Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (12): 3176-3187.doi: 10.3724/SP.J.1006.2023.31008

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Transcription factor gene TaPHR1 involved in regulation spikelet number per spike in common wheat

ZHANG Yi-Ning1,2(), ZHANG Yan-Fei2, WANG Min2, WANG Jing-Yi2, LI Long2, LI Chao-Nan2, YANG De-Long1,*(), MAO Xin-Guo1,2,*(), JING Rui-Lian2   

  1. 1State Key Laboratory of Arid land Crop Science / College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, Gansu, China
    2Institute of Crop Sciences, Chinese Academy of Agricultural Sciences / National Key Facility for Crop Gene Resources and Genetic Improvement / Key Laboratory of Crop Germplasm and Utilization, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
  • Received:2023-02-03 Accepted:2023-05-24 Online:2023-12-12 Published:2023-07-06
  • Contact: * E-mail: yangdl@gsau.edu.cn;E-mail: maoxinguo@caas.cn
  • Supported by:
    National Key Research and Development Program of China(2018YFD0300707);Key Research and Development Program of Gansu Province, China(21YF5NA089);Industrial Support Plan of Colleges and Universities in Gansu Province, China(2022CYZC-44)

Abstract:

The utilization of water elite genetic resources to develop new wheat varieties is an effective approach to deal with the challenges of climate change and rapid population growth. The MYB (v-myb avian myeloblastosis viral oncogene homolog) transcription factors are one of the largest families of transcription factors in plants and are involved in plant growth and development and in the regulation of biotic and abiotic stresses. In this study, 19 SNPs and 15 SNPs were identified in TaPHR1-4A and TaPHR1-4B, respectively, and the molecular markers were developed based on these SNPs. Association analysis showed that Hap-4B-I was the elite haplotype with high Total number of spikelet per spike (NCS). Hap-4B-I was further confirmed to be beneficial for improving wheat spike traits by creating two backcross introgression population lines. Fluorescence quantitative polymerase chain reaction of TaPHR1 revealed that the relative expression level of TaPHR1 genes in young spikelets of Hap-4B-I haplotype was higher than that of Hap-4B-II haplotype. In addition, the heterologous expression of TaPHR1 in rice resulted in more panicle branches, which also confirmed the involvement of TaPHR1 in the regulation of NCS. The geographic and temporal distribution of wheat modern varieties revealed that although Hap-4B-II accounted for the largest proportion of modern varieties in China, the proportion of Hap-4B-I was gradually increasing as wheat breeding time progressed. In conclusion, TaPHR1 was a positive regulator of NCS in wheat. Therefore, the molecular markers developed in this study could be an important source of marker-assisted selection and genetic improvement in wheat.

Key words: wheat, MYB transcription factor, agronomic trait, KASP marker, association analysis

Table 1

Primers information used in this study"

引物
Primer name
引物序列
Primer sequence (5′-3′)
用途
Purpose
Sub-F CTGGTACCCATGGAGCAGAAACTCATCTCTGAAGAGGATATGAGGAG
GTGTGATCTGAGACAG (Kpn I)
构建转基因水稻载体
Construction of transgenic rice vector
Sub-R CTACTAGTTCAGCGCTTCTCTTGCGG (Spe I)
qRT-F GGCAGAAAGCGAGTCTTCTGA 基因表达分析
Gene expression analysis
qRT-R GAACCATCATTAGTATTTGCAAGG
TaActin-qF CTCCCTCACAACAACAACCGC 小麦基因表达量对照
The control for wheat gene expression
TaActin-qR TACCAGGAACTTCCATACCAAC
OsTubulin-qF TGAGGACTGGTGCTTACCGC 水稻基因表达量对照
The control for rice gene expression
OsTubulin-qR GCACCATCAAACCTCAGGGA
TaPHR1-SNPA1-F1 GAAGGTGACCAAGTTCATGCTATACCAGTATATGCACTGGCAAAGAA 功能标记特异性引物
Specific primers for functional marks
TaPHR1-SNPA1-F2 GAAGGTCGGAGTCAACGGATTCCAGTATATGCACTGGCAAAGAG
TaPHR1-SNPA1-R ATATTAGCCAACCTTGTGAAGTTGTAATTTC
TaPHR1-SNPB1-F1 GAAGGTGACCAAGTTCATGCTTGAAGCGACGGTTTAAAACTGCG
TaPHR1-SNPB1-F2 GAAGGTCGGAGTCAACGGATTGATGAAGCGACGGTTTAAAACTGCA
TaPHR1-SNPB1-R CCTATACAAACGGTTTTTATCCCCTTTC

Fig. S1

Comparisons of amino acid sequences of TaPHR1s. Amino acid resides matching the consensus sequence exactly were shaded with solid black. Red rectangle indicates the conserved MYB motif and yellow rectangle indicates the conserved MYB-CC motif."

Fig.1

Nucleotide polymorphisms and development of KASP markers for TaPHR1 Fig.1-A, B, and C indicate the SNP with TaPHR1-4A, TaPHR1-4B, and TaPHR1-4D, respectively. Fig. 1-D: KASP assays for SNP-2171 bp in the accessions in NP1 (Table S1). The blue circles represent accessions that have the FAM-type allele and the red circles represent the HEX-type allele; the black squares are the non-template control. Allele ‘C’ in FAM and ‘T’ in HEX cluster."

Fig. S2

The cis-acting element distribution of TaPHR1-4B genome"

Fig. S3

Development of Kasp markers for TaPHR1-4A Competitive allele-specific PCR (KASP) assays for SNP-2398 bp. The blue circles represent accessions that have the FAM-type allele and the red circles represent the HEX-type allele; the black squares are the non-template control. For SNP-2398, allele ‘T’ in FAM and ‘C’ in HEX cluster."

Table S1

KASP call data at 2398 bp and 2171 bp in NP1 accessions"

序号
Accession No.
名称
Name
标记
Markers (bp)
基因型
Allele
1 Drysdale 2398 T
2 Salgemma 2398 T
3 百农160 Bainong 160 2398 T
4 博爱7023 Bo’ai 7023 2398 T
5 大荔1号 Dali 1 2398 T
6 大荔52 Dali 52 2398 T
7 泛麦8号 Fanmai 8 2398 T
8 丰产1号 Fengchan 1 2398 T
9 丰产3号 Fengchan 3 2398 T
10 丰优5号 Fenkang 13 2398 T
11 复壮30 Fuzhuang 30 2398 T
12 邯05-5092 Han 05-5092 2398 T
13 邯6172 Han 6172 2398 T
14 邯郸6050 Handan 6050 2398 T
15 衡216 Heng 216 2398 T
16 衡4399 Heng 4399 2398 T
17 衡5229 Heng 5229 2398 T
18 衡7228 Heng 7228 2398 T
19 衡95观26 Heng 95 guan 26 2398 T
20 衡观35 Hengguan 35 2398 T
21 衡麦2号 Hengmai 2 2398 T
22 衡水6404 Hengshui 6404 2398 T
23 衡优18 Hengyou 18 2398 T
24 淮麦18 Huaimai 18 2398 T
25 淮麦25 Huaimai 25 2398 T
26 淮沭10号 Huaishu 10 2398 T
27 兰天15号 Lantian 15 2398 T
28 良星99 Liangxing 99 2398 T
29 洛夫林10号 Lovrin 10 2398 T
30 洛旱11号 Luohan 11 2398 T
31 洛旱13号 Luohan 13 2398 T
32 洛旱2号 Luohan 2 2398 T
33 洛旱3号 Luohan 3 2398 T
34 洛旱6号 Luohan 6 2398 T
35 洛旱7号 Luohan 7 2398 T
36 洛旱8号 Luohan 8 2398 T
37 洛旱9号 Luohan 9 2398 T
38 洛麦21 Luomai 21 2398 T
39 洛麦23 Luomai 23 2398 T
40 洛农10号 Luonong 10 2398 T
41 洛阳8628 Luoyang 8628 2398 T
42 漯麦8号 Luomai 8 2398 T
43 漯麦9号 Luomai 9 2398 T
44 漯优7号 Luoyou 7 2398 T
45 青春1号 Qingchun 1 2398 T
46 青春2号 Qingchun 2 2398 T
47 清山843 Qingchun 843 2398 T
48 石4185 Shi 4185 2398 N
49 石家庄407 Shijiazhuang 407 2398 T
50 石家庄8号 Shijiazhuang 8 2398 T
51 石麦12号 Shimai 12 2398 T
52 石麦13 Shimai 13 2398 T
53 石麦15 Shimai 15 2398 T
54 石麦18 Shimai 18 2398 T
55 石麦19 Shimai 19 2398 T
56 徐州21 Xuzhou 21 2398 T
57 徐州6号 Xuzhou 6 2398 T
58 偃展一号 Yanzhan 1 2398 C
59 豫保1号 Yubao 1 2398 T
60 豫麦13号 Yumai 13 2398 T
61 豫麦18 Yumai 18 2398 T
62 豫麦29号 Yumai 29 2398 T
63 豫麦2号 Yumai 2 2398 T
64 豫麦38 Yumai 38 2398 T
65 豫麦47 Yumai 47 2398 T
66 豫麦48 Yumai 48 2398 T
67 豫麦8号 Yumai 8 2398 T
68 豫农416 Yunong 416 2398 T
69 豫农949 Yunong 949 2398 T
70 豫展4号 Yuzhan 4 2398 T
71 周麦16 Zhoumai 16 2398 T
72 周麦18 Zhoumai 18 2398 T
73 周麦22 Zhoumai 22 2398 T
74 周麦23 Zhoumai 23 2398 T
75 石特14 Shite 14 2398 T
76 石优17 Shiyou 17 2398 T
77 石优20 Shiyou 20 2398 T
78 皖麦19 Wanmai 19 2398 T
79 温麦6号(豫麦49) Wenmai 6 2398 T
80 西安8号 Xi'an 8 2398 T
81 西农1018 Xinong 1018 2398 T
82 西农189 Xinong 189 2398 T
83 西农219 Xinong 219 2398 T
84 西农318 Xinong 318 2398 T
85 西农6028 Xinong 6028 2398 T
86 西农688(西农213) Xinong 688 2398 T
87 西农797(西农928) Xinong 928 2398 T
88 西农9106 Xinong 9106 2398 T
89 鑫麦296 Xinmai 296 2398 T
90 济麦19 Jimai 19 2398 T
91 济麦20 Jimai 20 2398 T
92 济麦21 Jimai 21 2398 T
93 济麦22 Jimai 22 2398 T
94 济麦4号 Jimai 4 2398 T
95 济南10号 Jinan 10 2398 T
96 济南13 Jinan 13 2398 T
97 济南2号 Jinan 2 2398 T
98 济宁3号 Jinan 3 2398 T
99 邯4589 Han 4589 2398 T
100 衡136 Heng 136 2398 T
101 济麦6号 Jimai 6 2398 T
102 洛麦22 Luomai 22 2398 T
103 青麦7号 Qingmai 7 2398 T
104 西农1043 Xinong 1043 2398 T
105 红良4号 Hongliang 4 2398 T
106 晋麦16 Jinmai 16 2398 T
107 晋麦25 Jinmai 25 2398 T
108 运旱22-33 Yunhan 22-33 2398 T
109 安86中17 An 86 Zhong 17 2398 T
110 霸王鞭 Bawangbian 2398 T
111 白糙麦 Baicaomai 2398 T
112 白齐麦 Baiqimai 2398 T
113 白秃头 Baitutou 2398 T
114 宝临9号 Baolin 9 2398 T
115 宝麦5号 Baomai 5 2398 T
116 北京837 (CA837) Beijing 837 2398 T
117 北京8686 Beijing 8686 2398 T
118 北京8694 Beijing 8694 2398 T
119 北农2号 Beinong 2 2398 N
120 碧蚂1号 Bima 1 2398 T
121 沧麦6001 Cangmai 6001 2398 T
122 沧麦6005 Cangmai 6005 2398 T
123 沧州小麦 Cangzhouxiaomai 2398 T
124 昌乐5号 Changle 5 2398 T
125 长4640 Chang 4640 2398 T
126 长4738 Chang 4738 2398 T
127 长4853 Chang 4853 2398 T
128 长5259 Chang 5259 2398 T
129 长6154 Chang 6154 2398 T
130 长6359 Chang 6359 2398 T
131 长6452 Chang 6452 2398 T
132 长6794 Chang 6794 2398 T
133 长6878 Chang 6878 2398 T
134 长8744 Chang 8744 2398 T
135 长麦6135 Changmai 6135 2398 T
136 长武131 Changwu 131 2398 T
137 长武134 Changwu 134 2398 T
138 长武89(1)3-4 Changwu 89 (1) 3-4 2398 T
139 长治516 Changzhi 516 2398 T
140 长治620 Changzhi 620 2398 T
141 单R8043 Dan R8043 2398 T
142 单R8093 Dan R8093 2398 T
143 单R8108 Dan R8108 2398 T
144 单R8194 Dan R8194 2398 T
145 冬协2号 Dongxie 2 2398 T
146 丰抗13 Fengkang 13 2398 T
147 旱选10号 Hanxuan 10 2398 T
148 旱选11 Hanxuan 11 2398 N
149 旱选12 Hanxuan 12 2398 T
150 旱选1号 Hanxuan 1 2398 T
151 旱选2号 Hanxuan 2 2398 T
152 旱选3号 Hanxuan 3 2398 T
153 黑芒麦 Heimangmai 2398 T
154 红和尚 Hongheshang 2398 T
155 葫芦头 Hulutou 2398 T
156 花培6号 Huapei 6 2398 T
157 华北187 Huabei 187 2398 T
158 冀92-5203 Ji 92-5203 2398 T
159 冀麦10号 Jimai 10 2398 T
160 冀麦22 Jimai 22 2398 T
161 冀麦26 Jimai 26 2398 T
162 冀麦29 Jimai 29 2398 T
163 冀麦2号 Jimai 2 2398 T
164 冀麦30 Jimai 30 2398 T
165 冀麦32 Jimai 32 2398 T
166 冀麦38 Jimai 38 2398 T
167 冀麦41 Jimai 41 2398 T
168 冀麦6号 Jimai 6 2398 T
169 冀麦9号 Jimai 9 2398 T
170 冀麦一号 Jimai 1 2398 T
171 冀审5099 Jishen 5099 2398 C
172 鉴26 Jian 26 2398 T
173 金光 Jinguang 2398 T
174 晋2148-7 Jin 2148-7 2398 T
175 晋麦13 Jinmai 13 2398 T
176 晋麦17 Jinmai 17 2398 T
177 晋麦33 Jinmai 33 2398 T
178 晋麦39 Jinmai 39 2398 T
179 晋麦44 Jinmai 44 2398 T
180 晋麦47 Jinmai 47 2398 T
181 晋麦50 Jinmai 50 2398 T
182 晋麦51 Jinmai 51 2398 T
183 晋麦53 Jinmai 53 2398 T
184 晋麦54 Jinmai 54 2398 T
185 晋麦57 Jinmai 57 2398 T
186 晋麦63 Jinmai 63 2398 T
187 晋麦68 Jinmai 68 2398 T
188 晋麦72 Jinmai 72 2398 T
189 晋麦79 Jinmai 79 2398 T
190 晋麦91 Jinmai 91 2398 T
191 晋农207 Jinnong 207 2398 T
192 晋太102 Jintai 102 2398 T
193 晋太114 Jintai 114 2398 T
194 晋太1310 Jintai 1310 2398 T
195 晋太182 Jintai 182 2398 T
196 京411 Jing 411 2398 T
197 京东82东307 Jingdong 82 Dong 307 2398 T
198 京东83东65 Jingdong 83 Dong 65 2398 T
199 京冬8号 Jingdong 8 2398 T
200 京核8922 Jinghe 8922 2398 T
201 京花1号 Jinghua 1 2398 T
202 京农79-15 Jingnong 79-15 2398 N
203 京农80鉴107 Jingnong 80-107 2398 T
204 京农84-6786 Jingnong 84-6786 2398 N
205 京品11 Jingpin 11 2398 T
206 京品30 Jingpin 30 2398 T
207 京品3号 Jingpin 3 2398 T
208 京双16 Jingshuang 16 2398 T
209 京双2号 Jingshuang 2 2398 T
210 京选20 Jingxuan 20 2398 T
211 京选25 Jingxuan 25 2398 T
212 京延85鉴28 (83-5591) Jingyan 85 Jian 28 2398 T
213 科农199 Kenong 199 2398 T
214 科遗26 Keyi 26 2398 T
215 科遗29 Keyi 29 2398 T
216 临138 Lin 138 2398 T
217 临汾8050 Linfen 8050 2398 T
218 临丰3号(临旱536) Linfeng 3 2398 N
219 临丰518 Linfeng 518 2398 T
220 临旱5089 Linhan 5089 2398 T
221 临旱5367 Linhan 5367 2398 T
222 临旱6105 Linhan 6105 2398 T
223 临旱6号(临旱51329) Linhan 6 2398 T
224 临旱917 Linhan 917 2398 T
225 临旱935 Linhan 935 2398 T
226 临抗5108 Linkang 5108 2398 T
227 陇鉴196 Longjian 196 2398 T
228 陇鉴294 Longjian 294 2398 T
229 鲁德1号 Lude 1 2398 T
230 鲁麦14 Lumai 14 2398 T
231 鲁麦15 Lumai 15 2398 T
232 鲁麦17 Lumai 17 2398 T
233 鲁麦19 Lumai 19 2398 T
234 鲁麦23 Lumai 23 2398 T
235 鲁麦3号 Lumai 3 2398 T
236 鲁麦5号 Lumai 5 2398 T
237 鲁麦8号 Lumai 8 2398 T
238 轮抗7号 Lunkang 7 2398 T
239 轮选987 Lunxuan 897 2398 T
240 蚂蚱麦 Mazhamai 2398 T
241 铭贤169 Mingxian 169 2398 T
242 宁冬11 Ningdong 11 2398 T
243 农大135 Nongda 135 2398 T
244 农大146 Nongda 146 2398 T
245 农大155 Nongda 155 2398 T
246 农大183 Nongda 183 2398 T
247 农大20074 Nongda 20074 2398 T
248 农大311 Nongda 311 2398 T
249 农大3159 Nongda 3195 2398 T
250 农大33 Nongda 33 2398 T
251 农大36 Nongda 36 2398 T
252 农大81146 Nongda 81146 2398 T
253 平凉35 Pingliang 35 2398 T
254 平阳348 Pingyang 348 2398 T
255 秦麦3号 Qinmai 3 2398 T
256 秦麦7号 Qinmai 7 2398 T
257 庆丰1号 Qingfeng 1 2398 T
258 山农辐63 Shannongfu 63 2398 T
259 山农优麦2号 Shannongyoumai 2 2398 T
260 山优2号 Shanyou 2 2398 T
261 陕225-9 Shan225-9 2398 T
262 陕229 Shaan 229 2398 T
263 陕旱8675 Shaanhan 8675 2398 N
264 陕合6号 Shaanhe 6 2398 T
265 陕农1号 Shaannong 1 2398 T
266 陕农2号 Shaannong 2 2398 T
267 胜利麦 Triumph 2398 T
268 双丰收 Shuanfengshou 2398 T
269 舜麦1718 Shunmai 1718 2398 T
270 四棱红葫芦头 Silenghonghulutou 2398 T
271 太13606 Tai 13606 2398 T
272 太712 Tai 712 2398 N
273 太原566 Taiyuan 566 2398 T
274 太原633 Taiyuan 633 2398 N
275 泰山23 Taishan 23 2398 N
276 泰山24 Taishan 24 2398 T
277 渭麦4号 Weimai 4 2398 T
278 西峰16 Xifeng 16 2398 T
279 西峰20 Xifeng 20 2398 T
280 西峰9号 Xifeng 9 2398 N
281 小白麦(京856) Xiaobaimai 2398 T
282 小山8号 Xiaoshan 8 2398 T
283 新冬20号 Xindong 20 2398 T
284 新冬22号 Xindong 22 2398 T
285 烟农19 Yannong 19 2398 T
286 烟农21 Yannong 21 2398 N
287 延安15 Yanan 15 2398 T
288 燕大1817 Yanda 1817 2398 T
289 原冬3号 Yuandong 3 2398 T
290 原冬834 Yuandong 834 2398 T
291 原冬847 Yuandong 847 2398 T
292 原冬856 Yuandong 856 2398 T
293 运旱102 Yunhan 102 2398 T
294 运旱115 Yunhan 115 2398 T
295 运旱2028 Yunhan 2028 2398 T
296 运旱20410 Yunhan 20410 2398 N
297 运旱21-30 Yunhan 21-30 2398 T
298 运旱23-35 Yunhan 23-35 2398 T
299 运旱618 Yunhan 618 2398 T
300 运旱719 Yunhan 719 2398 T
301 运旱805 Yunhan 805 2398 T
302 早穗21 (EM1480) Zaosui 21 2398 T
303 早穗65 (EM1693) Zaosui 65 2398 T
304 早穗66 (EM1695) Zaosui 66 2398 T
305 早洋麦 Early Premium 2398 T
306 张冬29 Zhangdong 29 2398 T
307 郑丰9962 Zhengfeng 9962 2398 N
308 郑州24 Zhengzhou 24 2398 T
309 中7902 Zhong 7902 2398 T
310 中86Ⅰ-50455 Zhong 86I-50455 2398 T
311 中大86-鉴2 Zhongda 86-Jian 2 2398 T
312 中大91-品9 Zhongda 91-Pin 9 2398 T
313 中大92-鉴49 Zhongda 92-Jian 49 2398 T
314 中大92-品8 Zhongda 92-Pin 8 2398 T
315 中旱110 Zhonghan 110 2398 T
316 中麦175 Zhongmai 175 2398 T
317 中麦9号 Zhongmai 9 2398 T
318 中苏68 Zhongsu 68 2398 T
319 中引6号 Zhongyin 6 2398 T
320 中优9507 Zhongyou 9507 2398 T
321 中作60064 Zhongzuo 60064 2398 T
322 中作60115 Zhongzuo 60115 2398 T
323 紫秆白芒先 Ziganbaimangxian 2398 N

Table 2

Association analysis of TaPHR1-4B haplotypes with agronomic traits in NP1 using a general linear model"

年份
Year
地点
Site
环境
Environment
性状Trait (P-value)
每穗小穗数 NCS
2015 SY HS 0.03807*
2016 SY DS+HS 0.02435*
DS 0.00676**
CP WW 0.04046*
2017 SY DS+HS 0.01556*
DS 0.02899*
HS 0.00667**
CP DS 0.00231**
WW 0.00882**

Fig. 2

Phenotypic comparisons between different alleles for TaPHR1-4B E: environment; E1: 15-SY-WW; E2: 15-SY-WW-HS; E3: 15-SY-DS; E4: 15-SY-DS-HS; E5: 16-SY-WW; E6: 16-SY-WW-DS; E7: 16-SY-DS; E8: 16-SY-DS-HS; E9: 16-CP-WW; E10: 16-CP-DS; E11: 17-SY-WW; E12: 17-SY-WW-HS; E13: 17-SY-DS; E14: 17-SY-DS-HS; E15: 17-CP-WW; E16: 17-CP-DS. *, **, and *** represent significant difference in the 0.05, 0.01, and 0.001 probability levels, respectively. Error bar: ±SE."

Fig. 3

Total number of spikelet per spike comparisons of the different haplotypes in the backcross introgression population. Comparison of recurrent parents with introgression lines (L1-L5) in donor parent Yumai 8-Lumai 14 (A, B) and Luoyang 8628-Jinmai 47 (C, D). *, **, and *** represent significant difference in the 0.05, 0.01, and 0.001 probability levels, respectively. Error bar: ±SE."

Fig. 4

Expression levels of TaPHR1 in different haplotype wheat accessions. Five accessions of each haplotype, including the parents of two backcross populations. Error bar: ±SE."

Fig. S4

Relative expression levels of TaPHR1 in different transgenic rice lines"

Fig. 5

Comparisons of agronomic traits between TaPHR1 transgenic lines and the wild-type control Panicle characteristics (A) and mature plants (B) of transgenic rice."

Fig. 6

Comparison of agronomic traits of TaPHR1 overexpressed rice with ear branches of wild type rice Comparison of panicle branch between transgenic rice (OE-20, OE-26, and OE-27) and wild type (WT)."

Fig. 7

Geographic and temporal distributions of the two haplotypes of TaPHR1-4B, in Chinese wheat populations Haplotype distributions of TaPHR1-4B in (A) Chinese landraces and (B) modern cultivars. I: Northern Winter Wheat Zone; II: the Yellow and Huai River Valleys Facultative Wheat Zone; III: the Middle and Low Yangtze Valleys Autumn-Sown Spring Wheat Zone; IV: Southwestern Autumn-Sown Spring Wheat Zone; V: Southern Autumn Sown Spring Wheat Zone; VI: Northeastern Spring Wheat Zone; VII: Northern Spring Wheat Zone; VIII: Northwestern Spring Wheat Zone; IX: Qinghai Tibetan Plateau Spring-Winter Wheat Zone; X: Xinjiang Winter-Spring Wheat Zone. The size of pie chart is directly proportional to the number of wheat accessions in the population."

Fig. 8

Alterations with time in the frequencies of the two haplotypes of TaPHR1-4B in Chinese wheat accessions according to decade of release"

Fig. S5

Comparisons of agronomic traits between TaPHR1 transgenic lines and the wild-type control"

[1] Cordell D, Drangert J O, White S. The story of phosphorus: global food security and food for thought. Global Environ Chang: Human Policy Dimensions, 2009, 19: 292-305.
doi: 10.1016/j.gloenvcha.2008.10.009
[2] Shiferaw B, Smale M, Braun H J, Duveiller E, Reynolds M, Muricho G. Crops that feed the world 10. Past successes and future challenges to the role played by wheat in global food security. Food Secur, 2013, 5: 291-317.
doi: 10.1007/s12571-013-0263-y
[3] Slafer G A, Miralles D J. Fruiting efficiency in three bread wheat (Tritkum aestivum) cultivars released at different eras. Number of grains per spike and grain weight. J Agron Crop Sci, 1993, 170. DOI: 10.1111/j.1439-037X.1993.tb01083.x.
[4] Cao S, Xu D, Hanif M, Xia X, He Z. Genetic architecture underpinning yield component traits in wheat. Theor Appl Genet, 2020, 133: 1811-1823.
doi: 10.1007/s00122-020-03562-8 pmid: 32062676
[5] Li Y, Li L, Zhao M, Guo L, Guo X, Zhao D, Batool A, Dong B, Xu H, Cui S, Zhang A, Fu X, Li J, Jing R, Liu X. Wheat FRIZZY PANICLE activates VERNALIZATION1-A and HOMEOBOX4-A to regulate spike development in wheat. Plant Biotechnol J, 2021, 19: 1141-1154.
doi: 10.1111/pbi.v19.6
[6] Ma J, Ding P, Liu J, Li T, Zou Y, Habib A, Mu Y, Tang H, Jiang Q, Liu Y, Chen G, Wang J, Deng M, Qi P, Li W, Pu Z, Zheng Y, Wei Y, Lan X. Correction to: identification and validation of a major and stably expressed QTL for spikelet number per spike in bread wheat. Theor Appl Genet, 2020, 133: 367.
doi: 10.1007/s00122-019-03467-1 pmid: 31664478
[7] Yang C, Li D, Liu X, Ji C, Hao L, Zhao X, Li X, Chen C, Cheng Z, Zhu L. OsMYB103L, an R2R3-MYB transcription factor, influences leaf rolling and mechanical strength in rice (Oryza sativa L.). BMC Plant Biol, 2014, 14: 158.
doi: 10.1186/1471-2229-14-158
[8] Piao W, Kim S H, Lee B D, An G, Sakuraba Y, Paek N C. Rice transcription factor OsMYB102 delays leaf senescence by down-regulating abscisic acid accumulation and signaling. J Exp Bot, 2019, 70: 2699-2715.
doi: 10.1093/jxb/erz095 pmid: 30825376
[9] 徐子寅, 于晓玲, 邹良平, 赵平娟, 李文彬, 耿梦婷, 阮孟斌. 木薯MYB转录因子基因MeMYB60表达特征分析及其互作蛋白筛选, 作物学报, 2023, 49: 955-965.
doi: 10.3724/SP.J.1006.2023.24089
Xu Z Y, Yu X L, Zou L P, Zhao P J, Li W B, Geng M T, Ruan M B. Expression pattern analysis and interaction protein screening of cassava MYB transcription factor MeMYB60. Acta Agron Sin, 2023, 49: 955-965. (in Chinese with English abstract)
[10] Koshiba T, Yamamoto N, Tobimatsu Y, Yamamura M, Suzuki S, Hattori T, Mukai M, Noda S, Shibata D, Sakamoto M, Umezawa T. MYB-mediated upregulation of lignin biosynthesis in Oryza sativa towards biomass refinery. Plant Biotechnol (Tokyo), 2017, 34: 7-15.
doi: 10.5511/plantbiotechnology.16.1201a pmid: 31275003
[11] Xiang X J, Sun L P, Yu P, Yang Z F, Zhang P P, Zhang Y X, Wu W X, Chen D B, Zhan X D, Khan R M, Abbas A, Cheng S H, Cao L Y. The MYB transcription factor Baymax1 plays a critical role in rice male fertility. Theor Appl Genet, 2021, 134: 453-471.
doi: 10.1007/s00122-020-03706-w
[12] Katiyar A, Smita S, Lenka S K, Rajwanshi R, Chinnusamy V, Bansal K C. Genome-wide classification and expression analysis of MYB transcription factor families in rice and Arabidopsis. BMC Genomics, 2012, 13: 544.
doi: 10.1186/1471-2164-13-544 pmid: 23050870
[13] Wei Q, Chen R, Wei X, Liu Y, Zhao S, Yin X, Xie T. Genome-wide identification of R2R3-MYB family in wheat and functional characteristics of the abiotic stress responsive gene TaMYB344. BMC Genomics, 2020, 21: 792.
doi: 10.1186/s12864-020-07175-9
[14] Xie Z, Lee E, Lucas J R, Morohashi K, Li D, Murray J A, Sack F D, Grotewold E. Regulation of cell proliferation in the stomatal lineage by the Arabidopsis MYB FOUR LIPS via direct targeting of core cell cycle genes. Plant Cell, 2010, 22: 2306-2321.
doi: 10.1105/tpc.110.074609
[15] Mandaokar A, Browse J. MYB108 acts together with MYB24 to regulate jasmonate-mediated stamen maturation in Arabidopsis. Plant Physiol, 2009, 149: 851-862.
doi: 10.1104/pp.108.132597 pmid: 19091873
[16] Haga N, Kobayashi K, Suzuki T, Maeo K, Kubo M, Ohtani M, Mitsuda N, Demura T, Nakamura K, Jurgens G, Ito M. Mutations in MYB3R1 and MYB3R4 cause pleiotropic developmental defects and preferential down-regulation of multiple G2/M-specific genes in Arabidopsis. Plant Physiol, 2011, 157: 706-717.
doi: 10.1104/pp.111.180836
[17] McCarthy R L, Zhong R, Ye Z H. MYB83 is a direct target of SND1 and acts redundantly with MYB46 in the regulation of secondary cell wall biosynthesis in ArabidopsisArabidopsis. Plant Cell Physiol, 2009, 50: 1950-1964.
doi: 10.1093/pcp/pcp139 pmid: 19808805
[18] Kwon Y, Kim J H, Nguyen H N, Jikumaru Y, Kamiya Y, Hong S W, Lee H. A novel Arabidopsis MYB-like transcription factor, MYBH, regulates hypocotyl elongation by enhancing auxin accumulation. J Exp Bot, 2013, 64: 3911-3922.
doi: 10.1093/jxb/ert223
[19] Li S F, Milliken O N, Pham H, Seyit R, Napoli R, Preston J, Koltunow A M, Parish R W. The Arabidopsis MYB5 transcription factor regulates mucilage synthesis, seed coat development, and trichome morphogenesis. Plant Cell, 2009, 21: 72-89.
doi: 10.1105/tpc.108.063503
[20] Mizoguchi T, Wheatley K, Hanzawa Y, Wright L, Mizoguchi M, Song H R, Carre I A, Coupland G. LHY and CCA1 are partially redundant genes required to maintain circadian rhythms in Arabidopsis. Dev Cell, 2002, 2: 629-641.
doi: 10.1016/s1534-5807(02)00170-3 pmid: 12015970
[21] Park M J, Seo P J, Park C M. CCA1 alternative splicing as a way of linking the circadian clock to temperature response in Arabidopsis. Plant Signal Behav, 2012, 7: 1194-1196.
doi: 10.4161/psb.21300
[22] Marian C O, Bordoli S J, Goltz M, Santarella R A, Jackson L P, Danilevskaya O, Beckstette M, Meeley R, Bass H W. The maize Single myb histone 1 gene, Smh1, belongs to a novel gene family and encodes a protein that binds telomere DNA repeats in vitro. Plant Physiol, 2003, 133: 1336-1350.
pmid: 14576282
[23] Yu Y T, Wu Z, Lu K, Bi C, Liang S, Wang X F, Zhang D P. Overexpression of the MYB37 transcription factor enhances abscisic acid sensitivity, and improves both drought tolerance and seed productivity in Arabidopsis thaliana. Plant Mol Biol, 2016, 90: 267-279.
doi: 10.1007/s11103-015-0411-1
[24] Deng M, Wang Y, Kuzma M, Chalifoux M, Tremblay L, Yang S, Ying J, Sample A, Wang H M, Griffiths R, Uchacz T, Tang X, Tian G, Joslin K, Dennis D, McCourt P, Huang Y, Wan J. Activation tagging identifies Arabidopsis transcription factor AtMYB68 for heat and drought tolerance at yield determining reproductive stages. Plant J, 2020, 104: 1535-1550.
doi: 10.1111/tpj.v104.6
[25] Shingote P R, Kawar P G, Pagariya M C, Muley A B, Babu K H. Isolation and functional validation of stress tolerant EaMYB18 gene and its comparative physio-biochemical analysis with transgenic tobacco plants overexpressing SoMYB18 and SsMYB18. 3 Biotech, 2020, 10: 225.
doi: 10.1007/s13205-020-02197-2
[26] Manna M, Thakur T, Chirom O, Mandlik R, Deshmukh R, Salvi P. Transcription factors as key molecular target to strengthen the drought stress tolerance in plants. Physiol Plant, 2021, 172: 847-868.
doi: 10.1111/ppl.13268 pmid: 33180329
[27] Li X, Jia J, Zhao P, Guo X, Chen S, Qi D, Cheng L, Liu G. LcMYB4, an unknown function transcription factor gene from sheepgrass, as a positive regulator of chilling and freezing tolerance in transgenic Arabidopsis. BMC Plant Biol, 2020, 20: 238.
doi: 10.1186/s12870-020-02427-y
[28] Tiwari P, Indoliya Y, Chauhan A S, Singh P, Singh P K, Singh P C, Srivastava S, Pande V, Chakrabarty D. Auxin-salicylic acid cross-talk ameliorates OsMYB-R1 mediated defense towards heavy metal, drought and fungal stress. J Hazard Mater, 2020, 399: 122811.
doi: 10.1016/j.jhazmat.2020.122811
[29] Leng B, Wang X, Yuan F, Zhang H, Lu C, Chen M, Wang B. Heterologous expression of the Limonium bicolor MYB transcription factor LbTRY in Arabidopsis thaliana increases salt sensitivity by modifying root hair development and osmotic homeostasis. Plant Sci, 2021, 302: 110704.
doi: 10.1016/j.plantsci.2020.110704
[30] Agarwal P, Mitra M, Banerjee S, Roy S.MYB4 transcription factor, a member of R2R3-subfamily of MYB domain protein, regulates cadmium tolerance via enhanced protection against oxidative damage and increases expression of PCS1 and MT1C in Arabidopsis. Plant Sci, 2020, 297: 110501.
doi: 10.1016/j.plantsci.2020.110501
[31] Cominelli E, Sala T, Calvi D, Gusmaroli G, Tonelli C. Over-expression of the Arabidopsis AtMYB41 gene alters cell expansion and leaf surface permeability. Plant J, 2008, 53: 53-64.
pmid: 17971045
[32] Hoang M H, Nguyen X C, Lee K, Kwon Y S, Pham H T, Park H C, Yun D J, Lim C O, Chung W S.Phosphorylation by AtMPK6 is required for the biological function of AtMYB41 in Arabidopsis. Biochem Biophys Res Commun, 2012, 422: 181-186.
doi: 10.1016/j.bbrc.2012.04.137
[33] Raffaele S, Rivas S, Roby D. An essential role for salicylic acid in AtMYB30-mediated control of the hypersensitive cell death program in Arabidopsis. FEBS Lett, 2006, 580: 3498-3504.
doi: 10.1016/j.febslet.2006.05.027 pmid: 16730712
[34] Bari R, Pant B D, Stitt M, Scheible W R. PHO2, microRNA399, and PHR1 define a phosphate-signaling pathway in plants. Plant Physiol, 2006, 141: 988-999.
doi: 10.1104/pp.106.079707 pmid: 16679424
[35] Bustos R, Castrillo G, Linhares F, Puga M I, Rubio V, Perez-Perez J, Solano R, Leyva A, Paz-Ares J. A central regulatory system largely controls transcriptional activation and repression responses to phosphate starvation in Arabidopsis. PLoS Genet, 2010, 6: e1001102.
doi: 10.1371/journal.pgen.1001102
[36] Rubio V, Linhares F, Solano R, Martin A C, Iglesias J, Leyva A, Paz-Ares J. A conserved MYB transcription factor involved in phosphate starvation signaling both in vascular plants and in unicellular algae. Genes Dev, 2001, 15: 2122-2133.
doi: 10.1101/gad.204401
[37] Wang J, Sun J, Miao J, Guo J, Shi Z, He M, Chen Y, Zhao X, Li B, Han F, Tong Y, Li Z. A phosphate starvation response regulator Ta-PHR1 is involved in phosphate signalling and increases grain yield in wheat. Ann Bot, 2013, 111: 1139-1153.
doi: 10.1093/aob/mct080
[38] Zheng X, Liu C, Qiao L, Zhao J, Han R, Wang X, Ge C, Zhang W, Zhang S, Qiao L, Zheng J, Hao C. The MYB transcription factor TaPHR3-A1 is involved in phosphate signaling and governs yield-related traits in bread wheat. J Exp Bot, 2020, 71: 5808-5822.
doi: 10.1093/jxb/eraa355 pmid: 32725154
[39] Miao L, Mao X, Wang J, Liu Z, Zhang B, Li W, Chang X, Reynolds M, Wang Z, Jing R. Elite haplotypes of a protein kinase gene TaSnRK2.3 associated with important agronomic traits in common wheat. Front Plant Sci, 2017, 8: 368.
[40] Hao C, Wang L, Ge H, Dong Y, Zhang X. Genetic diversity and linkage disequilibrium in Chinese bread wheat (Triticum aestivum L.) revealed by SSR markers. PLoS One, 2011, 6: e17279.
doi: 10.1371/journal.pone.0017279
[41] Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods, 2001, 25: 402-408.
doi: 10.1006/meth.2001.1262 pmid: 11846609
[42] Stewart C N, Via L E Jr. A rapid CTAB DNA isolation technique useful for RAPD fingerprinting and other PCR applications. Biotechniques, 1993, 14: 748-750.
pmid: 8512694
[43] Liu Y, Lin Y, Gao S, Li Z, Ma J, Deng M, Chen G, Wei Y, Zheng Y. A genome-wide association study of 23 agronomic traits in Chinese wheat landraces. Plant J, 2017, 91: 861-873.
doi: 10.1111/tpj.2017.91.issue-5
[44] Jeena G S, Kumar S, Shukla R K. Characterization of MYB35 regulated methyl jasmonate and wound responsive Geraniol 10-hydroxylase-1 gene from Bacopa monnieri. Planta, 2021, 253: 89.
doi: 10.1007/s00425-021-03614-3
[45] Keller T, Abbott J, Moritz T, Doerner P. Arabidopsis REGULATOR OF AXILLARY MERISTEMS1 controls a leaf axil stem cell niche and modulates vegetative development. Plant Cell, 2006, 18: 598-611.
doi: 10.1105/tpc.105.038588
[46] Kang Y H, Kirik V, Hulskamp M, Nam K H, Hagely K, Lee M M, Schiefelbein J. The MYB23 gene provides a positive feedback loop for cell fate specification in the Arabidopsis root epidermis. Plant Cell, 2009, 21: 1080-1094.
doi: 10.1105/tpc.108.063180
[47] Zhou J, Jiao F, Wu Z, Li Y, Wang X, He X, Zhong W, Wu P. OsPHR2 is involved in phosphate-starvation signaling and excessive phosphate accumulation in shoots of plants. Plant Physiol, 2008, 146: 1673-1686.
doi: 10.1104/pp.107.111443 pmid: 18263782
[48] 张辉. 不同年份小麦产量与主要农艺性状通径分析. 中国农学通报, 2016, 32(27): 24-28.
doi: 10.11924/j.issn.1000-6850.casb15120050
Zhang H. Path analysis of wheat yield and main agronomic traits under different years. Chin Agric Sci Bull, 2016, 32(27): 24-28. (in Chinese with English abstract)
[49] 田纪春, 邓志英, 胡瑞波, 王延训. 不同类型超级小麦产量构成因素及籽粒产量的通径分析. 作物学报, 2006, 42: 1699-1705.
Tian J C, Deng Z Y, Hu R B, Wang Y X. Yield components of super wheat cultivars with different types and the path coefficient analysis on grain yield. Acta Agron Sin, 2006, 42: 1699-1705. (in Chinese with English abstract)
[50] Li G, Xu B, Zhang Y, Xu Y, Khan N U, Xie J, Sun X, Guo H, Wu Z, Wang X, Zhang H, Li J, Xu J, Wang W, Zhang Z, Li Z. RGN1 controls grain number and shapes panicle architecture in rice. Plant Biotechnol J, 2022, 20: 158-167.
doi: 10.1111/pbi.v20.1
[51] Ren D, Cui Y, Hu H, Xu Q, Rao Y, Yu X, Zhang Y, Wang Y, Peng Y, Zeng D, Hu J, Zhang G, Gao Z, Zhu L, Chen G, Shen L, Zhang Q, Guo L, Qian Q. AH2 encodes a MYB domain protein that determines hull fate and affects grain yield and quality in rice. Plant J, 2019, 100: 813-824.
doi: 10.1111/tpj.v100.4
[52] Mu R L, Cao Y R, Liu Y F, Lei G, Zou H F, Liao Y, Wang H W, Zhang W K, Ma B, Du J Z, Yuan M, Zhang J S, Chen S Y. An R2R3-type transcription factor gene AtMYB59 regulates root growth and cell cycle progression in Arabidopsis. Cell Res, 2009, 19: 1291-1304.
doi: 10.1038/cr.2009.83
[53] Li Y F, Zeng X Q, Li Y, Wang L, Zhuang H, Wang Y, Tang J, Wang H L, Xiong M, Yang F Y, Yuan X Z, He G H. MULTI-FLORET SPIKELET 2, a MYB transcription factor, determines spikelet meristem fate and floral organ identity in rice. Plant Physiol, 2020, 184: 988-1003.
doi: 10.1104/pp.20.00743
[54] Liu Y, He Z, Appels R, Xia X. Functional markers in wheat: current status and future prospects. Theor Appl Genet, 2012, 125: 1-10.
doi: 10.1007/s00122-012-1829-3 pmid: 22366867
[1] LI Yu-Jia, XU Hao, YU Shi-Nan, TANG Jian-Wei, LI Qiao-Yun, GAO Yan, ZHENG Ji-Zhou, DONG Chun-Hao, YUAN Yu-Hao, ZHENG Tian-Cun, YIN Gui-Hong. Genetic analysis of elite stripe rust resistance genes of founder parent Zhou8425B in its derived varieties [J]. Acta Agronomica Sinica, 2024, 50(1): 16-31.
[2] HUANG Yu-Jie, ZHANG Xiao-Tian, CHEN Hui-Li, WANG Hong-Wei, DING Shuang-Cheng. Identification of ZmC2s gene family and functional analysis of ZmC2-15 under heat tolerance in maize [J]. Acta Agronomica Sinica, 2023, 49(9): 2331-2343.
[3] ZHANG Li-Hua, ZHANG Jing-Ting, DONG Zhi-Qiang, HOU Wan-Bin, ZHAI Li-Chao, YAO Yan-Rong, LYU Li-Hua, ZHAO Yi-An, JIA Xiu-Ling. Effect of water management on yield and its components of winter wheat in different precipitation years [J]. Acta Agronomica Sinica, 2023, 49(9): 2539-2551.
[4] ZHANG Diao-Liang, YANG Zhao, HU Fa-Long, YIN Wen, CHAI Qiang, FAN Zhi-Long. Effects of multiple cropping green manure on grain quality and yield of wheat with different irrigation levels [J]. Acta Agronomica Sinica, 2023, 49(9): 2572-2581.
[5] SU Zai-Xing, HUANG Zhong-Qin, GAO Run-Fei, ZHU Xue-Cheng, WANG Bo, CHANG Yong, LI Xiao-Shan, DING Zhen-Qian, YI Yuan. Identification of wheat dwarf mutant Xu1801 and analysis of its dwarfing effect [J]. Acta Agronomica Sinica, 2023, 49(8): 2133-2143.
[6] YANG Xiao-Hui, WANG Bi-Sheng, SUN Xiao-Lu, HOU Jin-Jin, XU Meng-Jie, WANG Zhi-Jun, FANG Quan-Xiao. Modeling the response of winter wheat to deficit drip irrigation for optimizing irrigation schedule [J]. Acta Agronomica Sinica, 2023, 49(8): 2196-2209.
[7] LI Yu-Xing, MA Liang-Liang, ZHANG Yue, QIN Bo-Ya, ZHANG Wen-Jing, MA Shang-Yu, HUANG Zheng-Lai, FAN Yong-Hui. Effects of exogenous trehalose on physiological characteristics and yield of wheat flag leaves under high temperature stress at grain filling stage [J]. Acta Agronomica Sinica, 2023, 49(8): 2210-2224.
[8] LIU Qiong, YANG Hong-Kun, CHEN Yan-Qi, WU Dong-Ming, HUANG Xiu-Lan, FAN Gao-Qiong. Effect of nitrogen application rate on grain quality, wine quality and volatile flavor compounds of waxy and no-waxy wheat [J]. Acta Agronomica Sinica, 2023, 49(8): 2240-2258.
[9] LIN Fen-Fang, CHEN Xing-Yu, ZHOU Wei-Xun, WANG Qian, ZHANG Dong-Yan. Hyperspectral remote sensing detection of Fusarium head blight in wheat based on the stacked sparse auto-encoder algorithm [J]. Acta Agronomica Sinica, 2023, 49(8): 2275-2287.
[10] LIU Shi-Jie, YANG Xi-Wen, MA Geng, FENG Hao-Xiang, HAN Zhi-Dong, HAN Xiao-Jie, ZHANG Xiao-Yan, HE De-Xian, MA Dong-Yun, XIE Ying-Xin, WANG Li-Fang, WANG Chen-Yang. Effects of water and nitrogen application on root characteristics and nitrogen utilization in winter wheat [J]. Acta Agronomica Sinica, 2023, 49(8): 2296-2307.
[11] ZHANG Zhen, SHI Yu, ZHANG Yong-Li, YU Zhen-Wen, WANG Xi-Zhi. Effects of different soil water content on water consumption by wheat and analysis of senescence characteristics of root and flag leaf [J]. Acta Agronomica Sinica, 2023, 49(7): 1895-1905.
[12] ZHANG Lu-Lu, ZHANG Xue-Mei, MU Wen-Yan, HUANG Ning, GUO Zi-Kang, LUO Yi-Nuo, WEI Lei, SUN Li-Qian, WANG Xing-Shu, SHI Mei, WANG Zhao-Hui. Grain Mn concentration of wheat in main wheat production regions of China: Effects of cultivars and soil factors [J]. Acta Agronomica Sinica, 2023, 49(7): 1906-1918.
[13] DONG Zhi-Qiang, LYU Li-Hua, YAO Yan-Rong, ZHANG Jing-Ting, ZHANG Li-Hua, YAO Hai-Po, SHEN Hai-Ping, JIA Xiu-Ling. Yield and quality of strong gluten wheat Shiluan 02-1 under water and nitrogen interaction [J]. Acta Agronomica Sinica, 2023, 49(7): 1942-1953.
[14] LI Ling-Yu, ZHOU Qi-Rui, LI Yang, ZHANG An-Min, WANG Bei-Bei, MA Shang-Yu, FAN Yong-Hui, HUANG Zheng-Lai, ZHANG Wen-Jing. Transcriptome analysis of exogenous 6-BA in regulating young spike development of wheat after low temperature at booting stage [J]. Acta Agronomica Sinica, 2023, 49(7): 1808-1817.
[15] WANG Rang-Jian, YANG Jun, ZHANG Li-Lan, GAO Xiang-Feng. Genome-wide association analysis of geraniol primrose glycoside abundance in tender tea shoots [J]. Acta Agronomica Sinica, 2023, 49(7): 1843-1859.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .