Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2024, Vol. 50 ›› Issue (6): 1554-1567.doi: 10.3724/SP.J.1006.2024.34135

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Effect of key cultivated measures on rapeseed oil comprehensive quality

NING Ning1(), YU Xin-Ying1, QIN Meng-Qian1, LOU Hong-Xiang1, WANG Zong-Kai1, WANG Chun-Yun1, JIA Cai-Hua2, XU Zheng-Hua1, WANG Jing1, KUAI Jie1, WANG Bo1, ZHAO Jie1, ZHOU Guang-Sheng1,*()   

  1. 1College of Plant Science and Technology, Huazhong Agricultural University / Key Laboratory of Crop Ecophysiology and Farming System for the Middle Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Wuhan 430070, Hubei, China
    2College of Food Science and Technology, Huazhong Agricultural University / Key Laboratory of Environmental Food Science, Ministry of Education, Wuhan 430070, Hubei, China
  • Received:2023-08-06 Accepted:2024-01-30 Online:2024-06-12 Published:2024-02-20
  • Contact: * E-mail: zhougs@mail.hzau.edu.cn
  • Supported by:
    National Key Research and Development Program of China(2021YFD1600502)

Abstract:

In order to clarify the influence of key cultivation measures on rapeseed oil quality, a single factor field experiments of sowing date, planting density, and nitrogen rate were carried out in Wuhan and Lanzhou with “Xiangzayou 518 (XZY518)” and “Dadi 199 (DD199)” as the experimental materials. The rapeseed was harvested at maturity stage, followed by cold pressing and oil content, oil extraction efficiency, color of rapeseed oil, peroxide value, total polar phenols, and phytosterol content were assessed, and rapeseed oil quality was evaluated comprehensively under each treatment. The results showed that sowing date, density, and nitrogen rate all significantly affected the key quality indexes of rapeseed oil, and the pattern of change of each index was not the same between the two varieties from two sites. Two varieties from two sites had higher oleic acid content in rapeseed oil under early sowing conditions, and as the sowing date was delayed, rapeseed oil color deepened, chlorophyll content increased, and the comprehensive quality decreased. The XZY518 from two sites at D2 density (4.5×105 hm-2) had a lower acid value, higher total polar phenol, total phytosterol, and total tocopherol contents, and better comprehensive quality. The DD 199 from two sites with increasing density, the chlorophyll content of rapeseed oil increased, the color deepened, the linoleic acid content decreased, and the comprehensive quality also decreased. Two varieties from two sites had higher oil content and oil extraction efficiency under low nitrogen (120 kg hm-2). With the increase of nitrogen rate, rapeseed oil color deepened, comprehensive quality declined. Principal component analysis showed that the effect of sowing date on the comprehensive quality of rapeseed oil was greater than that of planting density and nitrogen rate treatments, and that acid value, chlorophyll, total polar phenols, antioxidant power and total phytosterols were key quality indicators affecting rapeseed oils. Correlation analysis showed that seed oil content was significantly positively correlated with oil extraction efficiency, chlorophyll, carotenoids, and rapeseed oil color were all significantly positively correlated, and total polar phenols were significantly positively correlated with antioxidant power. In summary, early sowing at an appropriate date, reducing nitrogen fertilizer rate, and lowering planting density in production can improve the quality of pressed rapeseed oil. The findings of this study offer technical assistance to produce high-quality rapeseed oil raw materials.

Key words: rapeseed, sowing date, density, nitrogenous fertilizer, rapeseed oil, quality

Fig. 1

Main climatic factors at rapeseed pod maturity"

Table 1

Single factor treatment level and key parameter setting"

处理
Treatment
试验点
Experiment test
参数及代号
Parameters and codes
其他栽培参数
Other cultivation parameters
播期S 武汉Wuhan 9-20 (S1) 10-5 (S2) 10-20 (S3) N: 240 D: 45
兰州Lanzhou 4-6 (S1) 4-13 (S2) 4-20 (S3) N: 240 D: 45
密度D 武汉, 兰州Wuhan, Lanzhou 15 (D1) 45 (D2) 75 (D3) S: 10/5、4/13 N: 240
氮肥N 武汉, 兰州Wuhan, Lanzhou 120 (N1) 240 (N2) 360 (N3) S: 10/5、4/13 D: 45

Table 2

Analysis of variance between key cultivation measures and rapeseed oil quality"

处理
Treatment
OC OEE MC R CHL AV POV OA DPPH FRAP TPP CAR TP TT
武汉Wuhan (2020-2021)
品种V NS NS ** ** ** ** ** ** ** ** ** ** ** **
播期S * * ** ** ** ** NS ** ** ** ** ** ** **
V×S NS NS NS NS ** ** ** ** ** ** ** NS ** **
品种V ** ** ** ** * ** NS ** ** ** ** * ** **
密度D ** ** * * * ** NS ** NS ** ** NS ** **
V×D * * NS NS ** ** ** ** NS ** ** NS ** **
品种V ** ** NS NS ** ** ** ** ** ** ** ** ** **
氮肥N ** ** * * ** ** ** ** * * ** ** ** **
V×N ** ** NS NS ** ** ** ** ** ** ** NS ** **
兰州Lanzhou (2021)
品种V ** ** ** ** ** ** * ** NS * NS NS ** **
播期S * ** ** ** ** ** ** ** NS * ** ** ** **
V×S ** ** ** ** ** ** * ** ** ** * ** ** **
品种V ** ** NS NS ** ** ** ** ** ** ** NS ** **
密度D ** ** ** ** ** ** ** ** NS ** ** NS ** **
V×D ** ** NS NS ** ** ** ** * NS ** * ** **
品种V ** ** NS NS ** ** * ** ** ** NS ** ** **
氮肥N ** ** ** ** ** ** ** ** ** ** ** ** ** **
V×N ** ** NS NS ** ** ** ** * ** NS * ** **

Table 3

Effects of key cultivation measures on seed oil content, oil extraction efficiency, and fatty acid composition of rapeseed oil (%)"

栽培措施 Cultivation measure 品种
Variety
处理
Treatment
武汉Wuhan (2020-2021) 兰州Lanzhou (2021)
OC OEE OA LA LNA OC OEE OA LA LNA
播期
Sowing date
XZY518 S1 47.39 b 71.30 b 60.70 d 22.90 c 9.14 c 50.60 b 76.30 b 64.07 c 20.47 b 8.36 c
S2 48.93 a 73.04 a 60.42 e 23.30 b 9.21 b 49.76 bc 75.50 bc 62.35 d 21.91 a 8.67 b
S3 46.84 b 70.68 b 58.89 f 24.29 a 9.35 a 50.51 bc 76.22 bc 61.76 e 21.92 a 9.27 a
CV1 2.27 1.71 1.63 3.06 1.19 0.91 0.58 1.91 3.89 5.30
DD199 S1 47.37 b 71.29 b 67.20 a 17.32 e 8.07 f 52.18 a 77.76 a 67.67 a 16.71 e 7.96 e
S2 47.30 b 71.22 b 67.02 b 17.24 f 8.45 d 51.90 a 77.50 a 67.34 b 17.00 c 8.24 d
S3 46.46 b 70.23 b 66.62 c 17.70 d 8.39 e 49.53 c 75.27 c 67.54 a 16.88 d 8.19 d
CV2 1.08 0.84 0.44 1.42 2.42 2.84 1.78 0.24 0.86 1.80
密度
Density
XZY518 D1 50.49 a 74.67 a 61.74 d 22.23 c 9.10 a 50.42 b 76.14 b 63.16 c 21.15 a 8.63 a
D2 48.97 c 73.08 c 60.22 f 23.20 a 9.11 a 49.06 c 74.79 c 62.20 d 21.26 a 8.52 ab
D3 49.65 b 73.80 b 60.88 e 22.78 b 9.24 a 50.19 b 75.91 b 63.03 c 21.26 a 8.59 a
CV1 1.53 1.08 1.25 2.13 0.85 1.46 0.95 0.84 0.31 0.66
DD199 D1 49.45 bc 73.59 bc 66.48 c 17.68 d 8.63 b 50.06 b 75.78 b 66.30 b 17.24 b 8.14 bc
D2 47.23 d 71.14 d 66.89 b 17.19 e 8.35 c 51.92 a 77.53 a 67.34 a 17.00 b 8.24 abc
D3 47.27 d 71.18 d 67.37 a 17.08 e 8.52 bc 52.16 a 77.74 a 67.44 a 16.84 b 8.08 c
CV2 2.65 1.95 0.67 1.84 1.68 2.24 1.39 0.94 1.19 0.99
氮肥Nitrogen XZY518 N1 50.87 a 75.05 a 61.97 d 22.07 d 9.05 c 51.53 a 77.17 a 62.78 d 21.07 c 8.81 b
N2 48.25 e 72.30 e 59.74 f 23.48 e 9.79 a 47.75 e 73.44 e 62.27 e 21.77 b 8.74 c
N3 47.98 f 71.99 f 59.42 e 23.79 f 9.65 b 45.35 f 70.75 f 61.69 f 22.22 a 8.88 a
CV1 3.25 2.31 2.30 3.95 4.15 6.47 4.37 0.88 2.66 0.81
DD199 N1 50.34 b 74.51 b 66.54 c 17.75 c 8.58 e 50.21 b 75.93 b 66.82 c 17.32 d 8.05 d
N2 49.13 c 73.25 c 67.45 a 17.07 a 8.48 f 48.28 d 74.00 d 67.89 b 16.70 e 7.77 e
N3 48.61 d 72.68 d 66.78 b 17.60 b 8.64 d 49.51 c 75.24 c 68.20 a 16.20 f 7.70 f
CV2 1.80 1.27 0.70 2.04 0.95 1.98 1.30 1.07 3.35 2.40

Table 4

Effect of key cultivation measures on the physical and chemical quality of rapeseed oil"

栽培措施
Cultivation measure
品种
Variety
处理
Treatment
武汉Wuhan (2020-2021) 兰州Lanzhou (2021)
MC
(‰)
R CHL
(mg kg-1)
AV
(mg g-1)
POV
(g kg-1)
MC
(‰)
R CHL
(mg kg-1)
AV
(mg g-1)
POV
(g kg-1)
播期
Sowing date
XZY518 S1 0.654 ab 2.78 d 2.42 d 1.01 c 0.76 a 0.615 bc 3.00 d 1.55 f 0.20 d 0.53 bcd
S2 0.627 cd 2.90 cd 2.58 d 0.90 d 0.73 a 0.608 ab 3.34 c 1.92 e 0.12 e 0.50 cd
S3 0.662 a 3.14 bc 3.52 c 1.38 b 0.60 c 0.625 a 3.68 a 6.63 b 0.36 b 0.55 b
CV1 (%) 2.87 6.27 20.83 22.86 11.70 1.40 10.11 84.06 54.35 5.51
DD199 S1 0.619 de 2.97 cd 2.24 d 0.47 e 0.55 d 0.566 c 2.55 e 2.85 d 0.19 d 0.54 bc
S2 0.632 bcd 3.33 b 5.00 b 1.40 b 0.66 b 0.596 ab 3.45 b 4.90 c 0.27 c 0.48 d
S3 0.649 abc 3.78 a 9.24 a 2.08 a 0.72 a 0.621 bc 3.50 b 7.49 a 0.40 a 0.67 a
CV2 (%) 2.38 11.97 64.19 61.09 13.63 4.62 16.88 45.72 36.92 17.69
密度
Density
XZY518 D1 0.630 a 2.99 d 3.11 c 1.43 b 0.60 c 0.622 a 3.01 b 1.57 e 0.26 b 0.54 ab
D2 0.627 ab 3.06 cd 2.59 d 0.91 d 0.71 a 0.608 ab 3.15 ab 1.92 d 0.11 e 0.48 e
D3 0.627 ab 3.19 abc 3.59 b 1.68 a 0.70 a 0.593 bc 3.31 a 3.78 a 0.22 d 0.56 a
CV1 (%) 0.31 3.28 16.24 29.47 9.03 2.39 4.75 49.03 38.14 7.85
DD199 D1 0.609 b 3.16 bc 2.68 d 0.91 d 0.72 a 0.603 abc 3.00 b 3.02 c 0.58 a 0.49 de
D2 0.632 a 3.24 ab 2.91 c 1.40 b 0.65 b 0.596 bc 3.15 ab 3.16 c 0.27 b 0.51 cd
D3 0.616 ab 3.34 a 3.19 b 1.01 c 0.64 bc 0.585 c 3.30 a 3.46 b 0.23 c 0.53 bc
CV2 (%) 1.90 2.74 8.88 23.22 6.98 1.55 4.72 7.00 53.59 4.12
氮肥Nitrogen XZY518 N1 0.598 c 3.15 b 1.75 d 1.46 a 0.72 a 0.604 ab 3.29 d 2.71 e 0.21 e 0.44 d
N2 0.625 ab 3.34 b 2.67 b 0.78 b 0.63 c 0.618 ab 3.41 bc 3.24 c 0.21 e 0.63 ab
N3 0.648 a 3.45 ab 2.53 c 0.63 c 0.56 d 0.636 ab 3.54 a 3.35 b 0.26 d 0.64 a
CV1 (%) 4.04 4.57 21.44 46.00 12.58 2.58 3.66 11.14 10.69 20.14
DD199 N1 0.590 c 3.27 b 2.62 bc 0.57 d 0.68 b 0.599 b 3.34 cd 2.47 f 0.41 b 0.50 c
N2 0.626 ab 3.45 ab 2.61 bc 0.66 c 0.55 d 0.606 ab 3.37 cd 3.15 d 0.35 c 0.50 c
N3 0.614 bc 3.65 a 2.79 a 0.37 e 0.55 d 0.644 a 3.50 ab 5.50 a 0.55 a 0.58 b
CV2 (%) 2.99 5.57 3.67 28.10 12.55 3.89 2.43 42.93 23.95 8.09

Table 5

Effect of key cultivation measures on the nutrient content of rapeseed oil"

栽培措施 Cultivation measure 品种
Variety
处理
Treatment
武汉Wuhan (2020-2021) 兰州Lanzhou (2021)
TPP
(mg kg-1)
CAR
(mg 100 g-1)
TP
(mg kg-1)
TT
(mg kg-1)
TPP
(mg kg-1)
CAR
(mg 100 g-1)
TP
(mg kg-1)
TT
(mg kg-1)
播期
Sowing date
XZY518 S1 22.83 c 2.75 c 10342.36 a 523.07 c 1.94 cd 2.15 d 8056.73 c 600.06 b
S2 19.15 d 2.45 c 9579.91 c 534.17 b 2.24 bc 2.41 cd 8291.83 b 614.26 a
S3 19.44 d 3.36 b 9642.13 b 540.77 a 3.85 a 4.43 a 8400.56 a 537.68 e
CV1 (%) 9.99 16.17 4.30 1.68 38.37 41.72 2.13 6.98
DD199 S1 21.50 c 3.28 b 7301.32 f 518.96 d 3.41 ab 2.66 c 7322.46 e 542.96 c
S2 46.36 b 3.56 b 7622.69 d 477.76 e 0.62 d 3.50 b 6679.71 f 542.30 d
S3 59.59 a 4.26 a 7350.13 e 467.76 f 2.98 abc 3.42 b 7376.21 d 512.04 f
CV2 (%) 45.52 13.67 2.33 5.56 64.29 14.59 5.44 3.32
密度
Density
XZY518 D1 17.68 de 2.61 b 8560.91 b 524.20 c 0.47 c 3.60 a 8054.04 b 574.99 c
D2 19.45 d 2.56 b 9582.25 a 534.83 a 2.09 b 2.29 c 8289.09 a 614.67 a
D3 15.47 e 2.58 b 8485.58 c 530.55 b 0.91 c 2.72 c 7940.13 c 597.80 b
CV1 (%) 11.36 0.87 6.90 1.01 72.42 23.60 2.20 3.34
DD199 D1 31.06 c 2.77 b 7255.26 f 469.58 f 1.94 b 2.86 bc 6946.73 e 547.14 e
D2 46.65 a 3.61 a 7621.79 d 477.76 e 0.77 c 3.57 a 6679.12 f 542.46 f
D3 33.41 b 2.91 b 7289.21 e 487.09 d 5.62 a 2.80 c 7090.67 d 550.06 d
CV2 (%) 22.69 14.49 2.74 1.83 91.15 13.98 3.02 0.70
氮肥Nitrogen XZY518 N1 15.62 e 2.30 e 8423.95 c 523.35 c 2.24 b 2.92 e 8054.87 b 577.19 c
N2 17.24 d 2.76 d 8710.62 a 527.84 b 1.21 c 3.06 de 8349.79 a 582.72 b
N3 20.18 c 2.94 c 8592.32 b 543.07 a 4.15 a 3.40 c 7735.01 c 598.87 a
CV1 (%) 13.08 12.49 1.68 1.95 58.89 7.99 3.82 1.92
DD199 N1 33.21 b 2.85 cd 7474.87 d 492.36 d 2.09 bc 3.21 cd 6913.12 e 556.90 d
N2 34.00 b 3.13 b 7440.80 f 487.85 f 1.50 bc 3.68 b 7048.20 f 542.43 e
N3 35.33 a 3.47 a 7471.53 e 489.10 e 4.59 a 4.13 a 6549.51 d 509.78 f
CV2 (%) 3.16 9.86 0.25 0.48 60.16 12.54 3.77 4.50

Table 6

Effects of key cultivation measures on the antioxidant power of rapeseed oil (μmol 100 g-1)"

栽培措施
Cultivation measure
品种
Variety
处理
Treatment
武汉Wuhan (2020-2021) 兰州Lanzhou (2021)
DPPH FRAP DPPH FRAP
播期
Sowing date
XZY518 S1 22.92 c 60.68 c 11.07 a 28.91 a
S2 17.15 d 48.46 e 9.04 b 24.20 c
S3 19.94 cd 56.18 d 9.52 b 23.91 c
CV1 (%) 14.43 11.22 10.72 10.94
DD199 S1 17.79 d 48.12 e 9.46 b 24.77 c
S2 30.62 b 76.92 b 11.14 a 26.75 b
S3 43.86 a 119.48 a 10.44 a 29.19 a
CV2 (%) 42.39 44.05 8.18 8.24
密度
Density
XZY518 D1 18.76 b 55.56 c 8.02 d 25.73 b
D2 19.60 b 47.32 d 9.04 cd 24.65 c
D3 17.98 b 48.17 d 9.66 bc 23.80 d
CV1 (%) 4.31 9.00 9.27 3.92
DD199 D1 26.71 a 74.76 a 10.63 ab 27.66 a
D2 28.51 a 76.30 a 11.14 a 25.90 b
D3 26.89 a 72.10 b 9.66 bc 25.96 b
CV2 (%) 3.61 2.86 7.18 3.78
氮肥Nitrogen XZY518 N1 16.84 c 43.91 d 9.73 b 23.51 c
N2 16.62 c 47.95 c 10.59 a 24.71 b
N3 18.25 c 53.74 b 10.29 ab 21.98 d
CV1 (%) 5.12 10.18 4.28 5.84
DD199 N1 31.84 a 75.11 a 7.96 c 24.99 b
N2 27.87 b 73.46 a 10.13 ab 28.29 a
N3 26.88 b 72.49 a 9.69 b 28.40 a
CV2 (%) 9.09 1.79 12.42 7.11

Fig. 2

Correlation analysis between key cultivation measures and rapeseed oil quality S, D, and N represent sowing date, density, nitrogen fertilizer, respectively. OC: oil content; OEE: oil extraction efficiency; MC: moisture content; R: color; CHL: chlorophyll; AV: acid value; POV: peroxide value; OA: oleic acid; LA: linoleic acid; LNA: linolenic acid; DPPH: DPPH radical scavenging activity; FRAP: ferric ion reducing antioxidant power; TPP: total polar phenol; CAR: carotenoid; TP: total phytosterol; TT: total tocopherol. *: P < 0.05; **: P < 0.01."

Fig. 3

Principal component analysis of key cultivation measures with rapeseed oil quality S, D, and N represent sowing date, density, and nitrogen fertilizer, respectively. MC: moisture content; R: color; CHL: chlorophyll; AV: acid value; POV: peroxide value; OA: oleic acid; LA: linoleic acid; LNA: linolenic acid; DPPH: DPPH radical scavenging activity; FRAP: ferric ion reducing antioxidant power; TPP: total polar phenol; CAR: carotenoid; TP: total phytosterol; TT: total tocopherol."

Table 7

Comprehensive evaluation value of rapeseed oil quality under various cultivation measures"

处理
Treatment
武汉Wuhan 兰州Lanzhou
XZY518 DD199 XZY518 DD199
S1 0.564 0.528 0.412 0.287
S2 0.523 0.522 0.206 0.117
S3 0.430 0.450 0.038 0.055
D1 0.470 0.607 0.193 0.192
D2 0.510 0.563 0.226 0.174
D3 0.384 0.561 0.154 0.191
N1 0.488 0.661 0.200 0.151
N2 0.482 0.601 0.150 0.140
N3 0.461 0.596 0.089 0.042
[1] 王汉中. 以新需求为导向的油菜产业发展战略. 中国油料作物学报, 2018, 40: 613-617.
doi: 10.7505/j.issn.1007-9084.2018.05.001
Wang H Z. New-demand oriented oilseed rape industry developing strategy. Chin J Oil Crop Sci, 2018, 40: 613-617. (in Chinese with English abstract)
[2] 王晓玲. 食用油的品质评价及其快速检测方法的研究. 辽宁师范大学硕士学位论文,辽宁大连, 2015.
Wang X L. The Quality Assessment and Rapid Analytical Method Development of Edible Oil. MS Thesis of Liaoning Normal University, Dalian, Liaoning, China, 2015. (in Chinese with English abstract)
[3] 尹奇峰. 面向食用油品质鉴别的低场核磁共振检测平台的研制. 东南大学硕士学位论文,江苏南京, 2017.
Yin Q F. A Low-field Nuclear Magnetic Resonance Devide for Quality Identification of Edible Oil. MS Thesis of Southeast University, Nanjing, Jiangsu, China, 2017. (in Chinese with English abstract)
[4] 丛玲美, 姚小华, 费学谦, 王开良, 王亚萍, 王年金. 长期贮藏对茶油酸值和过氧化值的影响. 林业科学研究, 2007, 20: 246-250.
Cong L M, Yao X H, Fei X Q, Wang K L, Wang Y P, Wang N J. Effect of long-term storage on acid value and peroxide value of oil-tea camellia seed oil. Forest Res, 2007, 20: 246-250. (in Chinese with English abstract)
[5] 孙凤霞, 杜红霞, 周展明. 油脂色泽测定方法研究进展. 中国油脂, 2002, 27(2): 7-9.
Sun F X, Du H X, Zhou Z M. Progress of research on the determination of oil colour. China Oils Fats, 2002, 27(2): 7-9. (in Chinese with English abstract)
[6] Hannoufa A, Pillai B V, Chellamma S. Genetic enhancement of Brassica napus seed quality. Transgenic Res, 2014, 23: 39-52.
[7] 汪雪芳. 油菜籽叶绿素测定方法研究及应用. 华中农业大学硕士学位论文,湖北武汉, 2008.
Wang X F. Study on Chlorophyll Content Determination and ApplicationIn Rapeseed. MS Thesis of Huazhong Agricultural University, Wuhan, Hubei, China, 2008 (in Chinese with English abstract).
[8] 杨瑞楠, 张良晓, 毛劲, 喻理, 姜俊, 张奇, 李培武. 双低菜籽油营养功能研究进展. 中国食物与营养, 2018, 24(11): 58-63.
Yang R N, Zhang L X, Mao J, Yu L, Jiang J, Zhang Q, Li P W. Research progress on nutritional functions of double-low rapeseed oil. Food Nutr China, 2018, 24(11): 58-63. (in Chinese with English abstract)
[9] 宁宁, 莫娇, 胡冰, 李大双, 娄洪祥, 王春云, 白晨阳, 蒯婕, 汪波, 王晶, 徐正华, 李晓华, 贾才华, 周广生. 长江流域不同生态区油菜籽关键品质比较研究. 作物学报, 2023, 49: 3315-3327.
doi: 10.3724/SP.J.1006.2023.34017
Ning N, Mo J, Hu B, Li D S, Lou H X, Wang C Y, Bai C Y, Kuai J, Wang B, Wang J, Xu Z H, Li X H, Jia C H, Zhou G S. Comparative study on the processing quality of winter rape in different ecological zones of the Yangtze River valley. Acta Agron Sin, 2023, 49: 3315-3327. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2023.34017
[10] Chew S C. Cold-pressed rapeseed (Brassica napus) oil: chemistry and functionality. Food Res Int, 2020, 131: 108997.
[11] Yang R, Xue L, Zhang L, Wang X, Qi X, Jiang J, Yu L, Wang X, Zhang W, Zhang Q. Phytosterol contents of edible oils and their contributions to estimated phytosterol intake in the Chinese diet. Foods, 2019, 8: 334.
[12] Ning N, Hu B, Bai C Y, Li X H, Kuai J, He H Z, Ren Y L, Wang B, Jia C H, Zhou G S, Zhao S M. Influence of two-stage harvesting on the properties of cold-pressed rapeseed (Brassica napus L.) oils. J Integr Agric, 2023, 22: 265-278.
[13] 周广生, 王晶, 蒯婕, 汪波. 专辑导读: 加强大田经济作物栽培措施与环境/资源配置的互作研究、推动产业高效优质发展. 作物学报, 2021, 47: 1633-1638.
doi: 10.3724/SP.J.1006.2021.04633
Zhou G S, Wang J, Kuai J, Wang B. Editorial: strengthening the research on the interaction between cultivated measures and environment/resource allocation of field economic crops to promote the development of industry with high efficiency and high quality. Acta Agron Sin, 2021, 47: 1633-1638. (in Chinese with English abstract)
[14] 张子龙, 王瑞, 李加纳, 唐章林, 谌利. 密度和氮素与甘蓝型黄籽油菜主要品质的关系. 西南农业大学学报, 2006, 28: 349-352.
Zhang Z L, Wang R, Li J N, Tang Z L, Chen L. Effects of planting density and fertilization on seed colour and related quality characters of yellow-seeded rapeseed (Brassica napus L.). J Southwest Agric Univ, 2006, 28: 349-352. (in Chinese with English abstract)
[15] Khalatbari A, Rad A S, Valadabady S A, Sayfzadeh S, Zakerin H. Yield components and fatty acids variation of canola cultivars under different irrigation regimes and planting dates. Gesunde Pflanz, 2022, 74: 17-27.
[16] Egesel C Ö, Gül M K, Kahrıman F, Özer İ, Türk F. The effect of nitrogen fertilization on tocopherols in rapeseed genotypes. Eur Food Res Technol, 2008, 227: 871-880.
[17] Zapletalova A, Ducsay L, Varga L, Sitkey J, Javorekova S, Hozlar P. Influence of nitrogen nutrition on fatty acids in oilseed rape (Brassica napus L.). Plants, 2022, 11: 44.
[18] 范晓波. 澳洲坚果油水剂法提取工艺的研究. 中国油脂, 2016, 41(6): 15-18.
Fan X B. Aqueous extraction of macadamia nut oil. China Oils Fats, 2016, 41(6): 15-18. (in Chinese with English abstract)
[19] Belingheri C, Giussani B, Rodriguez-Estrada M T, Ferrillo A, Vittadini E. Oxidative stability of high-oleic sunflower oil in a porous starch carrier. Food Chem, 2015, 166: 346-351.
doi: S0308-8146(14)00915-7 pmid: 25053066
[20] 于坤, 禹晓, 程晨, 陈鹏, 郑畅. 制油工艺对亚麻籽油品质及脂质伴随物含量的影响. 食品科学, 2020, 41(16): 233-243.
Yu K, Yu X, Cheng C, Chen P, Zheng C. Effects of processing techniques on the quality properties and lipid concomitants of flaxseed oil. Food Sci, 2020, 41(16): 233-243. (in Chinese with English abstract)
[21] Li X, Yang R, Lyu C, Chen L, Zhang L, Ding X, Zhang W, Zhang Q, Hu C, Li P. Effect of chlorophyll on lipid oxidation of rapeseed oil. Eur J Lipid Sci Technol, 2019, 121: 1800078.
[22] Franke S, Fröhlich K, Werner S, Böhm V, Schöne F. Analysis of carotenoids and vitamin E in selected oilseeds, press cakes and oils. Eur J Lipid Sci Technol, 2010, 112: 1122-1129.
[23] Damirchi S A, Savage G P, Dutta P C. Sterol fractions in hazelnut and virgin olive oils and 4,4’-dimethylsterols as possible markers for detection of adulteration of virgin olive oil. J Am Oil Chem Soc, 2005, 82: 717-725.
[24] 覃国新, 劳水兵, 莫仁甫, 何洁, 周其峰, 杨玉霞, 罗丽红. HPLC法快速测定植物油中视黄醇和生育酚. 食品科技, 2018, 43(6): 297-301.
Qin G X, Lao S B, Mo R F, He J, Zhou Q F, Yang Y X, Luo L H. Rapid determination of retinol and tocopherol in vegetable oils by high performance liquid chromatography. Food Technol, 2018, 43(6): 297-301. (in Chinese with English abstract)
[25] Samaram S, Mirhosseini H, Tan C P, Ghazali H M, Bordbar S, Serjouie A. Optimisation of ultrasound-assisted extraction of oil from papaya seed by response surface methodology: Oil recovery, radical scavenging antioxidant activity, and oxidation stability. Food Chem, 2015, 172: 7-17.
doi: 10.1016/j.foodchem.2014.08.068 pmid: 25442517
[26] Szydłowska-Czerniak A, Dianoczki C, Recseg K, Karlovits G, Szłyk E. Determination of antioxidant capacities of vegetable oils by ferric-ion spectrophotometric methods. Talanta, 2008, 76: 899-905.
doi: 10.1016/j.talanta.2008.04.055 pmid: 18656676
[27] 纪龙, 申红芳, 徐春春, 陈中督, 方福平. 基于非线性主成分分析的绿色超级稻品种综合评价. 作物学报, 2019, 45: 982-992.
doi: 10.3724/SP.J.1006.2019.82057
Ji L, Shen H F, Xu C C, Chen Z D, Fang F P. Comprehensive evaluation of green super rice varieties based on nonlinear principal component analysis. Acta Agron Sin, 2019, 45: 982-992. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2019.82057
[28] 孙现军, 姜奇彦, 胡正, 李宏博, 庞斌双, 张风廷, 张胜全, 张辉. 小麦种质资源苗期耐盐性鉴定评价. 作物学报, 2023, 49: 1132-1139.
Sun X J, Jiang Q Y, Hu Z, Li H B, Pang B S, Zhang F T, Zhang S Q, Zhang H. ldentification and evaluation of wheat germplasm resources at seedling stage. Acta Agron Sin, 2023, 49: 1132-1139. (in Chinese with English abstract)
[29] Angadi S, Cutforth H, McConkey B, Gan Y. Early seeding improves the sustainability of canola and mustard production on the Canadian semiarid prairie. Can J Plant Sci, 2004, 84: 705-711.
[30] 秦大河, 丁一汇, 王绍武, 王苏民, 董光荣, 林而达, 刘春蓁, 佘之祥, 孙惠南, 王守荣, 伍光和. 中国西部环境演变及其影响研究. 地学前缘, 2002, 9: 321-328.
Qin D H, Ding Y H, Wang S W, Wang S M, Dong G R, Lin E D, Liu C Z, She Z X, Sun H N, Wang S R, Wu G H. A study of environment change and its impacts in western China. Earth Sci Front, 2002, 9: 321-328. (in Chinese with English abstract)
[31] 张子龙, 李加纳, 唐章林, 谌利, 王瑞. 环境条件对油菜品质的调控研究. 中国农学通报, 2006, 22(2): 124-129.
Zhang Z L, Li J N, Tang Z L, Chen L, Wang R. The research progress of the effect of environmental factors on quality characters of rapeseed. Chin Agric Sci Bull, 2006, 22(2): 124-129. (in Chinese with English abstract)
[32] 张树杰, 王汉中. 我国油菜生产应对气候变化的对策和措施分析. 中国油料作物学报, 2012, 34: 114-122.
Zhang S J, Wang H Z. Policies and strategies analyses of rapeseed production response to climate change in China. Chin J Oil Crop Sci, 2012, 34: 114-122. (in Chinese with English abstract)
[33] Omidi H, Tahmasebi Z, Badi H A N, Torabi H, Miransari M. Fatty acid composition of canola (Brassica napus L.), as affected by agronomical, genotypic and environmental parameters. Compt Rendus Biol, 2010, 333: 248-254.
[34] Assefa Y, Prasad P V V, Foster C, Wright Y, Young S, Bradley P, Stamm M, Ciampitti I A. Major management factors determining spring and winter canola yield in north America. Crop Sci, 2018, 58: 1-16.
[35] 杜德志, 肖麓, 赵志, 柳海东, 姚艳梅, 星晓蓉, 徐亮, 李开祥, 王瑞生, 李钧, 付忠, 赵志刚, 唐国永. 我国春油菜遗传育种研究进展. 中国油料作物学报, 2018, 40: 633-639.
doi: 10.7505/j.issn.1007-9084.2018.05.004
Du D Z, Xiao L, Zhao Z, Liu H D, Yao Y M, Xing X R, Xu L, Li K X, Wang R S, Li J, Fu Z, Zhao Z G, Tang G Y. Advances in genetic breeding of spring rapeseed in China. Chin J Oil Crop Sci, 2018, 40: 633-639. (in Chinese with English abstract)
[36] Kachel-Jakubowska M, Sujak A, Krajewska M. Effect of fertilizer and storage period on oxidative stability and color of rapeseed oils. Pol J Environ Stud, 2018, 27: 699-708.
[37] Ward K, Scarth R, McVetty P, Daun J. Effects of genotype and environment on seed chlorophyll degradation during ripening in four cultivars of oilseed rape (Brassica napus). Can J Plant Sci, 1992, 72: 643-649.
[38] Leach J E, Stevenson H J, Rainbow A J, Mullen L A. Effects of high plant populations on the growth and yield of winter oilseed rape (Brassica napus). J Agric Sci, 1999, 132: 173-180.
[39] Zhang S, Liao X, Zhang C, Xu H. Influences of plant density on the seed yield and oil content of winter oilseed rape (Brassica napus L.). Ind Crop Prod, 2012, 40: 27-32.
[40] 唐湘如, 官春云. 油菜栽培密度与几种酶活性及产量和品质的关系. 湖南农业大学学报, 2001, 27(4): 264-267.
Tang X R, Guan C Y. Effects of culture density on activities of several enzymes in rapeseed and its relationships with yield and quality. J Hunan Agric Univ, 2001, 27(4): 264-267. (in Chinese with English abstract)
[41] Zaman F M, Dadashi M, Shirani R A, Khorgami A. Analysis of the effect of plant density and use of selenium on oil quality and quantity in winter-planted canola varieties. Appl Ecol Environ Res, 2018, 16: 6903-6916.
[42] Morrison M, McVetty P, Scarth R. Effect of row spacing and seeding rates on summer rape in southern Manitoba. Can J Plant Sci, 1990, 70: 127-137.
[43] 赵继献, 程国平, 任廷波, 高志宏. 不同氮水平对优质甘蓝型黄籽杂交油菜产量和品质性状的影响. 植物营养与肥料学报, 2007, 13: 882-889.
Zhao J X, Cheng G P, Ren T B, Gao Z H. Effect of different nitrogen rates on yield and quality parameters of high grade yellow seed hybrid rape. Plant Nutr Fert Sci, 2007, 13: 882-889. (in Chinese with English abstract)
[44] 邱江, 黄秀芳, 戚存扣, 孙敬东, 陈新军, 韩桂琴. 移栽密度和施氮量对宁油14号油菜产量及品质的影响. 江苏农业科学, 2006, 34(4): 22-24.
Qiu J, Huang X F, Qi C K, Sun J D, Chen X J, Han G Q. Effects of transplanting density and nitrogen application on the yield and quality of Ningyou No.14 oilseed rape. Jiangsu Agric Sci, 2006, 34(4): 22-24. (in Chinese with English abstract)
[45] Wang C, Li Z J, Wu W. Understanding fatty acid composition and lipid profile of rapeseed oil in response to nitrogen management strategies. Food Res Int, 2023, 165: 112565.
[1] YAN Zi-Heng, WANG Xian-Ling, SHAO Dong-Li, GAO Geng-Dong, NING Ning, JIA Cai-Hua, KUAI Jie, WANG Bo, XU Zheng-Hua, WANG Jing, ZHAO Jie, ZHOU Guang-Sheng. Effect of chlorophyll degradation rate in seed on key quality of rapeseed oil [J]. Acta Agronomica Sinica, 2024, 50(7): 1818-1828.
[2] PEI Fa-Jing, ZHANG Wen-Xuan, ZHANG Xiao, WANG Xin-Yu, PENG Shao-Bing, MI Jia-Ming. Developing new rice lines with ultrashort-duration, long-grain, and fragrance [J]. Acta Agronomica Sinica, 2024, 50(7): 1684-1698.
[3] XIE Xiong-Ze, XIE Jie, CHU Qian-Mei, YIN Yu-Feng, YU Xiao-Hong, WANG Dun, FENG Peng. Analysis of water requirement and water surplus/deficit characteristics of winter rapeseed in Yangtze River Basin [J]. Acta Agronomica Sinica, 2024, 50(7): 1829-1840.
[4] YANG Qi-Rui, LI Lan-Tao, ZHANG Duo, WANG Ya-Xian, SHENG Kai, WANG Yi-Lun. Effect of phosphorus application on yield, quality, light temperature physiological characteristics, and root morphology in summer peanut [J]. Acta Agronomica Sinica, 2024, 50(7): 1841-1854.
[5] XU Ze, WU Xin-Ling, LIU Zhen-Yu, LI Han-Jia, LENG Xin-Hua, WU Tian-Fan, CHEN Yuan, ZHANG Xiang, CHEN De-Hua. Effects of planting density with nitrogen rate on regulation of nitrogen utilization in summer direct seeded cotton [J]. Acta Agronomica Sinica, 2024, 50(6): 1584-1596.
[6] MA Yan-Ming, LOU Hong-Yao, WANG Wei, SUN Na, YAN Guo-Rong, ZHANG Sheng-Jun, LIU Jie, NI Zhong-Fu, XU Lin. Genetic difference and genome association analysis of grain quality traits in Xinjiang winter wheat [J]. Acta Agronomica Sinica, 2024, 50(6): 1394-1405.
[7] WANG Long, LI Jing, QIAN Chen, LIN Guo-Bing, LI Yi-Yang, YANG Guang, ZUO Qing-Song. Effects of salt stress on yield, quality, and physiology in rapeseed [J]. Acta Agronomica Sinica, 2024, 50(6): 1597-1607.
[8] YANG Chun-Ju, TANG Dao-Bin, ZHANG Kai, DU Kang, HUANG Hong, QIAO Huan-Huan, WANG Ji-Chun, LYU Chang-Wen. Effect of reducing nitrogen and potassium application on yield and quality in sweet potato [J]. Acta Agronomica Sinica, 2024, 50(5): 1341-1350.
[9] WANG Xian-Ling, JIANG Yue, LEI Yi-Zhong, XIAO Sheng-Nan, SHE Hui-Jie, DUAN Sheng-Xing, HUANG Ming, KUAI Jie, WANG Bo, WANG Jing, ZHAO Jie, XU Zheng-Hua, ZHOU Guang-Sheng. Effects of seed soaking with exogenous substances on late-seeded rapeseed cold resistance of during overwintering period and yield [J]. Acta Agronomica Sinica, 2024, 50(5): 1271-1286.
[10] CAO Xin-Yuan, DU Ming-Li, WANG Yu-Cheng, CHEN Xin-Hua, CHEN Jia-Xin, LING Xiao-Xia, HUANG Jian-Liang, PENG Shao-Bing, DENG Nan-Yan. Evaluation of annual yield gap and yield limiting facters in rice-rapeseed cropping system: an example from Wuxue city, Hubei province, China [J]. Acta Agronomica Sinica, 2024, 50(5): 1287-1299.
[11] LOU Fei, ZUO Yi-Ping, LI Meng, DAI Xin-Meng, WANG Jian, HAN Jin-Ling, WU Shu, LI Xiang-Ling, DUAN Hui-Jun. Effects of organic fertilizer substituting chemical fertilizer nitrogen on yield, quality, and nitrogen efficiency of waxy maize [J]. Acta Agronomica Sinica, 2024, 50(4): 1053-1064.
[12] WU Xia-Yu, LI Pan, WEI Jin-Gui, FAN Hong, HE Wei, FAN Zhi-Long, HU Fa-Long, CHAI Qiang, YIN Wen. Effect of reduced irrigation and combined application of organic and chemical fertilizers on photosynthetic physiology, grain yield and quality of maize in northwestern irrigation areas [J]. Acta Agronomica Sinica, 2024, 50(4): 1065-1079.
[13] HE Jia-Qi, BAI Yi-Xiong, YAO Xiao-Hua, YAO You-Hua, AN Li-Kun, WANG Yu-Qin, WANG Xiao-Ping, LI Xin, CUI Yong-Mei, WU Kun-Lun. Effects of cutting on the recovery characteristics, grain and straw yield, and quality traits of Qingke [J]. Acta Agronomica Sinica, 2024, 50(3): 747-755.
[14] KE Hui-Feng, SU Hong-Mei, SUN Zheng-Wen, GU Qi-Shen, YANG Jun, WANG Guo-Ning, XU Dong-Yong, WANG Hong-Zhe, WU Li-Qiang, ZHANG Yan, ZHANG Gui-Yin, MA Zhi-Ying, WANG Xing-Fen. Identification for yield and fiber quality traits and evaluation of molecular markers in modern cotton varieties [J]. Acta Agronomica Sinica, 2024, 50(2): 280-293.
[15] YANG Jing-Lei, WU Bing-Jie, WANG An-Zhou, XIAO Ying-Jie. Genomic prediction of maize agronomic and quality traits using multi-omics data [J]. Acta Agronomica Sinica, 2024, 50(2): 373-382.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .