Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2025, Vol. 51 ›› Issue (4): 873-887.doi: 10.3724/SP.J.1006.2025.41068

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Molecular characteristics and functional analysis of HvMYB2 in response to drought stress in barley

WANG Lin(), CHEN Xiao-Yu, ZHANG Wen-Meng-Long, WANG Si-Qi, CHENG Bing-Yun, CHENG Jing-Qiu, PAN Rui(), ZHANG Wen-Ying()   

  1. College of Agriculture, Yangtze University, Jingzhou 434025, Hubei, China
  • Received:2024-10-11 Accepted:2025-01-23 Online:2025-04-12 Published:2025-02-08
  • Contact: E-mail: rui.p@yangtzeu.edu.cn; E-mail: wyzhang@yangtzeu.edu.cn
  • Supported by:
    National Natural Science Foundation of China(32372052);College Students’ Innovative Entrepreneurial Training Plan Program in Yangtze University(Yz2023206)

Abstract:

Drought is one of the most critical environmental stresses affecting global agricultural production, severely impairing crop growth and yield. Identifying drought-resistant genes in wild barley holds significant potential for the utilization of arid and semi-arid lands in northwest China. This study focused on the molecular characterization of the HvMYB2 gene and its functional role under drought stress. A 912 bp coding sequence (CDS) of HvMYB2 was amplified from the drought-tolerant wild barley EC_S1, encoding a protein of 303 amino acids. Conserved structure analysis revealed that HvMYB2 is an R2R3-type MYB transcription factor containing two HTH_MYB domains, and it was predicted to localize in the nucleus. Phylogenetic analysis showed that HvMYB2 shares the highest homology (87.5%) with wheat PIMP1. Expression pattern analysis indicated that HvMYB2 is most highly expressed in the shoots at the seedling stage. Under drought stress, HvMYB2 expression was significantly upregulated in the drought-tolerant wild barley EC_S1. Arabidopsis thaliana plants overexpressing HvMYB2 exhibited enhanced drought tolerance, characterized by higher relative water content, increased chlorophyll a and b levels, and reduced relative electrical conductivity. Additionally, these plants displayed lower stomatal conductance under drought conditions compared to wild-type plants. Conversely, silencing HvMYB2 in barley significantly reduced drought tolerance, resulting in greater water loss, increased cell damage, and higher stomatal conductance. These results suggest that HvMYB2 positively regulates drought tolerance in barley by modulating stomatal closure. Protein interaction predictions indicated that HvMYB2 may form a complex with the transcription factors HvMYB27 and HvMYB29 to regulate downstream gene expression. Promoter analysis of HvMYB2 revealed the presence of multiple drought-responsive and hormone-regulated elements. Notably, the insertion of a 181 bp specific fragment in the HvMYB2 promoter of wild barley significantly enhanced its transcription under drought conditions, potentially contributing to the strong drought tolerance observed in EC_S1. These findings provide new insights into the role of HvMYB2 in plant drought tolerance mechanisms and offer a valuable genetic resource for improving drought tolerance in barley.

Key words: wild barley, MYB transcription factor, drought stress, gene cloning, VIGS

Table 1

The information on primers used in this study"

引物名称
Primer name
引物序列
Primer sequence (5′-3′)
HvMYB2-CDs-F ATGGGACGCCCGTCGT
HvMYB2-CDs-R TCAGAAGTATGGTTCCAATTC
HvMYB2-pro-F CTCTGTAGCAGCTAAGCATGC
HvMYB2-pro-R TCGATCAGTTGATTCCGCTC
HvMYB2-OE-F agtggtctctgtccagtcctATGGGACGCCCGTCGT
HvMYB2-OE-R ggtctcagcagaccacaagtTCAGAAGTATGGTTCCAATTC
HvMYB2-VIGS-F GTGGATCAACTACCTCCGCC
HvMYB2-VIGS-R GGTCTTCCTCTTCTGCGTCC
HvMYB2-PDS-F AAGCCAGGAGAATACAGC
HvMYB2-PDS-R ACAGAATGCACTGCATAG
HvMYB2-RT-qPCR-F TCAAGAAGAAGCTCCGGCAG
HvMYB2-RT-qPCR-R GGTCTTCCTCTTCTGCGTCC
β-Actin-F GCCGTGCTTTCCCTCTATG
β-Actin-R GCTTCTCCTTGATGTCCCTTA

Fig. 1

Cloning and structure analysis of HvMYB2 coding region from wild barley EC_S1 A: amplify the 912 bp HvMYB2 coding sequence from wild barley EC_S1; B: HvMYB2 gene structure analysis; C: conservative domain prediction in HvMYB2 protein."

Fig. 2

Prediction of phosphorylation sites of HvMYB2 protein in barley"

Fig. 3

Prediction of secondary structure of HvMYB2 protein"

Fig. 4

Prediction of the tertiary structure of HvMYB2 protein The different colored regions represent the confidence index pLDDT for protein prediction (a confidence index estimated by atom from 0 to 100, with higher values indicating higher confidence), where blue represents the highest confidence and red represents the lowest confidence regions."

Fig. 5

Phylogenetic analysis and sequence alignment of HvMYB2 and MYB family proteins in related species AEGTS: Aegilops tauschii; TRIUA: Triticum urartu; TRITD: Triticum turgidum; WHEAT: Triticum aestivum."

Fig. 6

Analysis of HvMYB2 expression pattern A: expression levels of HvMYB2 in different tissue parts and stages of barley. The data comes from the BarleyX database. EMB: four days embryos; ROO: roots from seedlings; ROO2: roots from seedlings (28 days); LEA: shoots from seedlings; INF1: young developing inflorescences; INF2: developing inflorescences; NOD: developing tillers; CAR5: developing grain (five days); CAR15: developing grain (fifteen days); ETI: etiolated seedling, dark cond.; LEM: inflorescences, lemma; LOD: inflorescences, lodicule; PAL: dissected inflorescences, palea; EPI: epidermal strips composed of upper spikelet ridges and lower leaf ridges; RAC: inflorescences, rachis; SEN: senescing leaves. B: expression levels of HvMYB2 in response to drought stress in different barley genotypes; C: subcellular location of HvMYB2 protein heterologous expression in tobacco leaves. Bright: white light; GFP: 488 nm excitation light source; DAPI: 4',6-diamidino-2-phenylindole, nuclear fuel, 340 nm excitation light source; Merged: three channels of white light, 488 nm, and 340 nm. The scale is 15 μm."

Fig. 7

Drought tolerance evaluation of HvMYB2-overexpressed Arabidopsis plants A: semi-quantitative analysis of HvMYB2 gene expression levels in HvMYB2-overexpressed strains, with Actin2 gene as an internal control gene. M: DL2000 marker; H2O: PCR negative control; WT: wild-type Arabidopsis, used as a control for transgenic Arabidopsis plants; 1-9: transgenic lines 1-9. B: phenotypes of wild-type and three HvMYB2-overexpressed Arabidopsis lines (OE2, OE4, OE9) after five days of drought stress. C: relative conductivity (REC). D: relative water content (RWC). E: stomatal conductance (Gs). F: chlorophyll a content (Chl a). G: chlorophyll b content (Chl b). The different lowercase letters on the error line indicate differences at the 5% significance level."

Fig. 8

Evaluation of drought tolerance of HvMYB2-silenced barley plants A: silencing of maker gene HvPDS in barley resulted in a photobleaching phenotype in leaves. Mock: barley plants inoculated with BSMV::γ (empty vector). The scale is 1 cm. B: the expression level of HvPDS was significantly reduced in HvPDS-silenced plants. C: the expression levels of HvMYB2 in barley plants inoculated with BSMV::γ (Mock) and BSMV::HvMYB2 (randomly selected three plants, VIGS1, VIGS2, VIGS3). D: phenotypes of barley plants inoculated with BSMV::γ (Mock) and BSMV::HvMYB2 after 7 days of well-watered and drought treatment. E: relative water content (RWC). F: relative electrical conductivity (REC). G: stomatal conductance (Gs). H: yellow leaf area ratio. The data are derived from three independent biological replicates, each consisting of 20 plants. The different lowercase letters on the error line indicate differences at the 5% significance level."

Fig. 9

Protein interaction network of HvMYB2"

Fig. 10

Analysis of cis-acting elements in HvMYB2 promoter A: distribution of cis-acting components; B: number of cis-acting components."

Fig. 11

Analysis of HvMYB2 promoter variation based on barley pan genome"

Table S1

Distribution of mutations in the promoters of pan genomic barley genotypes"

样品名称
Sample
生育习性
Annuality
起源地
Country of origin
棱型
Row type
资源类型
Status
亚种
Subspecies
启动子181 bp变异
Promoter mutation
(181 bp InDel)
EC_S1 兼性Facultative 以色列Israel 二棱2-rowed 野生型Wild 野生大麦Spontaneum 是Yes
B1K-04-12 兼性Facultative 以色列Israel 二棱2-rowed 野生型Wild 野生大麦Spontaneum 是Yes
F2327 冬性Winter 伊朗Iran 二棱2-rowed 野生型Wild 野生大麦Spontaneum 是Yes
HID249 冬性Winter 伊朗Iran 二棱2-rowed 野生型Wild 野生大麦Spontaneum 是Yes
HID251 冬性Winter 伊朗Iran 二棱2-rowed 野生型Wild 野生大麦Spontaneum 是Yes
HID112XXI 兼性Facultative 叙利亚Syria 二棱2-rowed 野生型Wild 野生大麦Spontaneum 是Yes
HID357 冬性Winter 土耳其Turkey 二棱2-rowed 野生型Wild 野生大麦Spontaneum 是Yes
HID84 冬性Winter 土耳其Turkey 二棱2-rowed 野生型Wild 野生大麦Spontaneum 是Yes
EC_N1 兼性Facultative 以色列Israel 二棱2-rowed 野生型Wild 野生大麦Spontaneum 否No
Barke 春性Spring 德国Germany 二棱2-rowed 栽培种Cultivar 栽培大麦Vulgare 否No
Igri 冬性Winter 德国Germany 二棱2-rowed 栽培种Cultivar 栽培大麦Vulgare 否No
RGT Planet 春性Spring 德国Germany 二棱2-rowed 栽培种Cultivar 栽培大麦Vulgare 否No
Golden Promise 春性Spring 英国UK 二棱2-rowed 栽培种Cultivar 栽培大麦Vulgare 否No
Hockett 春性Spring 美国USA 二棱2-rowed 栽培种Cultivar 栽培大麦Vulgare 否No
Akashinriki 冬性Winter 日本Japan 六棱6-rowed 栽培种Cultivar 栽培大麦Vulgare 否No
HOR 3081 冬性Winter 波兰Poland 六棱6-rowed 栽培种Cultivar 栽培大麦Vulgare 否No
Morex 春性Spring 美国USA 六棱6-rowed 栽培种Cultivar 栽培大麦Vulgare 否No
HOR 13821 春性Spring 土耳其Turkey 二棱2-rowed 地方种Landrace 栽培大麦Vulgare 否No
HOR 8148 春性Spring 土耳其Turkey 二棱2-rowed 地方种Landrace 栽培大麦Vulgare 否No
肚里黄ZDM01467 春性Spring 中国China 六棱6-rowed 地方种Landrace 栽培大麦Vulgare 否No
尺八ZDM02064
春性Spring 中国China 六棱6-rowed 地方种Landrace 栽培大麦Vulgare 否No
HOR 13942 春性Spring 西班牙Spain 六棱6-rowed 地方种Landrace 栽培大麦Vulgare 否No
HOR 10350 春性Spring 埃塞俄比亚
Ethiopia
六棱6-rowed 地方种Landrace 栽培大麦Vulgare 否No
HOR 9043 春性Spring 埃塞俄比亚
Ethiopia
六棱6-rowed 地方种Landrace 栽培大麦Vulgare 否No
HOR 7552 春性Spring 巴基斯坦Pakistan 六棱6-rowed 地方种Landrace 栽培大麦Vulgare 否No
HOR 3365 冬性Winter 俄罗斯Russia 六棱6-rowed 地方种Landrace 栽培大麦Vulgare 否No
OUN333 中间型Intermediate 尼泊尔Nepal 中间型
intermedium
地方种Landrace 栽培大麦Vulgare 否No
HOR 21595 春性Spring 叙利亚Syria 地方种Landrace 栽培大麦Vulgare 否No
Maximus 春性Spring 澳大利亚Australia 二棱2-rowed 栽培种Cultivar 栽培大麦Vulgare 否No
Bonus 春性Spring 瑞典Sweden 二棱2-rowed 栽培种Cultivar 栽培大麦Vulgare 否No
Foma 春性Spring 瑞典Sweden 二棱2-rowed 栽培种Cultivar 栽培大麦Vulgare 否No
Bowman 春性Spring 美国USA 二棱2-rowed 栽培种Cultivar 栽培大麦Vulgare 否No
HOR 2180 春性Spring 捷克Czech 六棱6-rowed 栽培种Cultivar 栽培大麦Vulgare 否No
Chikurin Ibaraki 日本Japan 六棱6-rowed 栽培种Cultivar 栽培大麦Vulgare 否No
HOR 4224 冬性Winter 日本Japan 六棱6-rowed 栽培种Cultivar 栽培大麦Vulgare 否No
Aizu 6 日本Japan 栽培种Cultivar 栽培大麦Vulgare 否No
Golden Melon 日本Japan 栽培种Cultivar 栽培大麦Vulgare 否No
HOR 12184 冬性Winter 瑞士Switzerland 二棱2-rowed 地方种Landrace 栽培大麦Vulgare 否No
HOR 7385 春性Spring 捷克Czech 二棱2-rowed 地方种Landrace 栽培大麦Vulgare 否No
HOR 10892 春性Spring 格鲁吉亚Georgia 二棱2-rowed 地方种Landrace 栽培大麦Vulgare 否No
HOR 2779 春性Spring 伊朗Iran 二棱2-rowed 地方种Landrace 栽培大麦Vulgare 否No
HOR 2830 春性Spring 伊朗Iran 二棱2-rowed 地方种Landrace 栽培大麦Vulgare 否No
HOR 14121 春性Spring 叙利亚Syria 二棱2-rowed 地方种Landrace 栽培大麦Vulgare 否No
HOR 21322 冬性Winter 叙利亚Syria 二棱2-rowed 地方种Landrace 栽培大麦Vulgare 否No
HOR 14061 春性Spring 土耳其Turkey 二棱2-rowed 地方种Landrace 栽培大麦Vulgare 否No
HOR 8117 春性Spring 土耳其Turkey 二棱2-rowed 地方种Landrace 栽培大麦Vulgare 否No
HOR 1702 春性Spring 阿富汗Afghanistan‌ 六棱6-rowed 地方种Landrace 栽培大麦Vulgare 否No
HOR 1168 春性Spring 希腊Greece 六棱6-rowed 地方种Landrace 栽培大麦Vulgare 否No
HOR 10096 春性Spring 利比亚Libya 六棱6-rowed 地方种Landrace 栽培大麦Vulgare 否No
HOR 7172 春性Spring 尼泊尔Nepal 六棱6-rowed 地方种Landrace 栽培大麦Vulgare 否No
HOR 9972 春性Spring 巴基斯坦Pakistan 六棱6-rowed 地方种Landrace 栽培大麦Vulgare 否No
HOR 3474 冬性Winter 俄罗斯Russia 六棱6-rowed 地方种Landrace 栽培大麦Vulgare 否No
HOR 495 春性Spring 土耳其Turkey 六棱6-rowed 地方种Landrace 栽培大麦Vulgare 否No
HOR 13594 春性Spring 也门Yemen 侧穗退化Deficiens 地方种Landrace 栽培大麦Vulgare 否No
HOR 6220 春性Spring 埃塞俄比亚Ethiopia 不稳定Labile 地方种Landrace 栽培大麦Vulgare 否No
HOR 18321 春性Spring 阿富汗Afghanistan‌ 地方种Landrace 栽培大麦Vulgare 否No
HOR 19184 春性Spring 印度India 地方种Landrace 栽培大麦Vulgare 否No
HOR 21322 春性Spring 伊朗Iran 地方种Landrace 栽培大麦Vulgare 否No
HOR 14273 春性Spring 苏丹Sudan 地方种Landrace 栽培大麦Vulgare 否No
10TJ18 塔吉克斯坦Tajikistan 地方种Landrace 栽培大麦Vulgare 否No
HOR 13663 冬性Winter 土耳其Turkey 地方种Landrace 栽培大麦Vulgare 否No
HOR 21256 春性Spring 地方种Landrace 栽培大麦Vulgare 否No
HID144 兼性Facultative 伊朗Iran 二棱2-rowed 野生型Wild 野生大麦Spontaneum 否No
B1K-33-13 兼性Facultative 以色列Israel 二棱2-rowed 野生型Wild 野生大麦Spontaneum 否No
B1K-17-07 兼性Facultative 以色列Israel 二棱2-rowed 野生型Wild 野生大麦Spontaneum 否No
WBDC348 以色列Israel 二棱2-rowed 野生型Wild 野生大麦Spontaneum 否No
WBDC349 以色列Israel 二棱2-rowed 野生型Wild 野生大麦Spontaneum 否No
WBDC103 约旦Jordan 二棱2-rowed 野生型Wild 野生大麦Spontaneum 否No
WBDC237 约旦Jordan 二棱2-rowed 野生型Wild 野生大麦Spontaneum 否No
WBDC184 利比亚Libya 二棱2-rowed 野生型Wild 野生大麦Spontaneum 否No
WBDC133 黎巴嫩Lebanon 二棱2-rowed 野生型Wild 野生大麦Spontaneum 否No
HID101 叙利亚Syria 二棱2-rowed 野生型Wild 野生大麦Spontaneum 否No
WBDC078 叙利亚Syria 二棱2-rowed 野生型Wild 野生大麦Spontaneum 否No
WBDC199 叙利亚Syria 二棱2-rowed 野生型Wild 野生大麦Spontaneum 否No
HID055 兼性Facultative 土耳其Turkey 二棱2-rowed 野生型Wild 野生大麦Spontaneum 否No
WBDC207 乌兹别克斯坦Uzbekistan 二棱2-rowed 野生型Wild 野生大麦Spontaneum 否No
HOR 12541 二棱2-rowed 野生型Wild 野生大麦Spontaneum 否No
HID380 冬性Winter 中国China 六棱6-rowed 野生型Wild 野生六棱大麦Agriocrithon 否No

Fig. 12

Effect of promoter variation on transcriptional activity The pro-HvMYB2a type promoter doesn’t contain a sequence insertion of 181 bp; the pro-HvMYB2b type promoter includes a 181 bp sequence insertion, mainly for the promoter types of wild barley EC_S1 and B1K-04-12."

[1] Geng L, Li M D, Zhang G P, Ye L Z. Barley: a potential cereal for producing healthy and functional foods. Food Qual Saf, 2022, 6: fyac012.
[2] Elakhdar A, Solanki S, Kubo T, Abed A, Elakhdar I, Khedr R, Hamwieh A, Capo-chichi L J A, Abdelsattar M, Franckowiak J D, et al. Barley with improved drought tolerance: challenges and perspectives. Environ Exp Bot, 2022, 201: 104965.
[3] Jayakodi M, Padmarasu S, Haberer G, Bonthala V S, Gundlach H, Monat C, Lux T, Kamal N, Lang D, Himmelbach A, et al. The barley pan-genome reveals the hidden legacy of mutation breeding. Nature, 2020, 588: 284-289.
[4] 白万鹏, 李虎军, 刘林波, 王锁民. 植物气孔与角质层蜡质响应非生物胁迫的研究进展. 安徽农业科学, 2020, 48(22): 14-18.
Bai W P, Li H J, Liu L B, Wang S M. Research progress of plant stomata and cuticular wax in response to abiotic stress. J Anhui Agric Sci, 2020, 48(22): 14-18 (in Chinese with English abstract).
[5] Dittrich M, Mueller H M, Bauer H, Peirats-Llobet M, Rodriguez P L, Geilfus C M, Carpentier S C, Al Rasheid K A S, Kollist H, Merilo E, et al. The role of Arabidopsis ABA receptors from the PYR/PYL/RCAR family in stomatal acclimation and closure signal integration. Nat Plants, 2019, 5: 1002-1011.
doi: 10.1038/s41477-019-0490-0 pmid: 31451795
[6] Gupta A, Rico-Medina A, Caño-Delgado A I. The physiology of plant responses to drought. Science, 2020, 368: 266-269.
doi: 10.1126/science.aaz7614 pmid: 32299946
[7] Gonzalez-Guzman M, Pizzio G A, Antoni R, Vera-Sirera F, Merilo E, Bassel G W, Fernández M A, Holdsworth M J, Perez- Amador M A, Kollist H, et al. Arabidopsis PYR/PYL/RCAR receptors play a major role in quantitative regulation of stomatal aperture and transcriptional response to abscisic acid. Plant Cell, 2012, 24: 2483-2496.
[8] Zhang P Y, Yuan Z, Wei L, Qiu X, Wang G R, Liu Z X, Fu J X, Cao L R, Wang T C. Overexpression of ZmPP2C55 positively enhances tolerance to drought stress in transgenic maize plants. Plant Sci, 2022, 314: 111127.
[9] Zeng X Q, Bai L J, Wei Z X, Yuan H J, Wang Y L, Xu Q J, Tang Y W, Nyima T. Transcriptome analysis revealed the drought- responsive genes in Tibetan hulless barley. BMC Genomics, 2016, 17: 386.
[10] Xiong J Y, Chen D Y, Su T T, Shen Q F, Wu D Z, Zhang G P. Genome-wide identification, expression pattern and sequence variation analysis of SnRK family genes in barley. Plants (Basel), 2022, 11: 975.
[11] Nakashima K, Fujita Y, Katsura K, Maruyama K, Narusaka Y, Seki M, Shinozaki K, Yamaguchi-Shinozaki K. Transcriptional regulation of ABI3- and ABA-responsive genes including RD29B and RD29A in seeds, germinating embryos, and seedlings of Arabidopsis. Plant Mol Biol, 2006, 60: 51-68.
pmid: 16463099
[12] Abe H, Urao T, Ito T, Seki M, Shinozaki K, Yamaguchi- Shinozaki K. Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell, 2003, 15: 63-78.
[13] 关范圆, 郑语嫣, 米芯雨, 范菁, 王宝纬, 王晓晖. R2R3型MYB转录因子调控植物胁迫应答的研究进展. 植物医学, 2024, 3(3): 1-9.
Guan F Y, Zheng Y Y, Mi X Y, Fan J, Wang B W, Wang X H. Research advance of the functions of R2R3-MYB transcription factors in plant response to biotic and abiotic stresses. Plant Health Med, 2024, 3(3): 1-9 (in Chinese with English abstract).
[14] 王丽平, 王晓钰, 傅竞也, 王强. 玉米转录因子ZmMYB12提高植物抗旱性和低磷耐受性的功能鉴定. 作物学报, 2024, 50: 76-88.
doi: 10.3724/SP.J.1006.2024.33007
Wang L P, Wang X Y, Fu J Y, Wang Q. Functional identification of maize transcription factor ZmMYB12 to enhance drought resistance and low phosphorus tolerance in plants. Acta Agron Sin, 2024, 50: 76-88 (in Chinese with English abstract).
[15] Rahaie M, Xue G P, Naghavi M R, Alizadeh H, Schenk P M. A MYB gene from wheat (Triticum aestivum L.) is up-regulated during salt and drought stresses and differentially regulated between salt-tolerant and sensitive genotypes. Plant Cell Rep, 2010, 29: 835-844.
doi: 10.1007/s00299-010-0868-y pmid: 20490502
[16] Zheng L, Kong Y N, Yan X C, Liu Y X, Wang X R, Zhang J P, Qi X L, Cao X Y, Zhang S X, Liu Y W, et al. TaMYB-CC5 gene specifically expressed in root improve tolerance of phosphorus deficiency and drought stress in wheat. Plant Physiol Biochem, 2024, 215: 109011.
[17] Wei Q H, Zhang F, Sun F S, Luo Q C, Wang R B, Hu R, Chen M J, Chang J L, Yang G X, He G Y. A wheat MYB transcriptional repressor TaMyb1D regulates phenylpropanoid metabolism and enhances tolerance to drought and oxidative stresses in transgenic tobacco plants. Plant Sci, 2017, 265: 112-123.
[18] Seo P J, Lee S B, Suh M C, Park M J, Go Y S, Park C M. The MYB96 transcription factor regulates cuticular wax biosynthesis under drought conditions in Arabidopsis. Plant Cell, 2011, 23: 1138-1152.
[19] Qu X X, Zou J J, Wang J X, Yang K Z, Wang X Q, Le J. A rice R2R3-type MYB transcription factor OsFLP positively regulates drought stress response via OsNAC. Int J Mol Sci, 2022, 23: 5873.
[20] Park M Y, Kang J Y, Kim S Y. Overexpression of AtMYB52 confers ABA hypersensitivity and drought tolerance. Mol Cells, 2011, 31: 447-454.
[21] Li X M, Zhong M, Qu L N, Yang J X, Liu X Q, Zhao Q, Liu X M, Zhao X Y. AtMYB32 regulates the ABA response by targeting ABI3, ABI4 and ABI5 and the drought response by targeting CBF4 in Arabidopsis. Plant Sci, 2021, 310: 110983.
[22] Zhao Y, Cheng X Y, Liu X D, Wu H F, Bi H H, Xu H X. The wheat MYB transcription factor TaMYB31 is involved in drought stress responses in Arabidopsis. Front Plant Sci, 2018, 9: 1426.
doi: 10.3389/fpls.2018.01426 pmid: 30323824
[23] Peng D, Li L Q, Wei A S, Zhou L, Wang B X, Liu M L, Lei Y H, Xie Y Z, Li X J. TaMYB44-5A reduces drought tolerance by repressing transcription of TaRD22-3A in the abscisic acid signaling pathway. Planta, 2024, 260: 52.
doi: 10.1007/s00425-024-04485-0 pmid: 39003354
[24] Tombuloglu H, Kekec G, Sakcali M S, Unver T. Transcriptome- wide identification of R2R3-MYB transcription factors in barley with their boron responsive expression analysis. Mol Genet Genomics, 2013, 288: 141-155.
doi: 10.1007/s00438-013-0740-1 pmid: 23539153
[25] Chen L, Cui Y M, Yao Y H, An L K, Bai Y X, Li X, Yao X H, Wu K L. Genome-wide identification of WD40 transcription factors and their regulation of the MYB-bHLH-WD40 (MBW) complex related to anthocyanin synthesis in Qingke (Hordeum vulgare L. var. nudum Hook. f.). BMC Genomics, 2023, 24: 166.
doi: 10.1186/s12864-023-09240-5 pmid: 37016311
[26] Strygina K V, Börner A, Khlestkina E K. Identification and characterization of regulatory network components for anthocyanin synthesis in barley aleurone. BMC Plant Biol, 2017, 17: 184.
doi: 10.1186/s12870-017-1122-3 pmid: 29143621
[27] Himi E, Yamashita Y, Haruyama N, Yanagisawa T, Maekawa M, Taketa S. Ant28 gene for proanthocyanidin synthesis encoding the R2R3 MYB domain protein (Hvmyb10) highly affects grain dormancy in barley. Euphytica, 2012, 188: 141-151.
[28] Seven M, Akdemir H. DOF, MYB and TCP transcription factors: their possible roles on barley germination and seedling establishment. Gene Expr Patterns, 2020, 37: 119116.
[29] Alexander R D, Wendelboe-Nelson C, Morris P C. The barley transcription factor HvMYB1 is a positive regulator of drought tolerance. Plant Physiol Biochem, 2019, 142: 246-253.
[30] Zhang W Y, Tan C, Hu H F, Pan R, Xiao Y H, Ouyang K, Zhou G F, Jia Y, Zhang X Q, Hill C B, et al. Genome architecture and diverged selection shaping pattern of genomic differentiation in wild barley. Plant Biotechnol J, 2023, 21: 46-62.
[31] Chang C W, Fridman E, Mascher M, Himmelbach A, Schmid K. Physical geography, isolation by distance and environmental variables shape genomic variation of wild barley (Hordeum vulgare L. ssp. spontaneum) in the Southern Levant. Heredity, 2022, 128: 107-119.
[32] Pan R, Buitrago S, Feng Z B, Abou-Elwafa S F, Xu L, Li C D, Zhang W Y. HvbZIP21, a novel transcription factor from wild barley confers drought tolerance by modulating ROS scavenging. Front Plant Sci, 2022, 13: 878459.
[33] Yuan C, Li C, Yan L J, Jackson A O, Liu Z Y, Han C G, Yu J L, Li D W. A high throughput barley stripe mosaic virus vector for virus induced gene silencing in monocots and dicots. PLoS One, 2011, 6: e26468.
[34] Zhang Z Y, Liu X, Wang X D, Zhou M P, Zhou X Y, Ye X G, Wei X N. An R2R3 MYB transcription factor in wheat, TaPIMP1, mediates host resistance to Bipolaris sorokiniana and drought stresses through regulation of defense- and stress-related genes. New Phytol, 2012, 196: 1155-1170.
[35] Li B Z, Liu R N, Liu J, Zhang H, Tian Y N, Chen T T, Li J X, Jiao F H, Jia T F, Li Y X, et al. ZmMYB56 regulates stomatal closure and drought tolerance in maize seedlings by regulating ZmTOM7 expression at the transcriptional level. New Crops, 2024, 1: 100012.
[36] Jung C, Seo J S, Han S W, Koo Y J, Kim C H, Song S I, Nahm B H, Choi Y D, Cheong J J. Overexpression of AtMYB44 enhances stomatal closure to confer abiotic stress tolerance in transgenic Arabidopsis. Plant Physiol, 2008, 146: 623-635.
[37] Zhu N, Duan B L, Zheng H L, Mu R R, Zhao Y Y, Ke L P, Sun Y Q. An R2R3 MYB gene GhMYB3 functions in drought stress by negatively regulating stomata movement and ROS accumulation. Plant Physiol Biochem, 2023, 197: 107648.
[38] Lim J, Lim C W, Lee S C. Role of pepper MYB transcription factor CaDIM1 in regulation of the drought response. Front Plant Sci, 2022, 13: 1028392.
[39] Xu C Z, Fu X K, Liu R, Guo L, Ran L Y, Li C F, Tian Q Y, Jiao B, Wang B J, Luo K M. PtoMYB170 positively regulates lignin deposition during wood formation in poplar and confers drought tolerance in transgenic Arabidopsis. Tree Physiol, 2017, 37: 1713-1726.
[40] Simeoni F, Skirycz A, Simoni L, Castorina G, de Souza L P, Fernie A R, Alseekh S, Giavalisco P, Conti L, Tonelli C, et al. The AtMYB60 transcription factor regulates stomatal opening by modulating oxylipin synthesis in guard cells. Sci Rep, 2022, 12: 533.
doi: 10.1038/s41598-021-04433-y pmid: 35017563
[41] Zhu Y F, Zhu G T, Xu R, Jiao Z X, Yang J W, Lin T, Wang Z, Huang S W, Chong L, Zhu J K. A natural promoter variation of SlBBX31 confers enhanced cold tolerance during tomato domestication. Plant Biotechnol J, 2023, 21: 1033-1043.
[42] Sun X M, Xiong H Y, Jiang C H, Zhang D M, Yang Z L, Huang Y P, Zhu W B, Ma S S, Duan J Z, Wang X, et al. Natural variation of DROT1 confers drought adaptation in upland rice. Nat Commun, 2022, 13: 4265.
[1] HUO Ru-Xue, GE Xiang-Han, SHI Jia, LI Xue-Rui, DAI Sheng-Jie, LIU Zhen-Ning, LI Zong-Yun. Functional analysis of the sweetpotato histidine kinase protein IbHK5 in response to drought and salt stresses [J]. Acta Agronomica Sinica, 2025, 51(3): 650-666.
[2] ZHANG Zheng-Kang, SU Yan-Hong, RUAN Sun-Mei, ZHANG Min, ZHANG Pan, ZHANG Hui, ZENG Qian-Chun, LUO Qiong. Cloning and functional study of OgXa13 in Oryza meyeriana [J]. Acta Agronomica Sinica, 2025, 51(2): 334-346.
[3] GUO Fei-Xiang, LI Chun-Xia, ZHOU Shuang, GUO Bin-Bin, ZHANG Jun, MA Chao. Identification of the R2R3-MYB transcription factor family and screening of genes regulating flavonoid synthesis in mung bean [J]. Acta Agronomica Sinica, 2025, 51(1): 117-133.
[4] LIU Yong-Hui, SHEN Yi, SHEN Yue, LIANG Man, SHA Qin, ZHANG Xu-Yao, CHEN Zhi-De. Cloning and functional analysis of drought-inducible promoter AhMYB44-11- Pro in peanut (Arachis hypogaea L.) [J]. Acta Agronomica Sinica, 2024, 50(9): 2157-2166.
[5] LI Wen-Juan, WANG Li-Min, QI Yan-Ni, ZHAO Wei, XIE Ya-Ping, DANG Zhao, ZHAO Li-Rong, LI Wen, XU Chen-Meng, WANG Yan, ZHANG Jian-Ping. Functional analysis of flax LuWRI1a in response to drought and salt stresses [J]. Acta Agronomica Sinica, 2024, 50(7): 1750-1761.
[6] QIAO Zhi-Xin, ZHANG Jie-Dao, WANG Yu, GUO Qi-Fang, LIU Yan-Jing, CHEN Rui, HU Wen-Hao, SUN Ai-Qing. Difference in germination characteristics of different winter wheat cultivars under drought stress [J]. Acta Agronomica Sinica, 2024, 50(6): 1568-1583.
[7] WU Fa-Xuan, LI Qin, YANG Xin, LI Xin-Gen, XU Jian-Tang, TAO Ai-Fen, FANG Ping-Ping, QI Jian-Min, ZHANG Li-Wu. Cloning, expression, and function of HcKAN4 gene of kenaf in flavonoid synthesis [J]. Acta Agronomica Sinica, 2024, 50(3): 645-655.
[8] WANG Lian-Nan, LI Yuan-Chao, YU Nai-Tong, MAI Wei-Tao, LI Ya-Jun, CHEN Xin. Functional identification of MeTCP3a transcription factor in cassava leaf development [J]. Acta Agronomica Sinica, 2024, 50(11): 2720-2730.
[9] WANG Li-Ping, WANG Xiao-Yu, FU Jing-Ye, WANG Qiang. Functional identification of maize transcription factor ZmMYB12 to enhance drought resistance and low phosphorus tolerance in plants [J]. Acta Agronomica Sinica, 2024, 50(1): 76-88.
[10] CHEN Li, WANG Jing, QIU Xiao, SUN Hai-Lian, ZHANG Wen-Hao, WANG Tian-Zuo. Differences of physiological responses and transcriptional regulation of alfalfa with different drought tolerances under drought stresses [J]. Acta Agronomica Sinica, 2023, 49(8): 2122-2132.
[11] WEI Zheng-Xin, LIU Chang-Yan, CHEN Hong-Wei, LI Li, SUN Long-Qing, HAN Xue-Song, JIAO Chun-Hai, SHA Ai-Hua. Analysis of ASPAT gene family based on drought-stressed transcriptome sequencing in Vicia faba L. [J]. Acta Agronomica Sinica, 2023, 49(7): 1871-1881.
[12] XU Zi-Yin, YU Xiao-Ling, ZOU Liang-Ping, ZHAO Ping-Juan, LI Wen-Bin, GENG Meng-Ting, RUAN Meng-Bin. Expression pattern analysis and interaction protein screening of cassava MYB transcription factor MeMYB60 [J]. Acta Agronomica Sinica, 2023, 49(4): 955-965.
[13] LI Zhao-Wei, MO Zu-Yi, SUN Cong-Ying, SHI Yu, SHANG Ping, LIN Wei-Wei, FAN Kai, LIN Wen-Xiong. Construction of rice mutants by gene editing of OsNAC2d and their response to drought stress [J]. Acta Agronomica Sinica, 2023, 49(2): 365-376.
[14] ZHANG Yi-Ning, ZHANG Yan-Fei, WANG Min, WANG Jing-Yi, LI Long, LI Chao-Nan, YANG De-Long, MAO Xin-Guo, JING Rui-Lian. Transcription factor gene TaPHR1 involved in regulation spikelet number per spike in common wheat [J]. Acta Agronomica Sinica, 2023, 49(12): 3176-3187.
[15] ZHANG Yan-Yan, GUAN Han-Wen, LIU Lin-Ru, HE Li, DUAN Jian-Zhao, WANG Chen-Yang, GUO Tian-Cai, FENG Wei. Effects of phosphorus application on spike and fertile floret development and yield of winter wheat under different water treatments [J]. Acta Agronomica Sinica, 2023, 49(10): 2753-2765.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!