Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2024, Vol. 50 ›› Issue (6): 1540-1553.doi: 10.3724/SP.J.1006.2024.32040

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Effect of nitrogen application on morphological conformation and fractal characteristics of drip irrigated rice roots

TANG Qing-Yun1(), YANG Jing-Jing1, ZHAO Lei1, SONG Zhi-Wen1, WANG Guo-Dong2,*(), LI Yu-Xiang1,*()   

  1. 1Key Laboratory of Oasis Ecological Agriculture / College of Agriculture, Shihezi University / Xinjiang Production and Construction Corps, Shihezi 832003, Xinjiang, China
    2Key Laboratory of Water-saving Agriculture in Northwest Oasis / Key Laboratory of Efficient Utilization of Water and Fertilizer Resources, Ministry of Agriculture and Rural Affairs / Xinjiang Academy of Agricultural Reclamation Sciences, Shihezi, 832000, Xinjiang, China
  • Received:2023-09-26 Accepted:2024-01-30 Online:2024-06-12 Published:2024-02-21
  • Contact: * E-mail: 664812734@qq.com; Email: yxli@shzu.edu.cn
  • Supported by:
    National Natural Science Foundation of China(31460541);National Natural Science Foundation of China(32360527);Science and Technology Plan Project of Tumushuke City, the Third Division(KJ2023CG03);Young Innovative Top Talents Project of Shihezi University(CXBJ202003);Independent Support Scientific Research Project of Shihezi University(ZZZC2022008);SRP Program of Shihezi University(SRP2023027)

Abstract:

The aim of this study was to explore the changes of root morphology, configuration, and nitrogen use efficiency of rice under mulched drip irrigation and their relationship with fractal dimension. From 2021 to 2022, a pot experiment was conducted with two irrigation methods of drip irrigation (DI) and flooding irrigation (FI) and four nitrogen (N) application levels (0, 150, 300 and 450 kg hm-2) using high nitrogen efficient (high-NUE) cultivar (T-43) and low-NUE cultivar (Ken-26) as the experimental materials. Based on the box-counting method combined with the root image fractal analysis program, the fractal dimension and fractal abundance of root morphology were calculated, and the effects of drip irrigation and nitrogen application on rice yield, nitrogen use efficiency, root morphology, configuration, fractal dimension, and fractal abundance were studied. The results showed as follows: (1) under the same N application level, compared with FI, the fine root percentage, root length density (RLD) β-value, and N agronomic efficiency (NAE) of the two varieties under DI were significantly increased (6.8%-14.5% and 9.9%-17.2%, 0.65%-5.45% and 0.32%-3.43%, 12.1%-22.4% and 12.2%-20.5%); >0.5 mm RLD, surface area density (SAD) and root bulk density (RLD), fractal dimension (FD), fractal abundance (FA) were significantly lower in the 0-40 cm soil layer, resulting in lower yields (3.8%-37.4% and 7.6%-48.3%). (2) Under DI, nitrogen application significantly increased FD and FA of rice roots. T-43 had the highest FD and FA when the nitrogen application rate was 300 kg hm-2 (1.55 and 14.07), and Ken-26 had the highest FD and FA when the nitrogen application rate was 450 kg hm-2 (1.62 and 14.78). (3) Correlation analysis showed that FD and FA were significantly or extremely significantly positively correlated with RLD of 0.1-0.3 mm in diameter, root length, and root mass density, yield and N grain production efficiency in 0-10 cm soil layer, and significantly negatively correlated with the surface area density in 30-40 cm soil layer. Therefore, under drip irrigation, the high-NUE cultivar “T-43” with N fertilizer of 300 kg hm-2 can increase the proportion of fine root length density, optimize the distribution of surface root morphology, and increase the fractal dimension and abundance of the root system, thus achieving a synergistic increase in the yield of drip-irrigated rice and the efficiency of nitrogen fertilizer utilization.

Key words: rice, drip irrigation, nitrogen application rate, root morphology, fractal dimension

Fig. 1

Precipitation and temperature in rice during growth season period"

Table 1

Fertilizer application over the full growth stage of drip and flood irrigation"

肥料品种
Fertilizer type
生育时期Growth stage 总计
Total
(g pot 1)
苗期
Seedling stage
三叶期
Three leaf stage
分蘖期
Tillering stage
拔节期
Jointing stage
孕穗期
Booting stage
抽穗期
Heading stage
扬花期
Flowering stage
灌浆期
Grain
filling stage
CO(NH2)2 N0 0 0 0 0 0 0 0 0 0
N150 0.65 1.96 2.62 1.30 1.30 1.30 1.30 2.60 13.04
N300 1.30 3.92 5.22 2.61 2.61 2.61 2.61 5.22 26.09
N450 1.96 5.87 7.83 3.91 3.91 3.91 3.91 7.83 39.13
KH2PO4 0.46 1.38 1.85 0.92 0.92 0.92 0.92 1.85 9.23

Fig. 2

Root collection device"

Table 2

Effect of water management and nitrogen application on nitrogen use efficiency"

年份
Year
品种
Cultivar
处理
Treatment
产量
Yield (g pot-1)
N积累总量
TNA (g pot-1)
氮素稻谷生产效率
NGPE (kg kg-1)
氮肥偏生产力
PFP (kg kg-1)
氮肥农学利用效率
NAE (kg kg-1)
2021 T-43 FI-N0 169.84±14.85 cd 4.81±0.41 c 89.63±4.23 a
FI-N150 234.50±37.43 bc 5.16±0.95 bc 75.23±5.25 ab 37.25±8.05 a 4.90±7.54 b
FI-N300 293.59±47.95 a 7.57±0.49 a 65.36±4.21 abc 31.64±5.16 ab 5.46±3.71 ab
FI-N450 268.53±18.56 a 5.29±0.49 bc 62.77±4.12 abc 19.31±1.32 c 4.42±1.33 b
DI-N0 129.63±23.82 d 4.23±0.36 c 73.21±3.56 ab
DI-N150 186.86±13.92 c 5.20±0.65 bc 60.76±12.35 abc 40.28±3.03 a 5.33±3.73 ab
DI-N300 270.08±67.44 a 6.45±0.25 b 58.36±4.20 bc 26.94±7.26 bc 6.97±5.75 a
DI-N450 249.97±67.44 ab 6.93±1.06 ab 54.65±1.20 bcd 19.41±4.84 c 4.09±5.59 b
K-26 FI-N0 147.26±8.04 c 5.30±1.02 bc 75.23±9.84 b
FI-N150 170.46±44.86 b 6.61±0.72 b 64.56±10.42 b 36.76±9.69 a 5.36±10.99 c
FI-N300 266.98±58.47 a 7.57±0.30 a 55.36±6.09 b 28.77±6.30 ab 6.58±5.79 b
FI-N450 249.35±39.91 b 7.26±0.60 ab 49.78±19.63 b 15.25±2.87 c 4.12±2.31 d
DI-N0 100.85±16.71 c 3.57±0.10 d 85.35±4.25 a
DI-N150 167.99±31.86 b 3.85±0.03 d 95.47±7.88 a 36.20±6.84 a 7.44±10.24 ab
DI-N300 205.11±17.63 b 5.03±0.57 cd 84.77±5.36 a 22.10±1.89 bc 8.22±3.21 a
DI-N450 225.84±5.88 ab 5.32±0.49 c 78.66±11.56 a 11.78±0.41 c 6.53±1.21 b
2022 T-43 FI-N0 233.26±6.19 c 4.68±0.39 e 73.46±5.81 a
FI-N150 267.29±8.04 b 5.61±1.38 c 65.93±17.58 ab 37.59±1.73 b 2.69±0.39 bc
FI-N300 296.37±2.78 a 8.07±0.54 a 64.66±2.92 ab 26.92±0.30 c 3.47±0.74 bc
FI-N450 288.95±16.09 a 5.42±0.74 cd 62.77±3.72 abc 21.32±1.16 d 2.36±1.50 c
DI-N0 204.49±8.97 d 4.23±0.36 f 62.77±3.72 abc
DI-N150 241.00±7.12 c 5.20±0.65 d 60.76±7.18 abc 44.03±1.91 a 5.87±3.37 ab
DI-N300 270.39±1.24 b 6.45±0.25 bc 51.53±1.50 bc 25.95±0.76 cd 6.63±1.03 a
DI-N450 256.47±2.78 bc 6.93±1.06 b 51.65±8.08 bc 18.43±0.19 e 5.76±0.68 ab
K-26 FI-N0 163.66±12.07 c 4.81±1.02 bc 55.24±9.84 b
FI-N150 237.90±26.61 b 6.40±0.72 b 49.51±10.42 c 51.63±6.57 a 5.73±6.57 c
FI-N300 259.87±26.30 a 7.02±0.26 ab 48.46±6.09 c 28.29±3.21 c 6.68±6.43 b
FI-N450 281.52±13.92 a 7.76±1.08 a 46.11±19.63 c 21.23±0.34 d 4.81±1.01 d
DI-N0 126.84±13.92 d 3.13±0.02 d 108.75±11.86 a
DI-N150 168.91±8.66 c 3.25±0.03 d 109.81±18.64 a 36.76±2.03 b 6.03±2.03 b
DI-N300 225.84±4.64 b 4.59±0.20 d 86.89±7.09 a 24.41±0.53 cd 8.05±0.53 a
DI-N450 234.81±5.26 b 5.12±0.42 bc 86.81±6.90 a 13.71±0.44 e 5.46±0.44 c
方差分析 ANOVA
水分管理Water management (W) 165.86** 347.8** 73.2** 506.3** 73.2**
氮肥Nitrogen (N) 180.58** 4.40 NS 7.39* 4.75 NS 7.39*
水分×施肥W×N 7.03** 3.72 NS 13.1** 39.3** 13.1**

Table 3

Effect of water management and nitrogen application on morphological indices of root system"

品种
Cultivar
施氮量
Nitrogen
根长密度
RLD (cm dm-3)
根表面积密度
SAD (cm2 dm-3)
平均直径
AD (cm)
根体积密度
RVD (cm3 dm-3)
T-43 FI-N0 1652.2±71.3 d 278.3±20.5 d 0.54±0.01 a 3.7±0.4 c
FI-N150 1893.9±63.2 c 330.5±7.4 c 0.54±0.02 a 4.6±0.1 b
FI-N300 2625.2±2.8 a 456.0±6.1 a 0.55±0.01 a 6.3±0.2 a
FI-N450 2413.7±73.4 b 418.9±19.9 b 0.54±0.01 a 5.8±0.4 a
DI-N0 1027.5±139.9 f 156.8±22.1 f 0.46±0.01 b 1.9±0.3 d
DI-N150 1309.5±42.4 e 197.2±10.1 e 0.46±0.01 c 2.4±0.2 d
DI-N300 1354.0±16.3 e 198.3±3.8 e 0.46±0.01 c 2.3±0.1 d
DI-N450 1238.2±228.5 e 193.6±35.3 e 0.49±0.02 c 2.4±0.5 d
K-26 FI-N0 2393.8±101.5 c 364.6±21.1 d 0.49±0.01 bc 4.4±0.3 c
FI-N150 2664.6±302.3 b 444.7±65.5 c 0.53±0.01 a 6.0±1.1 b
FI-N300 3126.1±248.5 a 495.8±35.8 b 0.54±0.03 a 6.3±0.4 b
FI-N450 3249.3±43.9 a 573.0±15.9 a 0.55±0.01 a 8.1±0.4 a
DI-N0 878.9±49.3 f 117.8±4.3 g 0.42±0.01 c 1.3±0.1 f
DI-N150 1155.7±28.9 e 174.5±3.0 f 0.52±0.05 ab 2.1±0.1 e
DI-N300 1395.4±21.1 e 198.3±5.8 f 0.44±0.01 bc 2.3±0.1 e
DI-N450 1823.3±116.5 d 265.2±13.9 e 0.46±0.01 bc 3.1±0.1 d
方差分析 ANOVA
水分管理Water management (W) 429.6** 524.0** 347.8** 536.5**
施肥Nitrogen (N) 27.1** 23.0** 4.40 NS 18.3**
水分×施肥W×N 30.4** 30.7** 3.72 NS 28.3**

Fig. 3

Root length distribution classified by various root diameters T-43: high-NUEs cultivar; Ken-26: low-NUEs cultivar. DI: drip irrigation; FI: flooding irrigation. Different letters indicate significant differences between different nitrogen applications in the same moisture management at the 0.05 probability level."

Fig. 4

Effects of water management and nitrogen application on the vertical distribution of rice roots T-43: high-NUEs cultivar; Ken-26: low-NUEs cultivar. DI: drip irrigation; FI: flooding irrigation. Different letters indicate significant differences between different nitrogen applications in the same moisture management at the 0.05 probability level."

Table 4

Effects of water management and nitrogen application on the distribution of β-values of rice root conformation"

品种
Cultivar
施氮量
Nitrogen
根长密度β
RLD β
根表面积密度β
SAD β
根体积密度β
RVD β
根质量密度β
RDWD β
T-43 FI-N0 0.915±0.001 c 0.914±0.001 d 0.913±0.001 b 0.900±0.010 bcd
FI-N150 0.918±0.000 bc 0.915±0.001 d 0.912±0.001 b 0.905±0.010 bc
FI-N300 0.924±0.012 b 0.925±0.013 bc 0.926±0.010 a 0.910±0.010 ab
FI-N450 0.937±0.010 a 0.934±0.001 a 0.932±0.002 a 0.921±0.010 a
DI-N0 0.917±0.001 bc 0.913±0.002 d 0.909±0.001 b 0.911±0.010 ab
DI-N150 0.937±0.002 a 0.931±0.001 ab 0.924±0.001 a 0.891±0.000 cd
DI-N300 0.941±0.010 a 0.936±0.010 a 0.932±0.010 a 0.902±0.020 bcd
DI-N450 0.920±0.010 bc 0.918±0.001 cd 0.914±0.001 b 0.890±0.010 d
K-26 FI-N0 0.900±0.002 de 0.905±0.010 c 0.910±0.010 cd 0.893±0.001 cd
FI-N150 0.906±0.001 cd 0.906±0.011 c 0.906±0.010 d 0.890±0.010 cde
FI-N300 0.911±0.010 c 0.910±0.010 c 0.909±0.011 d 0.898±0.001 c
FI-N450 0.894±0.010 e 0.891±0.011 d 0.888±0.010 e 0.882±0.010 de
DI-N0 0.932±0.011 b 0.928±0.010 b 0.924±0.010 ab 0.904±0.001 bc
DI-N150 0.929±0.012 b 0.926±0.001 b 0.922±0.002 bc 0.919±0.001 a
DI-N300 0.946±0.011 a 0.942±0.001 a 0.937±0.001 a 0.920±0.000 ab
DI-N450 0.927±0.011 b 0.925±0.010 b 0.923±0.010 bc 0.880±0.021 e
方差分析 ANOVA
水分管理模式Water management (W) 6.02* 1.50NS 0.12NS 10.2**
施肥Nitrogen (N) 19.14** 17.4** 11.5** 0.88NS
栽培×施肥W×N 8.07** 11.5** 11.1** 7.55**

Table 5

Effects of water management and nitrogen application on fractal dimension and fractal abundance of rice roots"

施氮量
Nitrogen
分形维数FD 分形丰度FA
T-43 K-26 T-43 K-26
FI-N0 1.51±0.02 b 1.65±0.06 b 13.63±0.21 c 14.90±0.31 c
FI-N150 1.54±0.03 ab 1.70±0.04 ab 14.19±0.22 b 15.29±0.15 bc
FI-N300 1.59±0.03 a 1.72±0.03 ab 14.69±0.29 a 15.69±0.29 ab
FI-N450 1.55±0.02 ab 1.75±0.04 a 14.34±0.16 ab 15.91±0.40 a
DI-N0 1.48±0.02 b 1.43±0.04 b 13.06±0.56 b 12.73±0.45 c
DI-N150 1.50±0.01 b 1.47±0.05 b 13.30±0.25 b 12.83±0.32 c
DI-N300 1.55±0.02 a 1.57±0.02 a 14.07±0.25 a 14.07±0.34 b
DI-N450 1.52±0.01 ab 1.62±0.01 a 13.71±0.05 ab 14.78±0.08 a
方差分析 ANOVA
水分管理Water management (W) 8.97* 53.5** 11.78** 20.45**
施肥Nitrogen (N) 3.62 NS 8.21* 12.58** 2.93 NS
水分×施肥W×N 1.80 NS 2.91 NS 0.26 NS 5.98*

Fig. 5

Root fractal parameters and their correlation with root morphology Abbreviations of indexes and treatments are the same as those given in Tables 2 and 3, respectively. A: T-43; B: K-26."

Fig. 6

Correlation analysis between root fractal parameters and rice yield and nitrogen use efficiency Abbreviations of indexes are the same as those given in Table 2. *, * *, and * * * mean significant difference at the 0.05, 0.01, and 0.001 probability levels, respectively."

[1] 张晨晖, 章岩, 李国辉, 杨子君, 查莹莹, 周驰燕, 许轲, 霍中洋, 戴其根, 郭保卫. 侧深施肥下水稻高产形成的根系形态及其生理变化特征. 作物学报, 2023, 49: 1039-1051.
Zhang C H, Zhang Y, Li G H, Yang Z J, Zha Y Y, Zhou C Y, Xu K, Huo Z Y, Dai Q G, Guo B W. Characteristics of root morphology and its physiological changes in the formation of high yielding rice under lateral deep fertilization. Acta Agron Sin, 2023, 49: 1039-1051. (in Chinese with English abstract)
[2] Henke M, Sarlikioti V, Kurth W, Gerhard H, Sorlin B, Pagès L. Exploring root developmental plasticity to nitrogen with a three- dimensional architectural model. Plant Soil, 2014, 385: 49-62.
[3] Ristova D, Busch W. Natural variation of root traits: from development to nutrient uptake. Plant Physiol, 2014, 166: 518-527.
doi: 10.1104/pp.114.244749 pmid: 25104725
[4] 吴昊, 张瑛, 王琛. 栽培优化对长江下游水稻灌浆期根系特征和稻米淀粉特性的影响. 作物学报, 2024, 50: 478-492.
doi: 10.3724/SP.J.1006.2024.32011
Wu H, Zhang Y, Wang C. Effects of cultivation optimization on root characteristics and starch characteristics of rice at grain filling stage in the lower reaches of the Yangtze River. Acta Agron Sin, 2024, 50: 478-492. (in Chinese with English abstract)
[5] Rogers E D, Benfey P N. Regulation of plant root system architecture: implications for crop advancement. Curr Opin Biotechnol, 2015, 32: 93-98.
[6] 闫励, 杨方社, 李怀恩. 砒砂岩区不同立地下沙棘根系分形特征. 干旱区研究, 2019, 36: 467-473.
Yan L, Yang F S, Li H E. Fractal characteristics of the root system of sea buckthorn under different elevations in an arsenic sandstone area. Arid Zone Res, 2019, 36: 467-473. (in Chinese with English abstract)
[7] 马雄忠, 王新平. 阿拉善高原2种荒漠植物根系构型及生态适应性特征. 生态学报, 2020, 40: 6001-6008.
Ma X Z, Wang X P. Root architecture and adaptive strategy of two desert plants in the Alxa Plateau. Acta Ecol Sin, 2020, 40: 6001-6008. (in Chinese with English abstract)
[8] 王义琴, 张慧娟, 白克智, 孙勇如. 分形几何在植物根系研究中的应用. 自然杂志, 1999, 21: 143-146.
Wang Y Q, Zhang H J, Bai K Z, Sun Y R. Application of fractal geometry to the study of plant roots. J Nat Chin, 1999, 21: 143-146. (in Chinese with English abstract)
[9] Dannowski M, Block A. Fractal geometry and root system structures of heterogeneous plant communities. Plant Soil, 2005, 272: 61-76.
[10] Fernandez-Martinez M, Sanchze-Granero M A. Fractal dimension for fractal structures. Topol Appl, 2014, 163: 93-111.
[11] Mandelbrot B B. The fractal geometry of nature. Am J Phys, 1983, 51: 286-286.
[12] Costa C, Dwyer L M, Dutilleul P. Morphology, and fractal dimension of root systems of maize hybrids bearing the leafy trait. Can J Bot, 2003, 81: 706-713.
[13] 汪洪, 金继运, 山内章. 以盒维数法分形分析水稻根系形态特征及初探其与锌吸收积累的关系. 作物学报, 2008, 34: 1637-1643.
doi: 10.3724/SP.J.1006.2008.01637
Wang H, Jin J Y, Yamauchi A. Fractal analysis of rice root morphological characteristics by box dimension method and its relationship with zinc absorption and accumulation were studied. Acta Agron Sin, 2008, 34: 1637-1643 (in Chinese with English abstract).
[14] 陈绍民, 李明思, 高超, 赵宇龙, 郝忠文. 桶栽棉花根系构型的分形特征分析. 灌溉排水学报, 2015, 34(4): 75-79.
Chen S M, Li S M, Gao C, Zhao Y L, Hao Z W. Analysis of fractal characteristics of root architecture of barrel-cultivated cotton. J Irrig Drain, 2015, 34(4): 75-79. (in Chinese with English abstract)
[15] 杨培岭, 任树梅, 罗远培. 分形曲线度量与根系形态的分形表征. 中国农业科学, 1999, 32: 89-92.
Yang P L, Ren S M, Luo Y P. Fractal curve metrics and fractal characterization of root morphology. Sci Agric Sin, 1999, 32: 89-92. (in Chinese with English abstract)
[16] 陆大克, 段骅, 王维维, 刘明爽, 魏艳秋, 徐国伟. 不同干湿交替灌溉与氮肥形态耦合下水稻根系生长及功能差异. 植物营养与肥料学报, 2019, 25: 1362-1372.
Lu D K, Duan H, Wang W W, Liu M S, Wei Y Q, Xu G W. Differences in root growth and function of rice under different dry-wet alternate irrigation and nitrogen fertilizer form coupling. J Plant Nutr Fert, 2019, 25: 1362-1372. (in Chinese with English abstract)
[17] 张绍文, 何巧林, 王海月, 蒋明金, 李应洪, 严奉君, 杨志远, 孙永健, 郭翔, 马均. 控制灌溉条件下施氮量对杂交籼稻F优498氮素利用效率及产量的影响. 植物营养与肥料学报, 2018, 24: 82-94.
Zhang S W, He Q L, Wang H Y, Jiang M J, Li Y H, Yan F J, Yang Z Y, Sun Y J, Guo X, Ma J. Effects of nitrogen application rate on nitrogen use efficiency and yield of hybrid indica rice F you 498 under controlled irrigation conditions. J Plant Nutr Fert, 2018, 24: 82-94. (in Chinese with English abstract)
[18] 陈林, 郭庆人. 膜下滴灌水稻栽培技术的形成与发展. 作物研究, 2012, 26: 587-588.
Chen L, Guo Q R. The formation and development of rice cultivation techniques of drip irrigation under film. Crop Res, 2012, 26: 587-588. (in Chinese with English abstract)
[19] Liu K, Li T, Chen Y, Huang J, Qiu Y, Li S, Wang H, Zhu A, Zhuo X, Yu F, Zhang H, Gu J, Liu L, Yang J. Effects of root morphology and physiology on the formation and regulation of large panicles in rice. Field Crops Res, 2020, 258: 107-946.
[20] 陈吉虎, 余新晓, 有祥亮, 刘苹, 张长达, 谢港. 不同水分条件下银叶椴根系的分形特征. 中国水土保持科学, 2006, 4(2): 71-74.
Chen J H, Yu X X, You X L, Liu P, Zhang C D, Xie G. Fractal characteristics of Tilia temenos’s root system under different water conditions. Sci Soil Water Conserv, 2006, 4(2): 71-74. (in Chinese with English abstract)
[21] Wang H, Siopongco J, Wade L, Yamauchi A. Fractal analysis on root systems of rice plants in response to drought stress. Environ Exp Bot, 2009, 65: 338-344.
[22] 王志军, 叶春秀, 董永梅, 李有忠, 田又升, 陈林, 孙国清, 谢宗铭. 滴灌和淹灌栽培模式下水稻光合生理、荧光参数及产量构成因素分析. 植物生理学报, 2016, 52: 723-735.
Wang Z J, Ye C X, Dong Y M, Li Y Z, Tian Y S, Chen L, Sun G Q, Xie Z M. Analysis of photosynthetic physiology, fluorescence parameters and yield components in rice under irrigated and flooded cultivation patterns. Plant Physiol J, 2016, 52: 723-735. (in Chinese with English abstract)
[23] 李娜, 杨志远, 代邹, 孙永健, 徐徽, 何艳, 蒋明金, 严田蓉, 郭长春, 马均. 水氮管理对不同氮效率水稻根系性状、氮素吸收利用及产量的影响. 中国水稻科学, 2017, 31: 500-512.
doi: 10.16819/j.1001-7216.2017.6145
Li N, Yang Z Y, Dai Z, Sun Y J, Xu H, He Y, Jiang M J, Yan T R, Guo C C, Ma J. Effects of water-nitrogen management on root traits, nitrogen accumulation and utilization and grain yield in rice with different nitrogen use efficiency. Chin J Rice Sci, 2017, 31: 500-512. (in Chinese with English abstract)
doi: 10.16819/j.1001-7216.2017.6145
[24] 刘磊, 宋娜娜, 齐晓丽, 崔克辉. 水稻根系特征与氮吸收利用效率关系的研究进展. 作物杂志, 2022, (1): 11-19.
Liu L, Song N N, Qi X L, Cui K H. Research progress on the relationship between rice root characteristics and nitrogen uptake and utilization efficiency. Crops, 2022, (1): 11-19. (in Chinese with English abstract)
[25] 王志军, 谢宗铭, 田又升, 陈林, 董永梅, 李有忠, 吕昭智. 膜下滴灌和淹灌两种栽培模式下水稻光合生理特性的研究. 中国水稻科学, 2015, 29: 150-158.
doi: 10.3969/j.issn.1001-7216.2015.02.006
Wang Z J, Xie Z M, Tian Y S, Chen L, Dong Y M, Li Y Z, Lyu Z Z. Study on photosynthetic physiological characteristics of rice under drip irrigation and submerged irrigation. Chin J Rice Sci, 2015, 29: 150-158. (in Chinese with English abstract)
[26] 崔国贤, 沈其荣, 崔国清, 李良勇. 水稻旱作及对旱作环境的适应性研究进展. 作物研究, 2001, (3) :70-76.
Cui G X, Shen Q R, Cui G Q, Li L Y. Research progress on rice dry farming and its adaptability to dry farming environment. Crop Res, 2001, (3): 70-76. (in Chinese with English abstract)
[27] 李丽, 陈林, 张婷婷, 银永安, 朱江艳, 赵双玲. 膜下滴灌对水稻根系形态及生理性状的影响. 排灌机械工程学报, 2015, 33: 536-540.
Li L, Chen L, Zhang T T, Yin Y A, Zhu J Y, Zhao S L. Effects of drip irrigation under film on root morphology and physiological traits of rice. J Drain Irrig Machin Engin, 2015, 33: 536-540. (in Chinese with English abstract)
[28] 李婷婷, 冯钰枫, 朱安, 黄健, 汪浩, 李思宇, 刘昆, 彭如梦, 张宏路, 刘立军. 主要节水灌溉方式对水稻根系形态生理的影响. 中国水稻科学, 2019, 33: 293-302.
doi: 10.16819/j.1001-7216.2019.8116
Li T T, Feng Y F, Zhu A, Huang J, Wang J, Li S Y, Liu K, Peng R M, Zhang H L, Liu L J. Effects of main water-saving irrigation methods on morphological and physiological traits of rice roots. Chin J Rice Sci, 2019, 33: 293-302 (in Chinese with English abstract).
doi: 10.16819/j.1001-7216.2019.8116
[29] Xu G W, Lu D K, Wang H Z, Li Y J. Morphological and physiological traits of rice roots and their relationships to yield and nitrogen utilization as influenced by irrigation regime and nitrogen rate. Agric Water Manag, 2018, 203: 385-394.
[30] Ranathunge K, Schreiber L, Bi Y M. Ammonium-induced architectural and anatomical changes with altered suberin and lignin levels significantly change water and solute permeabilities of rice (Oryza sativa L.) roots. Planta, 2016, 243: 231-49.
doi: 10.1007/s00425-015-2406-1 pmid: 26384983
[31] Carrijo D R, Lundy M E, Linquist B A. Rice yields and water use under alternate wetting and drying irrigation: a meta-analysis. Field Crops Res, 2017, 203: 173-180.
[32] 王肖娟, 陈林, 王永强, 李丽, 朱江艳, 赵双玲, 刘小武, 李高华. 不同灌溉方式及施氮量对水稻生长和氮素利用效率的影响. 中国稻米, 2017, 23(3): 88-91.
doi: 10.3969/j.issn.1006-8082.2017.03.023
Wang X J, Chen L, Wang Y Q, Li L, Zhu J Y, Zhao S L, Liu X W, Li G H. Effects of different irrigation methods and nitrogen application rates on rice growth and nitrogen use efficiency. China Rice, 2017, 23(3): 88-91. (in Chinese with English abstract)
[33] 李明思, 刘洪光, 郑旭荣. 长期膜下滴灌农田土壤盐分时空变化. 农业工程学报, 2012, 28(22): 82-87.
Li M S, Liu H G, Zheng X R. Temporal and spatial variation of soil salinity in long-term mulched drip irrigation farmland. Trans CSAE, 2012, 28(22): 82-87. (in Chinese with English abstract)
[34] 孙永健, 孙园园, 刘树金, 杨志远, 程洪彪, 贾现文, 马均. 水分管理和氮肥运筹对水稻养分吸收、转运及分配的影响. 作物学报, 2011, 37: 2221-2232.
doi: 10.3724/SP.J.1006.2011.02221
Sun Y J, Sun Y Y, Liu S J, Yang Z Y, Cheng H B, Jia X W, Ma J. Effects of water management and nitrogen management on nutrient uptake, translocation, and distribution in rice. Acta Agron Sin, 2011, 37: 2221-2232. (in Chinese with English abstract)
[35] 陈信信, 丁启朔, 李毅念, 薛金林, 何瑞银. 南方稻麦轮作系统下小麦根系的三维分形特征. 中国农业科学, 2017, 50: 451-460.
doi: 10.3864/j.issn.0578-1752.2017.03.004
Chen X X, Ding Q S, Li Y N, Xue J L, He R Y. The three-dimensional fractal characteristics of wheat roots under rice-wheat rotation system in southern China. Sci Agric Sin, 2017, 50: 451-460. (in Chinese with English abstract)
[36] Nielsen K L, Miller C R, Beck D, Lynch J P. Fractal geometry of root systems: field observations of contrasting genotypes of common bean (Phaseolus vulgaris L.) grown under different phosphorus regimes. Plant Soil, 1999, 206: 181-190.
[37] Cabangon R J, Tuong T P, Castillo E G, Bao L X, Lu G A, Wang G H, Cui Y L, Bouman B A, Li Y H, Chen C D. Effect of irrigation method and N-fertilizer management on rice yield, water productivity and nutrient-use efficiencies in typical lowland rice conditions in China. Paddy Water Environ, 2004, 2: 195-206.
[1] FU Jing, MA Meng-Juan, ZHANG Qi-Fei, DUAN Ju-Qi, WANG Yue-Tao, WANG Fu-Hua, WANG Sheng-Xuan, BAI Tao, YIN Hai-Qing, WANG Ya. Effects of alternate wetting and drying irrigation and different nitrogen application levels on photosynthetic characteristics and nitrogen absorption and utilization of japonica rice [J]. Acta Agronomica Sinica, 2024, 50(7): 1787-1804.
[2] CHENG Shuang, XING Zhi-Peng, TIAN Chao, HU Qun, WEI Hai-Yan, ZHANG Hong-Cheng. Effects of an integrated dryland tillage and soaking pattern on the reducing substances in rice field and early growth of machine transplanted rice [J]. Acta Agronomica Sinica, 2024, 50(7): 1762-1775.
[3] PEI Fa-Jing, ZHANG Wen-Xuan, ZHANG Xiao, WANG Xin-Yu, PENG Shao-Bing, MI Jia-Ming. Developing new rice lines with ultrashort-duration, long-grain, and fragrance [J]. Acta Agronomica Sinica, 2024, 50(7): 1684-1698.
[4] ZHANG Xiao-Fang, ZHU Qi, HUA Yun-Yan, JIA Li-Hui-Ying, QIU Shi-You, CHEN Yu-Jie, MA Tao, DING Wo-Na. Screening and validation of OsCYP22 interacting proteins in rice [J]. Acta Agronomica Sinica, 2024, 50(6): 1628-1634.
[5] ZHU Zhong-Lin, WEN Yue, ZHOU Qi, WU Yan-Fei, DU Xue-Zhu, SHENG Feng. Mechanism of loding residence and drought tolerance of OsCNGC10 gene in rice [J]. Acta Agronomica Sinica, 2024, 50(5): 1351-1360.
[6] HU Ming-Ming, DING Feng, PENG Zhi-Yun, XIANG Kai-Hong, LI Yu, ZHANG Yu-Jie, YANG Zhi-Yuan, SUN Yong-Jian, MA Jun. Effects of straw returning to field combined with water and N management on rice yield formation and N uptake and utilization under diversified cropping patterns [J]. Acta Agronomica Sinica, 2024, 50(5): 1236-1252.
[7] GENG Xiao-Yu, ZHANG Xiang, LIU Yang, ZUO Bo-Yuan, ZHU Wang, MA Wei-Yi, WANG Lu-Lu, MENG Tian-Yao, GAO Ping-Lei, CHEN Ying-Long, XU Ke, DAI Qi-Gen, WEI Huan-He. Grain yield and its characteristics of japonica/indica hybrids rice in coastal saline-alkali lands [J]. Acta Agronomica Sinica, 2024, 50(5): 1253-1270.
[8] WAN Ying-Chun, BAN Yi-Jie, JIANG Yu-Dong, WANG Ya-Xin, LIU Jing-Jing, LIU Xiao-Qing, CHENG Yu-Lin, WANG Nan, FENG Ping. Phenotypic identification and fine mapping of male sterile mutant tpa1 in rice [J]. Acta Agronomica Sinica, 2024, 50(5): 1104-1114.
[9] CAO Xin-Yuan, DU Ming-Li, WANG Yu-Cheng, CHEN Xin-Hua, CHEN Jia-Xin, LING Xiao-Xia, HUANG Jian-Liang, PENG Shao-Bing, DENG Nan-Yan. Evaluation of annual yield gap and yield limiting facters in rice-rapeseed cropping system: an example from Wuxue city, Hubei province, China [J]. Acta Agronomica Sinica, 2024, 50(5): 1287-1299.
[10] LU Ru-Hua, WANG Wen-Xuan, CAO Qiang, TIAN Yong-Chao, ZHU Yan, CAO Wei-Xing, LIU Xiao-Jun. Research on the effects of nitrogen fertilizer and rice straw return on wheat yield and N2O emission and recommended fertilization under rice-wheat rotation pattern [J]. Acta Agronomica Sinica, 2024, 50(5): 1300-1311.
[11] LIU Cheng-Min, MEN Ya-Qi, QIN Du-Lin, YAN Xiao-Yu, ZHANG Le, MENG Hao, SU Xun-Ya, SUN Xue-Zhen, SONG Xian-Liang, MAO Li-Li. Effects of nitrogen application rate on cotton yield and nitrogen utilization under long-term straw return to the field [J]. Acta Agronomica Sinica, 2024, 50(4): 1043-1052.
[12] YU Yao, WANG Zi-Yao, ZHOU Si-Rui, LIU Peng-Cheng, YE Ya-Feng, MA Bo-Jun, LIU Bin-Mei, CHEN Xi-Feng. Phenotypic identification and disease resistance mechanism analysis of rice lesion mutant lms1 [J]. Acta Agronomica Sinica, 2024, 50(4): 857-870.
[13] ZHANG Li-Jie, ZHOU Hai-Yu, MUHAMMAD Zeshan, MUNSIF Ali Shad, YANG Ming-Chong, LI Bo, HAN Shi-Jian, ZHANG Cui-Cui, HU Li-Hua, WANG Ling-Qiang. Functional analysis of OsFLZ13, the gene encoding a small peptide zinc finger protein in rice [J]. Acta Agronomica Sinica, 2024, 50(3): 543-555.
[14] WEI Huan-He, ZHANG Xiang, ZHU Wang, GENG Xiao-Yu, MA Wei-Yi, ZUO Bo-Yuan, MENG Tian-Yao, GAO Ping-Lei, CHEN Ying-Long, XU Ke, DAI Qi-Gen. Effects of salinity stress on grain-filling characteristics and yield of rice [J]. Acta Agronomica Sinica, 2024, 50(3): 734-746.
[15] WANG Lyu, WU Yu-Hong, QIN Yu-Hang, DAN Ya-Bin, CHEN Hao, HAO Xing-Shun, TIAN Xiao-Hong. Effects of rice straw mulching combined with green manure retention and nitrogen reduction applications on dry matter quality accumulation, nitrogen transport and grain yield of rice [J]. Acta Agronomica Sinica, 2024, 50(3): 756-770.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .