Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2024, Vol. 50 ›› Issue (7): 1787-1804.doi: 10.3724/SP.J.1006.2024.32056

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Effects of alternate wetting and drying irrigation and different nitrogen application levels on photosynthetic characteristics and nitrogen absorption and utilization of japonica rice

FU Jing1(), MA Meng-Juan1, ZHANG Qi-Fei1, DUAN Ju-Qi2, WANG Yue-Tao1, WANG Fu-Hua1, WANG Sheng-Xuan1, BAI Tao1, YIN Hai-Qing1,*(), WANG Ya1,*()   

  1. 1Cereal Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, Henan, China
    2National Climate Center, China Meteorology Administration, Beijing 100081, China
  • Received:2023-12-18 Accepted:2024-04-01 Online:2024-07-12 Published:2024-04-17
  • Contact: *E-mail: yinhq98@163.com; E-mail: wangya840212@163.com
  • Supported by:
    Henan Provincial Science and Technology Research Program(222102110019);Special Program for Key Research and Development of Henan Province(231111110500);Henan Academy of Agricultural Sciences Independent Innovation Project(2023ZC015);Special Fund for Henan Agriculture Research System(HARS-22-03-S);Henan Academy of Agricultural Sciences Rice Science and Technology Innovation Team Project(2023TD29);Fundamental Research Project of Henan Academy of Agricultural Sciences(2023JC05)

Abstract:

Soil water potential and nitrogen nutrients are the important factors affecting photosynthetic characteristics in leaves and nitrogen absorption and utilization of rice (Oryza sativa L.). Little is known, however, how synergistic the two factors under alternative wetting and drying irrigation (AWD) can be in terms of nitrogen metabolism enzyme activity, grain yield, and nitrogen use efficiencies. A field experiment was conducted using a super rice variety of Nanjing 9108 with five nitrogen levels, namely, no nitrogen applied (N0), 90 (N1), 180 (N2), 270 (N3), and 360 kg hm-2 (N4), and two irrigation regimes, namely, conventional irrigation (CI) and AWD over two years. Our results revealed significant interaction between irrigation and nitrogen levels. At the same nitrogen levels, the content of chlorophyll a, chlorophyll b, total chlorophyll and carotenoid, net photosynthetic rate, the activities of superoxide dismutase, catalase, nitrate reductase, glutamine synthetase, and glutamic acid synthetase at main growth stages were higher in AWD than those in CI. Furthermore, the activities of nitrate reductase, glutamine synthetase, glutamic acid synthetase, and glutamate dehydrogenase in roots of rice were also increased, but the activities of peroxidase, endopeptidase, and the content of malondialdehyde in leaves were lower. AWD treatment increased grain yield by an average of 10.4% compared with CI, and also enhanced nitrogen transport capacity, nitrogen transport efficiency, nitrogen absorption, utilization efficiency, and partial productivity of nitrogen fertilizer. AWD coupled with N3 had the highest yield and nitrogen use efficiency; this treatment was the optimal water-nitrogen interaction management model in this study. These results suggest that adopting AWD with an appropriate nitrogen rate promotes nitrogen metabolism in roots and leaves and improves photosynthetic characteristics of leaves, thereby synergistically increasing grain yield and nitrogen use efficiency in rice.

Key words: rice, alternate wetting and drying irrigation, nitrogen rate, photosynthetic characteristics, nitrogen metabolism enzyme, nitrogen absorption and utilization

Table 1

Average temperature, sunshine hours, and precipitation during rice growing seasons"

年份
Year
气象条件
Meteorological condition
5月
May
6月
June
7月
July
8月
August
9月
September
10月
October
2018 平均气温 Temperature (℃) 21.81 26.86 28.44 27.61 20.99 15.46
日照时数 Sunshine (h) 202.1 226.8 195.5 251.7 191.1 210.5
降雨量 Precipitation (mm) 93.2 96.8 66.1 111.0 97.7 0
2019 平均气温 Temperature (℃) 21.63 27.91 28.74 26.04 21.63 16.10
日照时数 Sunshine (h) 242.0 200.8 208.9 179.2 187.1 143.5
降雨量 Precipitation (mm) 1.0 67.0 21.8 105.8 53.4 71.2

Table 2

Effects of irrigation and nitrogen application level on grain yield and its components of rice"

年份
Year
处理
Treatment
穗数
Panicle number
(×104 hm-2)
每穗粒数
Spikelets per panicle
总颖花量
Total number of spikelets
(×106 hm-2)
结实率
Seed-setting rate (%)
千粒重
1000-grain weight (g)
产量
Grain yield
(t hm-2)
2018 CI+N0 228.1 h 113.7 h 259.3 i 89.5 a 25.8 a 5.99 h
CI+N1 263.3 f 127.9 f 336.8 g 84.1 b 25.6 a 7.25 f
CI+N2 286.5 d 139.1 e 398.5 e 81.8 c 25.1 b 8.18 e
CI+N3 324.7 b 148.5 c 482.2 c 78.1 d 24.9 b 9.38 b
CI+N4 323.8 b 156.8 b 507.7 b 68.9 f 24.1 c 8.43 d
AWD+N0 237.3 g 121.2 g 287.6 h 90.8 a 25.8 a 6.74 g
AWD+N1 272.7 e 136.3 e 371.7 f 85.2 b 25.7 a 8.14 e
AWD+N2 295.7 c 144.7 d 427.9 d 81.6 c 25.5 ab 8.90 c
AWD+N3 331.7 a 155.6 b 516.1 b 78.7 d 25.2 b 10.24 a
AWD+N4 330.3 a 163.1 a 538.7 a 71.2 e 24.3 c 9.32 b
2019 CI+N0 226.9 h 113.5 h 257.5 i 88.7 a 25.9 a 5.92 h
CI+N1 262.7 f 126.1 f 331.3 g 83.7 b 25.6 a 7.10 f
CI+N2 284.6 d 137.8 e 392.2 e 80.7 c 25.0 b 7.91 e
CI+N3 324.5 b 148.2 c 480.9 c 76.9 d 24.8 b 9.17 b
CI+N4 323.4 b 155.9 b 504.2 b 68.1 f 24.2 c 8.31 d
AWD+N0 234.8 g 120.7 g 283.4 h 89.8 a 25.9 a 6.59 g
AWD+N1 270.2 e 134.2 e 362.6 f 84.6 b 25.5 ab 7.82 e
AWD+N2 295.8 c 143.8 d 425.4 d 80.9 c 25.3 b 8.71 c
AWD+N3 332.9 a 154.6 b 514.7 b 77.4 d 25.1 b 10.00 a
AWD+N4 329.1 a 162.7 a 535.4 a 70.8 e 24.4 c 9.25 b
方差分析 ANOVA
年份 Year (Y) ns ns ns ns ns ns
灌溉 Irrigation (I) ** ** ** ** ** **
施氮量N rate (N) ** ** ** ** ** **
年份×灌溉 Y × I ns ns ns ns ns ns
年份×施氮量 Y × N ns ns ns ns ns ns
灌溉×施氮量 I × N * * * ns ns *
年份×灌溉×施氮量 Y × I × N ns ns ns ns ns ns

Fig. 1

Effects of irrigation and nitrogen application level on photosynthetic pigment content in leaves of rice at different growth stage CI: conventional irrigation; AWD: alternate wetting and drying; N0: no nitrogen applied; N1: nitrogen at 90 kg hm-2; N2: nitrogen at 180 kg hm-2; N3: nitrogen at 270 kg hm-2; N4: nitrogen at 360 kg hm-2. MT: middle tillering stage; PI: panicle initiation stage; HD: heading stage; MA: maturity stage. Different letters denote significantly different between treatments at the 0.05 probability level."

Fig. 2

Effects of irrigation and nitrogen application level on net photosynthetic rate in leaves of rice at different growth stage CI: conventional irrigation; AWD: alternate wetting and drying; N0: no nitrogen applied; N1: nitrogen at 90 kg hm-2; N2: nitrogen at 180 kg hm-2; N3: nitrogen at 270 kg hm-2; N4: nitrogen at 360 kg hm-2. MT: middle tillering stage; PI: panicle initiation stage; HD: heading stage; MA: maturity stage. Different letters denote significantly different between treatments at the 0.05 probability level."

Fig. 3

Effects of irrigation and nitrogen application level on lipid membrane peroxidation and antioxidant enzyme activity in leaves of rice at different growth stage CI: conventional irrigation; AWD: alternate wetting and drying; N0: no nitrogen applied; N1: nitrogen at 90 kg hm-2; N2: nitrogen at 180 kg hm-2; N3: nitrogen at 270 kg hm-2; N4: nitrogen at 360 kg hm-2. MT: middle tillering stage; PI: panicle initiation stage; HD: heading stage; MA: maturity stage. Different letters denote significantly different between treatments at the 0.05 probability level."

Fig. 4

Effects of irrigation and nitrogen application level on enzyme activity of nitrogen metabolism in leaves of rice at different growth stage CI: conventional irrigation; AWD: alternate wetting and drying; N0: no nitrogen applied; N1: nitrogen at 90 kg hm-2; N2: nitrogen at 180 kg hm-2; N3: nitrogen at 270 kg hm-2; N4: nitrogen at 360 kg hm-2. MT: middle tillering stage; PI: panicle initiation stage; HD: heading stage; MA: maturity stage. Different letters denote significantly different between treatments at the 0.05 probability level."

Fig. 5

Effects of irrigation and nitrogen application level on enzyme activity of nitrogen metabolism in roots of rice at different growth stage CI: conventional irrigation; AWD: alternate wetting and drying; N0: no nitrogen applied; N1: nitrogen at 90 kg hm-2; N2: nitrogen at 180 kg hm-2; N3: nitrogen at 270 kg hm-2; N4: nitrogen at 360 kg hm-2. MT: middle tillering stage; PI: panicle initiation stage; HD: heading stage; MA: maturity stage. Different letters denote significantly different between treatments at the 0.05 probability level."

Fig. 6

Effects of irrigation and nitrogen application level on nitrogen accumulation amount of rice at different growth stage CI: conventional irrigation; AWD: alternate wetting and drying; N0: no nitrogen applied; N1: nitrogen at 90 kg hm-2; N2: nitrogen at 180 kg hm-2; N3: nitrogen at 270 kg hm-2; N4: nitrogen at 360 kg hm-2. MT: middle tillering stage; PI: panicle initiation stage; HD: heading stage; MA: maturity stage. Different letters denote significantly different between treatments at the 0.05 probability level."

Table 3

Effects of irrigation and nitrogen application level on nitrogen translocation amount and rate in stem-sheath and leaves of rice"

年份
Year
处理
Treatment
抽穗期积累量
Accumulation at heading stage (kg hm-2)
成熟期积累量
Accumulation at maturity stage (kg hm-2)
氮素转运量
N translocation amount
(kg hm-2)
氮素转运率
N translocation
efficiency (%)
2018 CI+N0 55.7 f 32.6 i 23.1 h 41.5 g
CI+N1 95.6 e 48.7 g 46.9 f 49.1 e
CI+N2 128.7 d 61.5 e 67.2 d 52.2 d
CI+N3 160.7 c 72.6 c 88.1 b 54.8 c
CI+N4 168.6 ab 79.7 a 88.9 b 52.7 d
AWD+N0 54.8 f 28.6 j 26.2 g 47.8 f
AWD+N1 94.7 e 44.3 h 50.4 e 53.2 d
AWD+N2 130.5 d 57.4 f 73.1 c 56.0 b
AWD+N3 164.2 b 66.8 d 97.4 a 59.3 a
AWD+N4 172.8 a 75.7 b 97.1 a 56.2 b
2019 CI+N0 54.3 f 31.7 i 22.6 h 41.6 g
CI+N1 94.8 e 49.3 g 45.5 f 48.0 f
CI+N2 128.4 d 62.1 e 66.3 d 51.6 e
CI+N3 159.8 c 71.5 c 88.3 b 55.3 c
CI+N4 170.7 a 80.9 a 89.8 b 52.6 e
AWD+N0 55.3 f 29.2 i 26.1 g 47.2 f
AWD+N1 95.1 e 43.8 h 51.3 e 53.9 d
AWD+N2 131.8 d 59.1 f 72.7 c 55.2 c
AWD+N3 163.7 b 67.5 d 96.2 a 58.8 a
AWD+N4 171.6 a 74.9 b 96.7 a 56.4 b
方差分析 ANOVA
年份 Year (Y) ns ns ns ns
灌溉 Irrigation (I) ** ** ** **
施氮量N rate (N) ** ** ** **
年份×灌溉 Y × I ns ns ns ns
年份×施氮量 Y × N ns ns ns ns
灌溉×施氮量 I × N ns * ** *
年份×灌溉×施氮量 Y × I × N ns ns ns ns

Table 4

Effects of irrigation and nitrogen application level on nitrogen use efficiency of rice"

年份
Year
处理
Treatment
氮肥吸收利用率
Recovery
efficiency of
applied N
(%)
氮肥生理利用率
Physiological
efficiency of
applied N
(kg kg-1)
氮素籽粒生产效率
N use efficiency
for grain
production
(kg kg-1)
氮肥农学利用率
Agronomic
efficiency of
applied N
(kg kg-1)
氮肥偏生产力
Partial factor
production of
applied N
(kg kg-1)
2018 CI+N0 57.3 b
CI+N1 46.8 c 30.0 a 49.4 d 14.0 b 80.6 b
CI+N2 44.2 d 27.6 b 44.4 ef 12.2 d 45.5 d
CI+N3 43.3 d 29.0 a 42.3 g 12.5 cd 34.7 f
CI+N4 34.4 f 19.7 d 36.9 h 6.8 e 23.4 h
AWD+N0 63.6 a
AWD+N1 52.9 a 29.4 a 53.0 c 15.6 a 90.4 a
AWD+N2 50.5 b 23.8 c 45.2 e 12.0 d 49.5 c
AWD+N3 47.7 c 27.2 b 43.6 f 13.0 c 37.9 e
AWD+N4 40.5 e 17.7 e 37.0 h 7.2 e 25.9 g
2019 CI+N0 56.8 b
CI+N1 45.6 c 30.8 a 48.9 d 13.1 b 78.9 b
CI+N2 43.1 d 25.8 d 43.5 ef 11.1 e 44.0 d
CI+N3 43.0 d 28.0 b 41.6 g 12.1 cd 34.0 f
CI+N4 34.2 f 19.4 f 36.5 h 6.6 g 23.1 h
AWD+N0 62.0 a
AWD+N1 50.9 a 26.9 c 51.4 c 13.7 a 86.9 a
AWD+N2 49.3 b 23.8 e 44.6 e 11.7 d 48.4 c
AWD+N3 46.9 c 26.9 c 42.9 f 12.6 c 37.0 e
AWD+N4 39.8 e 18.6 f 37.0 h 7.4 f 25.7 g
方差分析 ANOVA
年份 Year (Y) ns ns ns ns ns
灌溉 Irrigation (I) ** ** ** ** **
施氮量N rate (N) ** ** ** ** **
年份×灌溉 Y × I ns ns ns ns ns
年份×施氮量 Y × N ns ns ns ns ns
灌溉×施氮量 I × N * ns ns * *
年份×灌溉×施氮量 Y × I × N ns ns ns ns ns
[1] 张耗. 水稻根系形态生理与产量形成的关系及其栽培调控技术. 扬州大学博士学位论文, 江苏扬州, 2011.
Zhang H. Morphology and Physiology of Rice Roots in Relation to Yield Formation and Cultivation Regulation Techniques. PhD Dissertation of Yangzhou University, Yangzhou, Jiangsu, China, 2011 (in Chinese with English abstract).
[2] 姚锋先. 不同水氮管理对水稻生长和水氮效率影响的生理机制研究. 华中农业大学博士学位论文, 湖北武汉, 2011.
Yao F X. Studies on Physiological Mechanism of Rice Growth and Water and Nitrogen Use Efficiency under Different Water and Nitrogen Regimes. PhD Dissertation of Huazhong Agricultural University, Wuhan, Hubei, China, 2011 (in Chinese with English abstract).
[3] Pan J F, Liu Y Z, Zhong X H, Lampayan R M, Singleton G R, Huang N R, Liang K M, Peng B L, Tian K. Grain yield, water productivity and nitrogen use efficiency of rice under different water management and fertilizer-N inputs in South China. Agric Water Manag, 2017, 184: 191-200.
[4] 杨建昌, 张建华. 水稻高产节水灌溉. 北京: 科学出版社, 2019. pp 1-11.
Yang J C, Zhang J H. High-Yielding Water-Saving Irrigation in Rice. Beijing: Science Press, 2019. pp 1-11 (in Chinese).
[5] Xu G W, Lu D K, Wang H Z, Li Y J. Morphological and physiological traits of rice roots and their relationships to yield and nitrogen utilization as influenced by irrigation regime and nitrogen rate. Agric Water Manag, 2018, 203: 385-394.
[6] Xu G W, Song K J, Lu D K, Wang H Z, Chen M C. Influence of water management and nitrogen application on rice root and shoot traits. Agron J, 2019, 111: 2232-2244.
[7] Djaman K, Mel V C, Diop L, Sow A, EI-Namaky R, Manneh B, Saito K, Futakuchi K, Irmak S. Effects of alternate wetting and drying irrigation regime and nitrogen fertilizer on yield and nitrogen use efficiency of irrigated rice in the Sahel. Water, 2018, 10: 711-711.
[8] Ding L, Gao C M, Li Y R, Li Y, Zhu Y Y, Xu G H, Shen Q R, Kaldenhoff R, Kai L, Guo S W. The enhanced drought tolerance of rice plants under ammonium is related to aquaporin (AQP). Plant Sci, 2015, 234: 14-21.
doi: 10.1016/j.plantsci.2015.01.016 pmid: 25804805
[9] Xu Y J, Gu D J, Li K, Zhang W Y, Zhang H, Wang Z Q, Yang J C. Response of grain quality to alternate wetting and moderate soil drying irrigation in rice. Crop Sci, 2019, 59: 1261-1272.
[10] 张荣萍, 马均, 王贺正, 李艳, 李旭毅, 汪仁全. 不同灌水方式对水稻结实期一些生理性状和产量的影响. 作物学报, 2008, 34: 486-495.
doi: 10.3724/SP.J.1006.2008.00486
Zhang R P, Ma J, Wang H Z, Li Y, Li X Y, Wang R Q. Effects of different irrigation regimes on some physiology characteristics and grain yield in paddy rice during grain filling. Acta Agron Sin, 2008, 34: 486-495 (in Chinese with English abstract).
[11] 丁艳锋, 刘胜环, 王绍华, 王强盛, 黄丕生, 凌启鸿. 氮素基、蘖肥用量对水稻氮素吸收与利用的影响. 作物学报, 2004, 30: 762-767.
Ding Y F, Liu S H, Wang S H, Wang Q S, Huang P S, Ling Q H. Effects of the amount of basic and tillering nitrogen applied on absorption and utilization of nitrogen in rice. Acta Agron Sin, 2004, 30: 762-767 (in Chinese with English abstract).
[12] 陈新红, 刘凯, 徐国伟, 王志琴, 杨建昌. 结实期氮素营养和土壤水分对水稻光合特性、产量及品质的影响. 上海交通大学学报(农业科学版), 2004, 22(1): 48-53.
Chen X H, Liu K, Xu G W, Wang Z Q, Yang J C. Effects of nitrogen and soil moisture on photosynthetic characters of flag leaf, yield and quality during grain filing in rice. J Shanghai Jiaotong Univ (Agric Sci Edn), 2004, 22(1): 48-53 (in Chinese with English abstract).
[13] 曾建敏, 崔克辉, 黄见良, 贺帆, 彭少兵. 水稻生理生化特性对氮肥的反应及氮利用效率的关系. 作物学报, 2007, 33: 1168-1176.
Zeng J M, Cui K H, Huang J L, He F, Peng S B. Responses of physio-biochemical properties to N-fertilizer application and its relationship with nitrogen use efficiency in rice (Oryza sativa L.). Acta Agron Sin, 2007, 33: 1168-1176 (in Chinese with English abstract).
[14] 徐国伟, 江孟孟, 陆大克, 赵喜辉, 陈明灿. 干湿交替灌溉与氮肥形态耦合对水稻光合特性及氮素利用的影响. 植物营养与肥料学报, 2020, 26: 1239-1250.
Xu G W, Jiang M M, Lu D K, Zhao X H, Chen M C. Optimum combination of irrigation and nitrogen supply form achieving high photosynthetic and nitrogen utilization efficiency. J Plant Nutr Fert, 2020, 26: 1239-1250 (in Chinese with English abstract).
[15] Wang Z Q, Zhang W Y, Beeboutb S S, Zhang H, Liu L J, Yang J C, Zhang J H. Grain yield, water and nitrogen use efficiencies of rice as influenced by irrigation regimes and their interaction with nitrogen rates. Field Crops Res, 2016, 193: 54-69.
[16] Lichtenthaler H K. Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods Enzymol, 1987, 148: 350-382.
[17] Berry J A, Bjorkman O. Photosynthetic response and adaptation to temperature in higher plants. Annu Rev Plant Physiol, 2003, 31: 491-543.
[18] 张宪政. 作物生理研究法. 北京: 农业出版社, 1992. pp 140-142, 197-198.
Zhang X Z. Research Methods of Crop Physiology. Beijing: Agriculture Press, 1992. pp 140-142, 197-198 (in Chinese).
[19] 赵世杰, 徐长成, 邹琦, 孟庆伟. 植物组织中丙二醛测定方法的改进. 植物生理学通讯, 1994, 30(3): 207-210.
Zhao S J, Xu C C, Zou Q, Meng Q W. Improvements of method for measurement of malondialdehyde in plant tissues. Plant Physiol Commun, 1994, 30(3): 207-210 (in Chinese).
[20] 王学奎. 植物生理生化实验原理和技术(第2版). 北京: 高等教育出版社, 2006. p 124.
Wang X K. Principles and Techniques of Plant Physiological Biochemical Experiment, 2nd edn. Beijing: Higher Education Press, 2006. p 124 (in Chinese).
[21] 王小纯, 熊淑萍, 马新明, 张娟娟, 王志强. 不同形态氮素对专用型小麦花后氮代谢关键酶活性及籽粒蛋白质含量的影响. 生态学报, 2005, 25: 802-807.
Wang X C, Xiong S P, Ma X M, Zhang J J, Wang Z Q. Effects of different nitrogen forms on key enzyme activity involved in nitrogen metabolism and grain protein content in speciality wheat cultivars. Acta Ecol Sin, 2005, 25: 802-807 (in Chinese with English abstract).
[22] Zhang C F, Peng S B, Benneti J. Glutamine synthetase and its isoforms in rice spikelets and rachis during grain development. J Plant Physiol, 2000, 156: 230-233.
[23] 高玲, 叶茂炳, 张荣铣, 徐朗莱. 小麦旗叶老化期间的内肽酶. 植物生理学报, 1998, 24: 183-188.
Gao L, Ye M B, Zhang R X, Xu L L. Endopeptidases in wheat flagleaves during aging. Plant Physiol J, 1998, 24: 183-188 (in Chinese with English abstract).
[24] Loulakakis K A, Roubelakis K A. Intracelluar localization and properties of NADH-glutamate dehydrogenase from Vitis vinifera L.: purification and characterization of major leaf isoenzyme. J Exp Bot, 1990, 41: 1223-1230.
[25] 剧成欣, 陶进, 钱希旸, 顾骏飞, 张耗, 赵步洪, 刘立军, 王志琴, 杨建昌. 不同年代中籼水稻品种的叶片光合性状. 作物学报, 2016, 42: 415-426.
doi: 10.3724/SP.J.1006.2016.00415
Ju C X, Tao J, Qian X Y, Gu J F, Zhang H, Zhao B H, Liu L J, Wang Z Q, Yang J C. Leaf photosynthetic characteristics of mid-season indica rice varieties applied at different decades. Acta Agron Sin, 2016, 42: 415-426 (in Chinese with English abstract).
[26] Martin M A, Guillermo B F, Juan A M S, Gustavo A S. Radiation interception and use efficiency as affected by breeding in Mediterranean wheat. Field Crops Res, 2009, 110: 91-97.
[27] 徐国伟, 陆大克, 王贺正, 陈明灿, 李友军. 干湿交替灌溉与施氮量对水稻叶片光合性状的耦合效应. 植物营养与肥料学报, 2017, 23: 1225-1237.
Xu G W, Lu D K, Wang H Z, Chen M C, Li Y J. Coupling effect of wetting and drying alternative irrigation and nitrogen application rate on photosynthetic characteristics of rice leaves. J Plant Nutr Fert, 2017, 23: 1225-1237 (in Chinese with English abstract).
[28] 崔海岩, 靳立斌, 李波, 赵斌, 董树亭, 刘鹏, 张吉旺. 大田遮阴对夏玉米光合特性和叶黄素循环的影响. 作物学报, 2013, 39: 478-485.
doi: 10.3724/SP.J.1006.2013.00478
Cui H Y, Jin L B, Li B, Zhao B, Dong S T, Liu P, Zhang J W. Effects of shading on photosynthetic characteristics and xanthophyll cycle of summer maize in the field. Acta Agron Sin, 2013, 39: 478-485 (in Chinese with English abstract).
[29] 王丹英, 韩勃, 章秀福, 邵国胜, 徐春梅, 符冠富. 水稻根际含氧量对根系生长的影响. 作物学报, 2008, 34: 803-808.
doi: 10.3724/SP.J.1006.2008.00803
Wang D Y, Han B, Zhang X F, Shao G S, Xu C M, Fu G F. Influence of rhizosphere oxygen concentration on rice root growth. Acta Agron Sin, 2008, 34: 803-808 (in Chinese with English abstract).
[30] Zhang H, Yu C, Kong X S, Hou D P, Gu J F, Liu L J, Wang Z Q, Yang J C. Progressive integrative crop managements increase grain yield, nitrogen use efficiency and irrigation water productivity in rice. Field Crops Res, 2018, 215: 1-11.
[31] 付景, 王亚, 杨文博, 王越涛, 李本银, 王付华, 王生轩, 白涛, 尹海庆. 干湿交替灌溉耦合施氮量对水稻籽粒灌浆生理和根系生理的影响. 作物学报, 2023, 49: 808-820.
doi: 10.3724/SP.J.1006.2023.22032
Fu J, Wang Y, Yang W B, Wang Y T, Li B Y, Wang F H, Wang S X, Bai T, Yin H Q. Effects of alternate wetting and drying irrigation and nitrogen coupling on grain filling physiology and root physiology in rice. Acta Agron Sin, 2023, 49: 808-820 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2023.22032
[32] 褚光, 徐冉, 陈松, 徐春梅, 王丹英, 章秀福. 干湿交替灌溉对籼粳杂交稻产量与水分利用效率的影响及其生理基础. 中国农业科学, 2021, 54: 1499-1511.
doi: 10.3864/j.issn.0578-1752.2021.07.014
Chu G, Xu R, Chen S, Xu C M, Wang D Y, Zhang X F. Effects of alternate wetting and soil drying on the grain yield and water use efficiency of indica-japonica hybrid rice and its physiological bases. Sci Agric Sin, 2021, 54: 1499-1511 (in Chinese with English abstract).
[33] Chu G, Chen T T, Wang Z Q, Yang J C, Zhang J H. Morphological and physiological traits of roots and their relationships with water productivity in water-saving and drought-resistant rice. Field Crops Res, 2014, 162: 108-119.
[34] Han M, Okamoto M, Beatty P H, Rothstein S J, Good A G. The genetics of nitrogen use efficiency in crop plants. Annu Rev Genet, 2015, 49: 269-289.
doi: 10.1146/annurev-genet-112414-055037 pmid: 26421509
[35] Sun Y J, Ma J, Sun Y Y, Hui X, Yang Z Y, Liu S J, Jia X W, Zheng H Z. The effects of different water and nitrogen managements on yield and nitrogen use efficiency in hybrid rice of China. Field Crops Res, 2012, 127: 85-98.
[36] 谷岩, 胡文河, 徐百军, 王思远, 吴春胜. 氮素营养水平对膜下滴灌玉米穗位叶光合及氮代谢酶活性的影响. 生态学报, 2013, 33: 7399-7407.
Gu Yan, Hu W H, Xu B J, Wang S Y, Wu C S. Effects of nitrogen on photosynthetic characteristics and enzyme activity of nitrogen metabolism in maize under-mulch-drip irrigation. Acta Ecol Sin, 2013, 33: 7399-7407 (in Chinese with English abstract).
[37] 徐国伟, 王贺正, 翟志华, 孙梦, 李友军. 不同水氮耦合对水稻根系形态生理、产量与氮素利用的影响. 农业工程学报, 2015, 31(10): 132-141.
Xu G W, Wang H Z, Zhai Z H, Sun M, Li Y J. Effect of water and nitrogen coupling on root morphology and physiology, yield and nutrition utilization for rice. Trans CSAE, 2015, 31(10): 132-141 (in Chinese with English abstract).
[38] 徐国伟, 陆大克, 刘聪杰, 王贺正, 陈明灿, 李友军. 干湿交替灌溉和施氮量对水稻内源激素及氮素利用的影响. 农业工程学报, 2018, 34(7): 137-146.
Xu G W, Lu D K, Liu C J, Wang H Z, Chen M C, Li Y J. Effect of alternate wetting and drying irrigation and nitrogen coupling on endogenous hormones, nitrogen utilization. Trans CSAE, 2018, 34(7): 137-146 (in Chinese with English abstract).
[39] 褚光. 不同水分、养分利用效率水稻品种的根系特征及其调控技术. 扬州大学博士学位论文, 江苏扬州, 2016.
Chu G. Roots Traits for Rice Varieties with Different Water and Nitrogen Use Efficiencies and Their Regulation Techniques. PhD Dissertation of Yangzhou University, Yangzhou, Jiangsu, China, 2016 (in Chinese with English abstract).
[40] 李晓峰, 程金秋, 梁健, 陈梦云, 任红茹, 张洪程, 霍中洋, 戴其根, 许轲, 魏海燕, 郭保卫. 秸秆全量还田与氮肥运筹对机插粳稻产量及氮素吸收利用的影响. 作物学报, 2017, 43: 912-924.
doi: 10.3724/SP.J.1006.2017.00912
Li X F, Cheng J Q, Liang J, Chen M Y, Ren H R, Zhang H C, Huo Z Y, Dai Q G, Xu K, Wei H Y, Guo B W. Effects of total straw returning and nitrogen application on grain yield and nitrogen absorption and utilization of machine transplanted japonica rice. Acta Agron Sin, 2017, 43: 912-924 (in Chinese with English abstract).
[41] 何海兵, 杨茹, 廖江, 武立权, 孔令聪, 黄义德. 水分和氮肥管理对灌溉水稻优质高产高效调控机制的研究进展. 中国农业科学, 2016, 49: 305-318.
doi: 10.3864/j.issn.0578-1752.2016.02.011
He H B, Yang R, Liao J, Wu L Q, Kong L C, Huang Y D. Research advance of high-yielding and high efficiency in resource use and improving grain quality of rice plants under water and nitrogen managements in an irrigated region. Sci Agric Sin, 2016, 49: 305-318 (in Chinese with English abstract).
[42] Fu J, Huang Z H, Wang Z Q, Yang J C, Zhang J H. Pre-anthesis non-structural carbohydrate reserve in the stem enhances the sink strength of inferior spikelets during grain filling of rice. Field Crops Res, 2011, 123: 170-182.
[43] 刘立军, 王康君, 卞金龙, 熊溢伟, 陈璐, 王志琴, 杨建昌. 水稻产量对氮肥响应的品种间差异及其与根系形态生理的关系. 作物学报, 2014, 40: 1999-2007.
doi: 10.3724/SP.J.1006.2014.01999
Liu L J, Wang K J, Bian J L, Xiong Y W, Chen L, Wang Z Q, Yang J C. Differences in yield response to nitrogen fertilizer among rice cultivars and their relationship with root morphology and physiology. Acta Agron Sin, 2014, 40: 1999-2007 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2014.01999
[44] Devkota K P, Manschadi A, Lamers J P A, Devkota M, Vlek P L G. Mineral nitrogen dynamics in irrigated rice-wheat system under different irrigation and establishment methods and residue levels in arid drylands of Central Asia. Eur J Agron, 2013, 47: 65-76.
[45] 徐国伟, 赵喜辉, 江孟孟, 陆大克, 陈明灿. 轻度干湿交替灌溉协调水稻根冠生长、提高产量及氮肥利用效率. 植物营养与肥料学报, 2021, 27: 1388-1396.
Xu G W, Zhao X H, Jiang M M, Lu D K, Chen M C. Alternate wetting and moderate drying irrigation harmonize rice root and shoot growth, improves grain yield and nitrogen use efficiency. J Plant Nutr Fert, 2021, 27: 1388-1396 (in Chinese with English abstract).
[46] 李敏, 罗德强, 蒋明金, 江学海, 姬广梅, 李立江, 周维佳. 不同减氮栽培模式对杂交籼稻氮素吸收利用及产量的影响. 植物营养与肥料学报, 2022, 28: 598-610.
Li M, Luo D Q, Jiang M J, Jiang X H, Ji G M, Li L J, Zhou W J. Effects of nitrogen-reduction cultivation models on nitrogen accumulation and yield of hybrid in indica rice. J Plant Nutr Fert, 2022, 28: 598-610 (in Chinese with English abstract).
[47] 侯云鹏, 韩立国, 孔丽丽, 尹彩侠, 秦裕波, 李前, 谢佳贵. 不同施氮水平下水稻的养分吸收、转运及土壤氮素平衡. 植物营养与肥料学报, 2015, 21: 836-845.
Hou Y P, Han L G, Kong L L, Yin C X, Qin Y B, Li Q, Xie J G. Nutrient absorption, translocation in rice and soil nitrogen equilibrium under different nitrogen application doses. J Plant Nutr Fert, 2015, 21: 836-845 (in Chinese with English abstract).
[48] 杨建昌, 刘立军, 张耗. 高产水稻氮肥高效利用原理与技术. 北京: 科学出版社, 2022. pp 1-22.
Yang J C, Liu L J, Zhang H. Principle and Technology of Efficient Utilization of Fertilizer Nitrogen in High-Yielding Rice. Beijing: Science Press, 2022. pp 1-22 (in Chinese).
[1] CHENG Shuang, XING Zhi-Peng, TIAN Chao, HU Qun, WEI Hai-Yan, ZHANG Hong-Cheng. Effects of an integrated dryland tillage and soaking pattern on the reducing substances in rice field and early growth of machine transplanted rice [J]. Acta Agronomica Sinica, 2024, 50(7): 1762-1775.
[2] PEI Fa-Jing, ZHANG Wen-Xuan, ZHANG Xiao, WANG Xin-Yu, PENG Shao-Bing, MI Jia-Ming. Developing new rice lines with ultrashort-duration, long-grain, and fragrance [J]. Acta Agronomica Sinica, 2024, 50(7): 1684-1698.
[3] TANG Qing-Yun, YANG Jing-Jing, ZHAO Lei, SONG Zhi-Wen, WANG Guo-Dong, LI Yu-Xiang. Effect of nitrogen application on morphological conformation and fractal characteristics of drip irrigated rice roots [J]. Acta Agronomica Sinica, 2024, 50(6): 1540-1553.
[4] ZHANG Xiao-Fang, ZHU Qi, HUA Yun-Yan, JIA Li-Hui-Ying, QIU Shi-You, CHEN Yu-Jie, MA Tao, DING Wo-Na. Screening and validation of OsCYP22 interacting proteins in rice [J]. Acta Agronomica Sinica, 2024, 50(6): 1628-1634.
[5] ZHU Zhong-Lin, WEN Yue, ZHOU Qi, WU Yan-Fei, DU Xue-Zhu, SHENG Feng. Mechanism of loding residence and drought tolerance of OsCNGC10 gene in rice [J]. Acta Agronomica Sinica, 2024, 50(5): 1351-1360.
[6] HU Ming-Ming, DING Feng, PENG Zhi-Yun, XIANG Kai-Hong, LI Yu, ZHANG Yu-Jie, YANG Zhi-Yuan, SUN Yong-Jian, MA Jun. Effects of straw returning to field combined with water and N management on rice yield formation and N uptake and utilization under diversified cropping patterns [J]. Acta Agronomica Sinica, 2024, 50(5): 1236-1252.
[7] GENG Xiao-Yu, ZHANG Xiang, LIU Yang, ZUO Bo-Yuan, ZHU Wang, MA Wei-Yi, WANG Lu-Lu, MENG Tian-Yao, GAO Ping-Lei, CHEN Ying-Long, XU Ke, DAI Qi-Gen, WEI Huan-He. Grain yield and its characteristics of japonica/indica hybrids rice in coastal saline-alkali lands [J]. Acta Agronomica Sinica, 2024, 50(5): 1253-1270.
[8] WAN Ying-Chun, BAN Yi-Jie, JIANG Yu-Dong, WANG Ya-Xin, LIU Jing-Jing, LIU Xiao-Qing, CHENG Yu-Lin, WANG Nan, FENG Ping. Phenotypic identification and fine mapping of male sterile mutant tpa1 in rice [J]. Acta Agronomica Sinica, 2024, 50(5): 1104-1114.
[9] CAO Xin-Yuan, DU Ming-Li, WANG Yu-Cheng, CHEN Xin-Hua, CHEN Jia-Xin, LING Xiao-Xia, HUANG Jian-Liang, PENG Shao-Bing, DENG Nan-Yan. Evaluation of annual yield gap and yield limiting facters in rice-rapeseed cropping system: an example from Wuxue city, Hubei province, China [J]. Acta Agronomica Sinica, 2024, 50(5): 1287-1299.
[10] ZHOU Xiang-Yu, XU Jin-Song, XIE Ling-Li, XU Ben-Bo, ZHANG Xue-Kun. Physiological mechanisms in response to waterlogging during seedling stage of Brassica napus L. [J]. Acta Agronomica Sinica, 2024, 50(4): 1015-1029.
[11] ZHANG Zhen, ZHAO Jun-Ye, SHI Yu, ZHANG Yong-Li, YU Zhen-Wen. Effects of different sowing space on photosynthetic characteristics after anthesis and grain yield of wheat [J]. Acta Agronomica Sinica, 2024, 50(4): 981-990.
[12] YU Yao, WANG Zi-Yao, ZHOU Si-Rui, LIU Peng-Cheng, YE Ya-Feng, MA Bo-Jun, LIU Bin-Mei, CHEN Xi-Feng. Phenotypic identification and disease resistance mechanism analysis of rice lesion mutant lms1 [J]. Acta Agronomica Sinica, 2024, 50(4): 857-870.
[13] ZHANG Li-Jie, ZHOU Hai-Yu, MUHAMMAD Zeshan, MUNSIF Ali Shad, YANG Ming-Chong, LI Bo, HAN Shi-Jian, ZHANG Cui-Cui, HU Li-Hua, WANG Ling-Qiang. Functional analysis of OsFLZ13, the gene encoding a small peptide zinc finger protein in rice [J]. Acta Agronomica Sinica, 2024, 50(3): 543-555.
[14] WEI Huan-He, ZHANG Xiang, ZHU Wang, GENG Xiao-Yu, MA Wei-Yi, ZUO Bo-Yuan, MENG Tian-Yao, GAO Ping-Lei, CHEN Ying-Long, XU Ke, DAI Qi-Gen. Effects of salinity stress on grain-filling characteristics and yield of rice [J]. Acta Agronomica Sinica, 2024, 50(3): 734-746.
[15] WANG Lyu, WU Yu-Hong, QIN Yu-Hang, DAN Ya-Bin, CHEN Hao, HAO Xing-Shun, TIAN Xiao-Hong. Effects of rice straw mulching combined with green manure retention and nitrogen reduction applications on dry matter quality accumulation, nitrogen transport and grain yield of rice [J]. Acta Agronomica Sinica, 2024, 50(3): 756-770.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!