 1National Key Laboratory of Wheat Improvement / College of Agriculture, Shandong Agricultural University, Tai’an 271018, Shandong, China
    2College of Life Sciences, Shandong Agricultural University, Tai’an 271018, Shandong, China
  • Received:2023-06-05 Accepted:2024-01-12 Online:2024-06-12 Published:2024-02-21
  • Contact: * E-mail: saqsshh@sdau.edu.cn
  • Supported by:
    National Key Research and Development Program of China(2018YFD0100904)

Abstract:

Drought is an important stress affecting wheat production, which can reduce the quality of germination and seedling establishment. In order to understand the seed germination characteristics of wheat cultivars under drought stress, the germination characteristics under drought stress of 128 wheat cultivars widely used in production were identified by sand cultivation and water control method. Six wheat cultivars with significant differences in germination characteristics under drought stress ((Shannong 28 (SN28), Chang 6878 (C6878), Yannong 19 (YN19), Shannong 23 (SN23), Xinmai 296 (XM296), and Xinmai 38 (XM38)) were selected for physiological and biochemical analysis during seed germination under drought stress. The results showed that the germination characteristics under drought stress of 128 wheat cultivars were divided into 5 categories according to the drought tolerance coefficient of vigor index: good, the better, medium, the worse, and the worst. Eighteen wheat cultivars with good germination characteristics under drought stress, including SN28 and C6878, had fast seed germination and healthy seedlings. Twenty-six wheat cultivars with poor germination characteristics under drought stress, such as XM38 and Lemai 185, had slow seed germination, dispersed germination time, low germination percentage (GP), and poor seedling uniformity. The physiological and biochemical indices of wheat cultivars with different germination characteristics under drought stress were further determined. The results showed that the relative expression level of TDP1 gene at the early stage of germination under drought in SN28 and C6878 with good germination characteristics under drought stress was significantly higher than the control. POD activity at the early stage of germination under drought was significantly higher than the control. The activities of α-amylase and cysteine protease were less affected by drought, and the soluble protein content at the late stage of germination was significantly higher than the control. However, the relative expression levels of DNA and protein repair genes in seed embryos of XM296 and XM38 with poor germination characteristics under drought stress were relatively delayed under drought stress. The activity of cysteine protease decreased significantly under drought stress. The above results indicated that wheat cultivars with good germination characteristics under drought stress showed strong macromolecular repair ability in seed embryos and antioxidant capacity in seed, early mobilization of storage substances during seed germination and seedling establishment under drought stress, and finally had fast germination speed and high seedling quality.

Key words: wheat (Triticum aestivum L.), drought stress, seed germination characteristics, decomposition and transformation of storage substances, macromolecular repair ability, antioxidant capacity

Table 1

Primer sequence of qRT-PCR"

基因号
Gene ID
基因名称
Gene name
上游引物序列
Primer sequences (5'−3')
下游引物序列
Primer sequences (5'−3')
LOC542814 Actin CCGGCATTGTCCACATGAA CCAAAAGGAAAAGCTGAACCG
TraesCS2A02G289700 TDP1 GGAGGGTTGCTACTCAGACGG GGAGAAGCTGTGGTAGGGTCAC
TraesCS2D02G338700 PIMT GGGCTTTACCCCTTACACCG AACCACTGCCTGATCCAACGT

Table 2

Variance analysis of cultivars and drought treatment of wheat germination and seedling growth indices"

指标
Index
变异来源
Source of variation
品种
Cultivar
处理
Treatment
品种×处理
Cultivar × treatment
发芽势
GE (%)
方差SS 11,927.286 2523.000 3543.667
自由度DF 127 1 127
均方差MS 93.916 2523.000 27.903
FF-value 14.041** 377.198** 4.172**
发芽率
GP (%)
方差SS 935.967 86.001 469.499
自由度DF 127 1 127
均方差MS 7.370 86.001 3.697
FF-value 2.758** 32.188** 1.384**
发芽指数
GI
方差SS 2054.155 2502.913 513.813
自由度DF 127 1 127
均方差MS 16.174 2502.913 4.046
FF-value 25.364** 3924.998** 6.344**
活力指数
VI
方差SS 2.862 3.315 0.612
自由度DF 127 1 127
均方差MS 0.023 3.315 0.005
FF-value 18.525** 2724.480** 3.963**
单株干重
SSDW (mg)
方差SS 0.002 0.001 0.000
自由度DF 127 1 127
均方差MS 1.91E-05 0.001 3.08E-06
FF-value 15.116** 876.879** 2.436**
根长
RL (cm)
方差SS 16,633.052 16,985.516 13,768.896
自由度DF 127 1 127
均方差MS 128.938 16,985.516 108.417
FF-value 43.832** 5774.159** 36.856**
苗长
SL (cm)
方差SS 8147.920 11,212.904 1414.555
自由度DF 127 1 127
均方差MS 63.162 11,212.904 11.138
FF-value 38.678** 6866.278** 6.821**
根冠比
R/S
方差SS 16.194 25.806 4.746
自由度DF 127 1 127
均方差MS 0.128 25.806 0.037
FF-value 10.548** 2134.674** 3.091**

Table S1

Comparison of germination and seedling growth indices of different wheat cultivars under normal conditions"

指标
Index
类别
Category
品种数量
Number of cultivars
品种名称
Cultivar name
指标范围
Index range
发芽势
GE (%)
显著高 SH 8 Sunstate, 运旱2129 Yunhan 2129, 济南8号 Jinan 8, 烟农19 YN19, 新麦26 Xinmai 26, 京冬8号 Jingdong 8, 济麦44 Jimai 44, 新麦21 Xinmai 21 >99%
显著低 SL 4 沧麦119 Cangmai 119, 鑫麦296 XM296, 洛旱13 Luohan 13, 邯9204 Han 9204 <90%
发芽率
GP (%)
显著高 SH 4 淮麦608 Huaimai 608, 潍麦8号 Weimai 8, 鑫289 Xin 289, 衡H165171 Heng H165171 100%
显著低 SL 1 洛旱13 Luohan 13 <95%
发芽指数
GI
显著高 SH 6 济南8号 Jinan 8, 烟农19 Yannong 19, 藁城8901 Gaocheng 8901, 晋麦30 Jinmai 30, 淮麦608 Huaimai 608, 中麦175 Zhongmai 175 >32
显著低 SL 3 鲁麦21 Lumai 21, 鲁麦1号 Lumai 1, 鑫麦296 XM296 <25
活力指数
VI
显著高 SH 4 淮麦608 Huaimai 608, Karl92, 豫麦35 Yumai 35, 京冬6号 Jingdong 6 >0.7
显著低 SL 3 鑫麦296 XM296, 中麦578 Zhongmai 578, 鲁麦1号 Lumai 1 <0.4
单株干重
SSDW (g)
显著高 SH 10 淮麦608 Huaimai 608, 豫麦35 Yumai 35, Karl92, 矮抗58 Aikang 58, 百农4199 Bainong 4199, 冀麦825 Jimai 825, 鲁麦14号 Lumai 14, 豫农949 Yunong 949, 瑞华1568 Ruihua 1568, 京冬6号 Jingdong 6 >22
显著低 SL 6 济宁16 Jining 16, 鑫麦296 XM296, 师栾02-1 Shiluan 02-1, TAM107, 鲁麦1号 Lumai 1, 青麦6号 Qingmai 6 <16
根长
RL (cm)
显著高 SH 11 矮抗58 Aikang 58, 冀中麦6号 Jizhongmai 6, 藁城8901 Gaocheng 8901, TKM6007, Y4188, 唐麦8号 Tangmai 8, 山农22 Shannong 22, 良星77 Liangxing 77, 冠麦9号 Guanmai 9, 藁优5218 Gaoyou 5218, 衡H165171 Heng H165171 >16
显著低 SL 4 沧麦119 Cangmai 119, 长6359 Chang 6359, 鲁麦23号 Lumai 23, 山农18 Shannong 18 <5
苗长
SL (cm)
显著高 SH 7 核生2号Hesheng 2, 济南8号Jinan 8, 晋麦30 Jinmai 30, 运旱2129 Yunhan 2129, 京冬6号Jingdong 6, 潍麦8号 Weimai 8, 跃进5号Yuejin 5 >15
显著低 SL 11 石家庄8号Shijiazhuang 8, 新麦26 Xinmai 26, 众信8412 Zhongxin 8412, 河农6133 Henong 6133, 鲁麦21 Lumai 21, 兰德50856 Lande 50856, 洛麦23 Luomai 23, 师栾08-2 Shiluan 08-2, 潍9903 Wei 9903, 汶农17 Wennong 17, 石新828 Shixin 828 <11
根冠比
R/S
显著高 SH 5 冀5265 Ji 5265, 中植麦13 Zhongzhimai 13, 藁城8901 Gaocheng 8901, 豫麦35 Yumai 35, 烟农19 Yannong 19 >1.1
显著低 SL 9 晋麦30 Jinmai 30, 优麦3号 Youmai 3, 山农28 SN28, 沧麦119 Cangmai 119, 烟农15 Yannong 15, 长6359 Chang 6359, 运旱2129 Yunhan 2129, 山农18 Shannong 18, 鲁麦23号Lumai 23 <0.6

Table S2

Comparison of germination and seedling growth indices of different wheat cultivars under drought stress"

指标
Index
类别
Category
品种数量
Number of cultivars
品种名称
Cultivar name
指标范围
Index range
发芽势
GE (%)
显著高 SH 5 烟农836 Yannong 836, 晋麦30 Jinmai 30, Sunstate, 济南8号 Jinan 8, 石麦21 Shimai 21 >99
显著低 SL 7 鑫麦296 XM296, 山农20 Shannong 20, 邯9204 Han 9204, 15P410, 洛旱13 Luohan 13, 新麦38 XM38, 兰德50856 Lande 50856 <80
发芽率
GP (%)
显著高 SH 5 京9428 Jing 9428, 豫麦49-198 Yumai 49-198, TAM107, 淄麦12 Zimai 12, 衡15-4229 Heng 15-4229 100
显著低 SL 4 洛旱13 Luohan 13, 鑫麦296 XM296, 沧麦119 Cangmai 119, 新麦38 XM38 <95
发芽指数
GI
显著高 SH 6 济南8号 Jinan 8, 山农26 Shannong 26, 青麦6号 Qingmai 6, 核生2号 Hesheng 2, 藁城8901 Gaocheng 8901, 晋麦30 Jinmai 30 >28
显著低 SL 3 鑫麦296 XM296, 洛旱13 Luohan 13, 新麦38 XM38 <23
活力指数
VI
显著高 SH 8 百农4199 Bainong 4199, 核生2号 Hesheng 2, 淮麦608 Huaimai 608, 烟农19 YN19, 运旱2129 Yunhan 2129, 长6359 Chang 6359, 京冬6号 Jingdong 6, Karl92 >0.5
显著低 SL 2 鑫麦296 XM296, 乐麦185 Lemai 185 <0.3
单株干重
SSDW (g)
显著高 SH 6 百农4199 Bainong 4199, 核生2号 Hesheng 2, 烟农19 YN19, 运旱2129 Yunhan 2129, 长6359 Chang 6359, 淮麦608 Huaimai 608 >20
显著低 SL 3 鑫麦296 XM296, 青麦6号 Qingmai 6, 乐麦185 Lemai 185 <13
根长
RL (cm)
显著高 SH 3 洛麦23 Luomai 23, 烟农836 Yannong 836, 矮抗58 Aikang 58 >12
显著低 SL 6 豫麦35 Yumai 35, 核生2号 Hesheng 2, 潍9903 Wei 9903, 冀麦u87 Jimai u87, 青麦6号 Qingmai 6, 京冬8号 Jingdong 8 <9
苗长
SL (cm)
显著高 SH 7 核生2号 Hesheng 2, 运旱2129 Yunhan 2129, 鲁麦23号Lumai 23, 济南8号 Jinan 8, 沧麦119 Cangmai 119, 跃进5号 Yuejin 5, 长6878 C6878 >12.0
显著低 SL 17 中麦175 Zhongmai 175, 冠麦9号 Guanmai 9, 豫教5号 Yujiao 5, 河农6133 Henong 6133, 藁优5218 Gaoyou 5218, 鑫麦296 XM296, 汶农17 Wennong 17, 潍9903 Wei 9903, 印度圆粒 Yinduyuanli, 邯9587 Han 9587, 师栾08-2 Shiluan 08-2, 兰德50856 Lande 50856, 冀麦u87 Jimai u87, 郑麦16 Zhengmai 16, 百农4199 Bainong 4199, 众信5199 Zhongxin 5199, 瑞华1568 Ruihua 1568 <8.8
根冠比
R/S
显著高 SH 6 烟农19 YN19, 农大981 Nongda 981, 中植麦13 Zhongzhimai 13, 郑麦20 Zhengmai 20, 冀5265 Ji 5265, 藁城8901 Gaocheng 8901 >1.5
显著低 SL 6 青麦6号 Qingmai 6, 晋麦30 Jinmai 30, 百农4199 Bainong 4199, 中麦578 Zhongmai 578, 乐麦185 Lemai 185, 烟农15 Yannong 15 <1.0

Table S3

Wheat cultivars with small decrease amplitude in germination and growth indices under drought stress"

指标
Index
降幅
Decrease amplitude
品种数量
Number of cultivars
品种名称
Cultivar name
发芽势
GE (%)
无影响
No effect
21 衡15-422 Heng 15-422, Y4188, 晋麦30 Jinmai 30, 核生2号 Hesheng 2, 中麦175 Zhongmai 175, 鲁原502 Luyuan 502, 淄麦12 Zimai 12, 冀5265 Ji 5265, 沧麦119 Cangmai 119, 博单30 Bodan 30, 青麦6号 Qingmai 6, 豫麦8679 Yumai 8679, 汶航1号 Wenhang 1, 鲁麦21 Lumai 21, 长6878 C6878, 石麦21 Shimai 21, 烟农836 Yannong 836, 跃进5号 Yuejin 5, 唐麦8号 Tangmai 8, 淮麦608 Huaimai 608, 瑞泉麦32 Ruiquanmai 32
发芽指数
GI
<5% 10 山农26 Shannong 26, 鲁麦21 Lumai 21, 鲁麦1号 Lumai 1, 郑育麦9987 Zhengyumai 9987, 烟农15 Yannong 15, 石家庄8号 Shijiazhuang 8, 泰山24 Taishan 24, 济南8号 Jinan 8, 济麦23 Jimai 23, 豫麦49-198 Yumai 49-198
活力指数
VI
<10% 10 中麦578 Zhongmai 578, 山农28 Shannong 28, 长6359 Chang 6359, 百农4199 Bainong 4199, 长6878 C6878, 烟农15 Yannong 15, 山农18 Shannong 18, 鲁麦23号Lumai 23, 鲁麦21 Lumai 21, 石家庄8号 Shijiazhuang 8
单株干重
SSDW (g)
<5% 14 山农28 SN28, 长6878 C6878, 山农18 Shannong 18, 百农4199 Bainong 4199, 鲁麦23号Lumai 23, 济麦19 Jimai 19, 沧麦119 Cangmai 119, 济宁16 Jining 16, 衡4399 Heng 4399, 烟农19 YN19, 金禾991 Jinhe 991, 烟农15 Yannong 15, 运旱2129 Yunhan 2129, 石新828 Shixin 828
根长
RL (cm)
无影响
No effect
13 山农18 Shannong 18, 长6359 Chang 6359, 鲁麦23号Lumai 23, 运旱2129 Yunhan 2129, 沧麦119 Cangmai 119, 山农28SN28, 优麦3号 Youmai 3, 济宁16 Jining 16, 中优9507 Zhongyou 9507, 鲁麦1号 Lumai 1, 长6878 C6878, 石家庄8号 Shijiazhuang 8, 鲁麦21 Lumai 21
苗长
SL (cm)
<10% 9 青麦6号 Qingmai 6, 长6359 Chang 6359, 长6878 Chang 6878, 山农18 Shannong 18, 鲁麦23号Lumai 23, 济宁16 Jining 16, 济麦19 Jimai 19, 沧麦119 Cangmai 119, 山农16 Shannong 16

Table S4

Wheat cultivars with large decrease amplitude in germination and growth indices under drought stress"

指标
Index
降幅
Decrease amplitude
品种数量
Number of cultivars
品种名称
Cultivar name
发芽势
GE (%)
20%-26% 3 15P410, 新麦38 Xinmai 38, 兰德50856 Lande 50856
发芽率
GP (%)
5%-10% 2 沧麦119 Cangmai 119, 新麦38 XM38
发芽指数
GI
20%-25% 9 瑞华1568 Ruihua 1568, 济南17号 Jinan 17, 泰山27 Taishan 27, 西农115 Xinong 15, 华育198 Huayu 198, 临麦2号 Linmai 2, 鲁麦14号 Lumai 14, 济麦44 Jimai 44, 新麦38 XM38
活力指数
VI
40%-51% 3 豫麦35 Yumai 35, 新麦38 XM38, 乐麦185 Lemai 185
单株干重
SSDW (g)
20%-45% 12 Karl92, 郑麦16 Zhengmai 16, 冀麦26 Jimai 26, 藁优5218 Gaoyou 5218, 淮麦608 Huaimai 608, 中麦175 Zhongmai 175, 临麦2号 Linmai 2, 藁城8901 Gaocheng 8901, 京9428 Jing 9428, 新麦38 XM38, 豫麦35 Yumai 35, 乐麦185 Lemai 185
根长
RL (cm)
35%-41% 17 徐麦14017 Xumai 14017, 山农22 Shannong 22, 金禾991 Jinhe 991, 百农4199 Bainong 4199, 豫麦35 Yumai 35, 淄麦12 Zimai 12, TKM6007, 济南17号 Jinan 17, 鑫麦296 XM296, Y4188, 冀麦u87 Jimai u87, 济麦19 Jimai 19, 赵农1632 Zhaonong 1632, 冠麦9号 Guanmai 9, 冀中麦6号 Jizhongmai 6, 潍9903 Wei 9903, 鲁原502 Luyuan 502
苗长
SL (cm)
30%-34% 7 山农26 Shannong 26, 冀5265 Ji 5265, 瑞华1568 Ruihua 1568, 百农4199 Bainong 4199, 中优9507 Zhongyou 9507, 晋麦30 Jinmai 30, 京冬8号 Jingdong 8

Fig. 1

Cluster diagram based on drought tolerance coefficient of vigor index of different wheat cultivars I-V means the germination characteristics under drought stress with good, the better, medium, the worse, and poor of wheat cultivars, respectively."

Fig. 2

Difference of germination and growth indices of different wheat cultivars SN28: Shannong 28; C6878: Chang 6878; YN19: Yannong 19; SN23: Shannong 23; XM296: Xinmai 296; XM38: Xinmai 38. CK: control check; DT: drought stress treatment. *: P < 0.05; **: P < 0.01."

Fig. 3

Comparison of seed and seedling morphology of different wheat cultivars at early germination stage Abbreviations are the same as those given in Fig. 2."

Fig. 4

Difference in relative expression of TDP1 and PIMT gene in seed embryo of different wheat cultivars under drought stress Abbreviations are the same as those given in Fig. 2. *: P < 0.05; **: P < 0.01."

Fig. 5

Drought tolerance coefficients of macromolecular repair gene expression in seed embryo of different wheat cultivars under drought stress Abbreviations are the same as those given in Fig. 2."

Fig. 6

Effect of drought stress on SOD and POD activities at germination stage of wheat Abbreviations are the same as those given in Fig. 2. *: P < 0.05."

Fig. 7

Correlation between drought tolerance coefficients of SOD, POD activities, and germination indices of wheat seeds GE: germination energy; GP: germination percentage; GI: germination index; VI: vigor index; SSDW: single seedling dry weight. *: P < 0.05; **: P < 0.01."

Fig. 8

Effect of drought stress on α-amylase and cysteine protease activity at germination stage in wheat seeds Abbreviations are the same as those given in Fig. 2. *: P < 0.05."

Fig. 9

Effect of drought stress on soluble sugar and soluble protein content at germination stage in wheat seeds Abbreviations are the same as those given in Fig. 2. *: P < 0.05."

[1] Li J, Xuan J, Cai R. Wheat, a popular cereal crop. Field Crop, 2020, 3: 13-21.
[2] Fahad S, Bajwa A A, Nazir U, Anjum S A, Farooq A, Zohaib A, Sadia S, Nasim W, Adkins S, Saud S, Ihsan M Z, Alharby H, Wu C, Wang D, Huang J. Crop production under drought and heat stress: plant responses and management options. Front Plant Sci, 2017, 8: e01147.
[3] Yan M, Xue C, Xiong Y, Meng X, Li B, Shen R, Lan P. Proteomic dissection of the similar and different responses of wheat to drought, salinity and submergence during seed germination. J Proteom, 2020, 220: e103756.
[4] 施成晓, 陈婷, 王昌江, 秦晓梁, 廖允成. 干旱胁迫对不同抗旱性小麦种子萌发及幼苗根芽生物量分配的影响. 麦类作物学报, 2016, 36: 483-490.
Shi C X, Chen T, Wang C J, Qin X L, Liao Y C. Effect of drought stress on seed germination and biomass allocation of root and shoot of different drought resistant wheat cultivars. J Triticeae Crops, 2016, 36: 483-490. (in Chinese with English abstract)
[5] Ahmad Z, Waraich E A, Akhtar S, Anjum S, Ahmad T, Mahboob W, Hafeez O B A, Tapera T, Labuschagne M, Rizwan M. Physiological responses of wheat to drought stress and its mitigation approaches. Acta Physiol Plant, 2018, 80: 1007-1017.
[6] 马富举, 李丹丹, 蔡剑, 姜东, 曹卫星, 戴廷波. 干旱胁迫对小麦幼苗根系生长和叶片光合作用的影响. 应用生态学报, 2012, 23: 724-730.
Ma F J, Li D D, Cai J, Jiang D, Cao W X, Dai T B. Responses of wheat seedlings root growth and leaf photosynthesis to drought stress. J Appl Ecol, 2012, 23: 724-730. (in Chinese with English abstract)
[7] Ma Z, Bykova N V, Igamberdiev A U. Cell signaling mechanisms and metabolic regulation of germination and dormancy in barley seeds. Crop J, 2017, 5: 459-477.
doi: 10.1016/j.cj.2017.08.007
[8] Waterworth W M, Bray C M, West C E. The importance of safeguarding genome integrity in germination and seed longevity. J Exp Bot, 2015, 66: 3549-3558.
doi: 10.1093/jxb/erv080 pmid: 25750428
[9] Han C, Yang P. Studies on the molecular mechanisms of seed germination. Proteomics, 2015, 15: 1671-1679.
doi: 10.1002/pmic.201400375 pmid: 25597791
[10] Poetsch A R. The genomics of oxidative DNA damage, repair, and resulting mutagenesis. J Comput Struct Biotechnol, 2020, 18: 207-219.
[11] Juan C A, Pérez de la Lastra J M, Plou F J, Pérez-Lebeña E,. The chemistry of reactive oxygen species (ROS) revisited: outlining their role in biological macromolecules (DNA, lipids and proteins) and induced pathologies. Int J Mol Sci, 2021, 22: 4642-4654.
[12] Stinson B M, Loparo J J. Repair of DNA double-strand breaks by the nonhomologous end joining pathway. Annu Rev Biochem, 2021, 90: 137-164.
doi: 10.1146/annurev-biochem-080320-110356 pmid: 33556282
[13] Mei C, Lei L, Tan L M, Xu X J, He B M, Luo C, Yin J Y, Li X, Zhang W, Zhou H H, Liu Z Q. The role of single strand break repair pathways in cellular responses to camptothecin induced DNA damage. Biomed Pharmac, 2020, 125: e109875.
[14] 徐恒恒, 黎妮, 刘树君, 王伟青, 王伟平, 张红, 程红焱, 宋松泉. 种子萌发及其调控的研究进展. 作物学报, 2014, 40: 1141-1156.
doi: 10.3724/SP.J.1006.2014.01141
Xu H H, Li N, Liu S J, Wang W Q, Wang W P, Zhang H, Cheng H Y, Song S Q. Research progress in seed germination and its control. Acta Agron Sin, 2014, 40: 1141-1156. (in Chinese with English abstract)
[15] Kamble N U, Majee M. PROTEIN L-ISOASPARTYL METHYLTRANSFERASE (PIMT) in plants: regulations and functions. Biochem J, 2020, 477: 4453-4471.
doi: 10.1042/BCJ20200794 pmid: 33245750
[16] Ghosh S, Kamble N U, Verma P, Salvi P, Petla B P, Roy S, Majee M. Arabidopsis protein l-isoaspartyl methyltransferase repairs isoaspartyl damage to antioxidant enzymes and increases heat and oxidative stress tolerance. J Biol Chem, 2020, 295: 783-799.
[17] Wei Y, Xu H, Diao L, Zhu Y, Xie H, Cai Q, Wu F, Wang Z, Zhang J, Xie H. Protein repair l-isoaspartyl methyltransferase 1 (PIMT1) in rice improves seed longevity by preserving embryo vigor and viability. Plant Mol Biol, 2015, 89: 475-492.
doi: 10.1007/s11103-015-0383-1 pmid: 26438231
[18] Petla B P, Kamble N U, Kumar M, Verma P, Ghosh S, Singh A, Rao V, Salvi P, Kaur H, Saxena S C, Majee M. Rice protein repair l-isoaspartyl methyltransferase isoforms differentially accumulate during seed maturation to restrict deleterious isoAsp and reactive oxygen species accumulation and are implicated in seed vigor and longevity. New Phytol, 2016, 211: 627-645.
[19] Verma P, Kaur H, Petla B P, Rao V, Saxena S C, Majee M. Protein l-isoaspartyl methyltransferase 2 is differentially expressed in chickpea and enhances seed vigor and longevity by reducing abnormal isoaspartyl accumulation predominantly in seed nuclear proteins. Plant Physiol, 2013, 161: 1141-1157.
[20] Li B B, Zhang S B, Lyu Y Y, Wei S, Hu Y S. Reactive oxygen species-induced protein carbonylation promotes deterioration of physiological activity of wheat seeds. PLoS One, 2022, 17: e0263553.
[21] Penfield S, Rylott E L, Gilday A D, Graham S, Larson T R, Graham I A. Reserve mobilization in the Arabidopsis endosperm fuels hypocotyl elongation in the dark, is independent of abscisic acid, and requires PHOSPHOENOLPYRUVATE CARBOXYKINASE1. Plant Cell, 2004, 16: 2705-2718.
doi: 10.1105/tpc.104.024711 pmid: 15367715
[22] Yu Y, Guo G, Lü D, Hu Y, Li J, Li X, Yan Y. Transcriptome analysis during seed germination of elite Chinese bread wheat cultivar Jimai 20. BMC Plant Biol, 2014, 14: 20.
doi: 10.1186/1471-2229-14-20 pmid: 24410729
[23] 陈蕾太. 逆境条件下小麦种子活力与主要相关酶活性及其基因表达的关系. 山东农业大学硕士学位论文,山东泰安, 2016. pp 3-13, 28-32.
Chen L T. Relation of Wheat Seed Vigor and Main Related Enzyme Activities and Gene Expression under Stress Conditions. MS Thesis of Shandong Agricultural University, Tai’an, Shandong, China, 2016. 3-13, 28-32. (in Chinese with English abstract)
[24] Jammer A, Gasperl A, Luschin-Ebengreuth N, Heyneke E, Chu H, Cantero-Navarro E, Großkinsky D K, Albacete A A, Stabentheiner E, Franzaring J, Fangmeier A, van der Graaff E, Roitsch T. Simple and robust determination of the activity signature of key carbohydrate metabolism enzymes for physiological phenotyping in model and crop plants. J Exp Bot, 2015, 66: 5531-5542.
doi: 10.1093/jxb/erv228 pmid: 26002973
[25] Chu C, Wang S, Paetzold L, Wang Z, Hui K, Rudd J C, Xue Q, Ibrahim A M H, Metz R, Johnson C D, Rush C M, Liu S. RNA-seq analysis reveals different drought tolerance mechanisms in two broadly adapted wheat cultivars ‘TAM 111’ and ‘TAM 112’. Sci Rep, 2021, 11: 4301.
[26] 马雪丽. 不同区域生产的小麦种子活力差异及生理基础研究. 山东农业大学硕士学位论文,山东泰安, 2016. pp 1-12.
Ma X L. Research of Difference in Vigor and Physiological of Wheat Seed Produced in Different Region. MS Thesis of Shandong Agricultural University, Tai’an, Shandong, China, 2016. pp 1-12. (in Chinese with English abstract)
[27] 曲思泛. 玉米正反交组合种子活力差异机理解析. 山东农业大学硕士学位论文,山东泰安, 2021. pp 13-15.
Qu S F. Seed Vigour Comparison of Reciprocal Crosses Hybrid on Maize Inbred Lines. MS Thesis of Shandong Agricultural University, Tai’an, Shandong, China, 2021. pp 13-15. (in Chinese with English abstract)
[28] 刘娟. 小麦种子的萌发与出苗及其影响因素研究. 农业灾害研究, 2023, 13(4): 58-60
Liu J. Study on germination and emergence of wheat seeds and its influencing factors. J Agric Catastroph, 2023, 13(4): 58-60. (in Chinese with English abstract)
[29] 李如雪. 小麦种子活力状况分析与种子活力评价技术研究. 山东农业大学硕士学位论文,山东泰安, 2020. pp 32-46.
Li R X. Analysis of Seed Vigor Status and Study on the Evaluation Technology of Seed Vigor in Wheat. MS Thesis of Shandong Agricultural University, Tai’an, Shandong, China, 2020. pp 32-46. (in Chinese with English abstract)
[30] 张自阳, 王智煜, 刘明久, 黄玲. 干旱胁迫对不同年代小麦品种种子萌发特征的影响. 河南农业科学, 2018, 47(3): 23-28.
doi: 10.15933/j.cnki.1004-3268.2018.03.005
Zhang Z Y, Wang Z Y, Li M J, Huang L. Effect of drought stress on seed germination characteristics of different generations of winter wheat varieties. J Henan Agric Sci, 2018, 47(3): 23-28. (in Chinese with English abstract)
[31] Wasaya A, Zhang X, Fang Q, Yan Z. Root phenotyping for drought tolerance: a review. Agronomy, 2018, 8: 241-262.
[32] Agbicodo E M, Fatokun C A, Muranaka S, Visser R G F, van der Linden C G. Breeding drought tolerant cowpea: constraints, accomplishments, and future prospects. Euphytica, 2009, 167: 353-370.
[33] Waterworth W M, Drury G E, Bray C M, West C E. Repairing breaks in the plant genome: the importance of keeping it together. New Phytol, 2011, 192: 805-822.
doi: 10.1111/j.1469-8137.2011.03926.x pmid: 21988671
[34] Nitiss K C, Malik M, He X, White S W, Nitiss J L. Tyrosyl-DNA phosphodiesterase (tdp1) participates in the repair of top2-mediated DNA damage. Proc Natl Acad Sci USA, 2006, 103: 8953-8958.
pmid: 16751265
[35] Ventura L, Donà M, Macovei A, Carbonera D, Buttafava A, Mondoni A, Rossi G, Balestrazzi A. Understanding the molecular pathways associated with seed vigor. Plant Physiol Biochem, 2012, 60: 196-206.
[36] Oge L, Bourdais G, Bove J, Collet B, Godin B, Granier F, Boutin J P, Job D, Jullien M, Grappin P.Protein repair L-isoaspartyl methyltransferase1 is involved in both seed longevity and germination vigor in Arabidopsis. Plant Cell, 2008, 20: 3022-3037.
[37] Chen X, Börner A, Xin X, Nagel M, He J, Li J, Yin G. Comparative proteomics at the critical node of vigor loss in wheat seeds differing in storability. Front Plant Sci, 2021, 12: 707184.
[38] Rey P, Tarrago L. Physiological roles of plant methionine sulfoxide reductases in redox homeostasis and signaling. Antioxidants (Basel), 2018, 7: 114.
[39] Châtelain E, Satour P, Laugier E, Ly Vu B, Payet N, Rey P, Montrichard F. Evidence for participation of the methionine sulfoxide reductase repair system in plant seed longevity. Proc Natl Acad Sci USA, 2013, 110: 3633-3638.
doi: 10.1073/pnas.1220589110 pmid: 23401556
[40] Singh S, Gupta A, Kaur N. Differential responses of anti-oxidative defence system to long-term field drought in wheat (Triticum aestivum L.) genotypes differing in drought tolerance. Agron Crop Sci, 2012, 198: 185-195.
[41] Kirova E, Pecheva D, Simova-Stoilova L. Drought response in winter wheat: protection from oxidative stress and mutagenesis effect. Acta Physiol Plant, 2021, 43: 8.
[42] Zhao M, Zhang H, Yan H, Qiu L, Baskin C C. Mobilization and role of starch, protein, and fat reserves during seed germination of six wild grassland species. Front Plant Sci, 2018, 9: 234-251.
doi: 10.3389/fpls.2018.00234 pmid: 29535748
[43] 李振华, 王建华. 种子活力与萌发的生理与分子机制研究进展. 中国农业科学, 2015, 48: 646-660.
doi: 10.3864/j.issn.0578-1752.2015.04.03
Li Z H, Wang J H. Advances in research of physiological and molecular mechanism in seed vigor and germination. Sci Agric Sin, 2015, 48: 646-660. (in Chinese with English abstract)
[44] Shi C, Xu L L. Characters of cysteine endopeptidases in wheat endosperm during seed germination and subsequent seedling growth. J Integr Plant Biol, 2009, 51: 52-57.
[1] LI Wen-Juan, WANG Li-Min, QI Yan-Ni, ZHAO Wei, XIE Ya-Ping, DANG Zhao, ZHAO Li-Rong, LI Wen, XU Chen-Meng, WANG Yan, ZHANG Jian-Ping. Functional analysis of flax LuWRI1a in response to drought and salt stresses [J]. Acta Agronomica Sinica, 2024, 50(7): 1750-1761.
[2] XU Nai-Yin, JIN Shi-Qiao, JIN Fang, LIU Li-Hua, XU Jian-Wen, LIU Feng-Ze, REN Xue-Zhen, SUN Quan, XU Xu, PANG Bin-Shuang. Genetic similarity and its detection accuracy analysis of wheat varieties based on SNP markers [J]. Acta Agronomica Sinica, 2024, 50(4): 887-896.
[3] WANG Li-Ping, WANG Xiao-Yu, FU Jing-Ye, WANG Qiang. Functional identification of maize transcription factor ZmMYB12 to enhance drought resistance and low phosphorus tolerance in plants [J]. Acta Agronomica Sinica, 2024, 50(1): 76-88.
[4] CHEN Li, WANG Jing, QIU Xiao, SUN Hai-Lian, ZHANG Wen-Hao, WANG Tian-Zuo. Differences of physiological responses and transcriptional regulation of alfalfa with different drought tolerances under drought stresses [J]. Acta Agronomica Sinica, 2023, 49(8): 2122-2132.
[5] WEI Zheng-Xin, LIU Chang-Yan, CHEN Hong-Wei, LI Li, SUN Long-Qing, HAN Xue-Song, JIAO Chun-Hai, SHA Ai-Hua. Analysis of ASPAT gene family based on drought-stressed transcriptome sequencing in Vicia faba L. [J]. Acta Agronomica Sinica, 2023, 49(7): 1871-1881.
[6] ZHOU Bin-Han, YANG Zhu, WANG Shu-Ping, FANG Zheng-Wu, HU Zan-Min, XU Zhao-Shi, ZHANG Ying-Xin. Screening of active LTR retrotransposons in wheat (Triticum aestivum L.) seedlings and analysis of their responses to abiotic stresses [J]. Acta Agronomica Sinica, 2023, 49(4): 966-977.
[7] LI Zhao-Wei, MO Zu-Yi, SUN Cong-Ying, SHI Yu, SHANG Ping, LIN Wei-Wei, FAN Kai, LIN Wen-Xiong. Construction of rice mutants by gene editing of OsNAC2d and their response to drought stress [J]. Acta Agronomica Sinica, 2023, 49(2): 365-376.
[8] ZHANG Yan-Yan, GUAN Han-Wen, LIU Lin-Ru, HE Li, DUAN Jian-Zhao, WANG Chen-Yang, GUO Tian-Cai, FENG Wei. Effects of phosphorus application on spike and fertile floret development and yield of winter wheat under different water treatments [J]. Acta Agronomica Sinica, 2023, 49(10): 2753-2765.
[9] DING Hong, ZHANG Zhi-Meng, XU Yang, ZHANG Guan-Chu, GUO Qing, QIN Fei-Fei, DAI Liang-Xiang. Physiological and transcriptional regulation mechanisms of nitrogen alleviating drought stress in peanut [J]. Acta Agronomica Sinica, 2023, 49(1): 225-238.
[10] WANG Xia, YIN Xiao-Yu, Yu Xiao-Ming, LIU Xiao-Dan. Effects of drought hardening on contemporary expression of drought stress memory genes and DNA methylation in promoter of B73 inbred progeny [J]. Acta Agronomica Sinica, 2022, 48(5): 1191-1198.
[11] DING Hong, XU Yang, ZHANG Guan-Chu, QIN Fei-Fei, DAI Liang-Xiang, ZHANG Zhi-Meng. Effects of drought at different growth stages and nitrogen application on nitrogen absorption and utilization in peanut [J]. Acta Agronomica Sinica, 2022, 48(3): 695-703.
[12] MA Xin-Lei, XU Rui-Qi, SUO Xiao-Man, LI Jing-Shi, GU Peng-Peng, YAO Rui, LIN Xiao-Hu, GAO Hui. Genome-wide identification of the Class III PRX gene family in foxtail millet (Setaria italica L.) and expression analysis under drought stress [J]. Acta Agronomica Sinica, 2022, 48(10): 2517-2532.
[13] MA Bo-Wen, LI Qing, CAI Jian, ZHOU Qin, HUANG Mei, DAI Ting-Bo, WANG Xiao, JIANG Dong. Physiological mechanisms of pre-anthesis waterlogging priming on waterlogging stress tolerance under post-anthesis in wheat [J]. Acta Agronomica Sinica, 2022, 48(1): 151-164.
[14] ZHANG Ming-Cong, HE Song-Yu, QIN Bin, WANG Meng-Xue, JIN Xi-Jun, REN Chun-Yuan, WU Yao-Kun, ZHANG Yu-Xian. Effects of exogenous melatonin on morphology, photosynthetic physiology, and yield of spring soybean variety Suinong 26 under drought stress [J]. Acta Agronomica Sinica, 2021, 47(9): 1791-1805.
[15] LI Jie, FU Hui, YAO Xiao-Hua, WU Kun-Lun. Differentially expressed protein analysis of different drought tolerance hulless barley leaves [J]. Acta Agronomica Sinica, 2021, 47(7): 1248-1258.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .