Acta Agronomica Sinica ›› 2025, Vol. 51 ›› Issue (4): 888-899.doi: 10.3724/SP.J.1006.2025.44156
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
WANG Xiao-Lin(), LIU Zhong-Song, KANG Lei, YANG Liu(
)
[1] | Özer H, Oral E, ÜNSAL DOĞ R U. Relationships between yield and yield components on currently improved spring rapeseed cultivars. Turkish J Agric For, 1999, 23: 603-608. |
[2] | 丁秀琦. 白菜型春油菜角果和种子性状研究. 中国油料, 1996, 18(4): 28-30. |
Ding X Q. Study on characters of silique and seed in spring rape (B. campestris L.). Chin J Oil Crop Sci, 1996, 18(4): 28-30 (in Chinese). | |
[3] | 王艳惠, 牛应泽. 人工合成甘蓝型油菜特长角性状的遗传分析. 遗传, 2006, 28: 1273-1279. |
Wang Y H, Niu Y Z. Genetic analysis of a specially long pod character in artificially resynthesized Brassica napus L. Hereditas, 2006, 28: 1273-1279 (in Chinese with English abstract). | |
[4] |
Zhang L W, Li S P, Chen L, Yang G S. Identification and mapping of a major dominant quantitative trait locus controlling seeds per silique as a single Mendelian factor in Brassica napus L. Theor Appl Genet, 2012, 125: 695-705.
doi: 10.1007/s00122-012-1861-3 pmid: 22487878 |
[5] |
Yang P, Shu C, Chen L, Xu J S, Wu J S, Liu K D. Identification of a major QTL for silique length and seed weight in oilseed rape (Brassica napus L.). Theor Appl Genet, 2012, 125: 285-296
doi: 10.1007/s00122-012-1833-7 pmid: 22406980 |
[6] | 袁泽俊. 油菜A9染色体角果长和千粒重主效QTL的验证. 华中农业大学硕士学位论文, 湖北武汉, 2013. |
Yuan Z J. Verification of Major QTL for Pod Length and 1000-grain Weight of A9 Chromosome in Rapeseed. MS Thesis of Huazhong Agricultural University, Wuhan, Hubei, China, 2013 (in Chinese with English abstract). | |
[7] | Qi L P, Mao L, Sun C M, Pu Y Y, Fu T D, Ma C Z, Shen J X, Tu J X, Yi B, Wen J. Interpreting the genetic basis of silique traits in Brassica napus using a joint QTL network. Plant Breed, 2014, 133: 52-60. |
[8] |
Wang H, Zaman Q U, Huang W H, Mei D S, Liu J, Wang W X, Ding B L, Hao M Y, Fu L, Cheng H T, et al. QTL and candidate gene identification for silique length based on high-dense genetic map in Brassica napus L. Front Plant Sci, 2019, 10: 1579.
doi: 10.3389/fpls.2019.01579 pmid: 31850044 |
[9] |
Zhou X M, Dai L H, Wang P F, Liu Y, Zhang H Y, Xin Q, Wan L L, Yang L Y, Yang G S, et al. Mining favorable alleles for five agronomic traits from the elite rapeseed cultivar Zhongshuang 11 by QTL mapping and integration. Crop J, 2021, 9: 1449-1459.
doi: 10.1016/j.cj.2020.12.008 |
[10] | Liu J, Hua W, Hu Z Y, Yang H L, Zhang L, Li R J, Deng L B, Sun X C, Wang X F, Wang H Z. Natural variation in ARF18 gene simultaneously affects seed weight and silique length in polyploid rapeseed. Proc Natl Acad Sci USA, 2015, 112: E5123-E5132. |
[11] | Liu M, Chang W, Yu M N, Fan Y H, Shang G X, Xu Y F, Niu Y, Liu X M, Zhu H, Dai L S, et al. Overexpression of DEFECTIVE IN ANTHER DEHISCENCE 1 increases rapeseed silique length through crosstalk between JA and auxin signaling. Ind Crops Prod, 2021, 168: 113576. |
[12] | Shi L L, Song J R, Guo C C, Wang B, Guan Z L, Yang P, Chen X, Zhang Q H, King G J, Wang J, et al. A CACTA-like transposable element in the upstream region of BnaA9.CYP78A9 acts as an enhancer to increase silique length and seed weight in rapeseed. Plant J, 2019, 98: 524-539. |
[13] | Zhou X M, Zhang H Y, Wang P F, Liu Y, Zhang X H, Song Y X, Wang Z Y, Ali A, Wan L L, Yang G S, et al. BnaC7.ROT3, the causal gene of cqSL-C7, mediates silique length by affecting cell elongation in Brassica napus. J Exp Bot, 2022, 73: 154-167. |
[14] | Zhang L Y, Yang B, Li X D, Chen S, Zhang C, Xiang S R, Sun T T, Yang Z Y, Kong X Z, Qu C M, et al. Integrating GWAS, RNA-Seq and functional analysis revealed that BnaA02.SE mediates silique elongation by affecting cell proliferation and expansion in Brassica napus. Plant Biotechnol J, 2024, 22: 2907-2920. |
[15] | 郭娜, 左凯峰, 张淼, 张冰冰, 秦梦凡, 马宁, 刘翔, 李青青, 黄镇, 徐爱遐. 甘蓝型油菜主要株型和产量性状的综合分析. 西北农业学报, 2020, 29: 898-906. |
Guo N, Zuo K F, Zhang M, Zhang B B, Qin M F, Ma N, Liu X, Li Q Q, Huang Z, Xu A X. Comprehensive analysis of major plant-type and yield traits in Brassica napus L. Acta Agric Boreali- Occident Sin, 2020, 29: 898-906 (in Chinese with English abstract). | |
[16] | 张立武. 甘蓝型油菜每角粒数的遗传和主效QTL的定位. 华中农业大学博士学位论文, 湖北武汉, 2010. |
Zhang L W. Inheritance of Grains per Corn and Mapping of Major QTL in Brassica napus L. PhD Dissertation of Huazhong Agricultural University, Wuhan, Hubei, China, 2010 (in Chinese with English abstract). | |
[17] | Xing X R, Liu H D, Ye J X, Yao Y M, Li K X, Li Y L, Du D Z. QTL analysis and candidate gene prediction for seed density per silique by QTL-seq and RNA-seq in spring Brassica napus L. PLoS One, 2023, 18: e0281875. |
[18] | Zhu J F, Lei L, Wang W R, Jiang J X, Zhou X R. QTL mapping for seed density per silique in Brassica napus. Sci Rep, 2023, 13: 772. |
[19] |
Yang Y, Shen Y S, Li S D, Ge X H, Li Z Y. High density linkage map construction and QTL detection for three silique-related traits in Orychophragmus violaceus derived Brassica napus population. Front Plant Sci, 2017, 8: 1512.
doi: 10.3389/fpls.2017.01512 pmid: 28932230 |
[20] | Li X N, Ramchiary N, Dhandapani V, Choi S R, Hur Y, Nou I S, Yoon M K, Lim Y P. Quantitative trait loci mapping in Brassica rapa revealed the structural and functional conservation of genetic loci governing morphological and yield component traits in the A, B, and C subgenomes of Brassica species. DNA Res, 2013, 20: 1-16. |
[21] | Shi J Q, Zhan J P, Yang Y H, Ye J, Huang S M, Li R Y, Wang X F, Liu G H, Wang H Z. Linkage and regional association analysis reveal two new tightly-linked major-QTLs for pod number and seed number per pod in rapeseed (Brassica napus L.). Sci Rep, 2015, 5: 14481. |
[22] | Jiao Y M, Zhang K P, Cai G Q, Yu K D, Amoo O, Han S Q, Zhao X, Zhang H, Hu L M, Wang B R, et al. Fine mapping and candidate gene analysis of a major locus controlling ovule abortion and seed number per silique in Brassica napus L. Theor Appl Genet, 2021, 134: 2517-2530. |
[23] | Li S P, Chen L, Zhang L W, Li X, Liu Y, Wu Z K, Dong F M, Wan L L, Liu K D, Hong D F, et al. BnaC9.SMG7b functions as a positive regulator of the number of seeds per silique in Brassica napus by regulating the formation of functional female gametophytes. Plant Physiol, 2015, 169: 2744-2760. |
[24] | Xin S S, Dong H L, Cui Y X, Liu Y L, Tian G F, Deng N X, Wan H F, Liu Z, Li X R, Qian W. Identification of a candidate QTG for seed number per silique by integrating QTL mapping and RNA-seq in Brassica napus L. Crop J, 2023, 11: 189-197. |
[25] |
严威凯. 品种选育与评价的原理和方法评述. 作物学报, 2022, 48: 2137-2154.
doi: 10.3724/SP.J.1006.2022.11105 |
Yan W K. A critical review on the principles and procedures for cultivar development and evaluation. Acta Agron Sin, 2022, 48: 2137-2154 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2022.11105 |
|
[26] | Song J M, Guan Z L, Hu J L, Guo C C, Yang Z Q, Wang S, Liu D X, Wang B, Lu S P, Zhou R, et al. Eight high-quality genomes reveal pan-genome architecture and ecotype differentiation of Brassica napus. Nat Plants, 2020, 6: 34-45. |
[27] | Chen S F, Zhou Y Q, Chen Y R, Gu J. Fastp: an ultra-fast all-in- one FASTQ preprocessor. Bioinformatics, 2018, 34: i884-i890. |
[28] |
Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics, 2009, 25: 1754-1760.
doi: 10.1093/bioinformatics/btp324 pmid: 19451168 |
[29] |
McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res, 2010, 20: 1297-1303.
doi: 10.1101/gr.107524.110 pmid: 20644199 |
[30] | Luo X B, Xu L, Wang Y, Dong J H, Chen Y L, Tang M J, Fan L X, Zhu Y L, Liu L W. An ultra-high-density genetic map provides insights into genome synteny, recombination landscape and taproot skin colour in radish (Raphanus sativus L.). Plant Biotechnol J, 2020, 18: 274-286. |
[31] |
Xie W B, Feng Q, Yu H H, Huang X H, Zhao Q, Xing Y Z, Yu S B, Han B, Zhang Q F. Parent-independent genotyping for constructing an ultrahigh-density linkage map based on population sequencing. Proc Natl Acad Sci USA, 2010, 107: 10578-10583.
doi: 10.1073/pnas.1005931107 pmid: 20498060 |
[32] | Li J, Wang S, Zeng Z B. Multiple interval mapping for ordinal traits. Genetics, 2006, 173: 1649-1663. |
[33] |
李星, 杨会, 骆璐, 李华东, 张昆, 张秀荣, 李玉颖, 于海洋, 王天宇, 刘佳琪, 等. 栽培种花生单仁重QTL定位分析. 作物学报, 2023, 49: 2160-2170.
doi: 10.3724/SP.J.1006.2023.24190 |
Li X, Yang H, Luo L, Li H D, Zhang K, Zhang X R, Li Y Y, Yu H Y, Wang T Y, Liu J Q, et al. QTL mapping analysis of single kernel weight of cultivated peanut. Acta Agron Sin, 2023, 49: 2160-2170 (in Chinese with English abstract). | |
[34] |
Davis E M, Sun Y, Liu Y L, Kolekar P, Shao Y, Szlachta K, Mulder H L, Ren D R, Rice S V, Wang Z M, et al. SequencErr: measuring and suppressing sequencer errors in next-generation sequencing data. Genome Biol, 2021, 22: 37.
doi: 10.1186/s13059-020-02254-2 pmid: 33487172 |
[35] |
Dobin A, Davis C A, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras T R. STAR: ultrafast universal RNA-seq aligner. Bioinformatics, 2013, 29: 15-21.
doi: 10.1093/bioinformatics/bts635 pmid: 23104886 |
[36] | Love M I, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol, 2014, 15: 550. |
[37] |
Kanehisa M, Goto S. KEGG Kyoto encyclopedia of genes and genomes. Nucleic Acids Res, 2000, 28: 27-30.
doi: 10.1093/nar/28.1.27 pmid: 10592173 |
[38] |
Ashburner M, Ball C A, Blake J A, Botstein D, Butler H, Cherry J M, Davis A P, Dolinski K, Dwight S S, Eppig J T, et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet, 2000, 25: 25-29.
doi: 10.1038/75556 pmid: 10802651 |
[39] |
Chen C J, Chen H, Zhang Y, Thomas H R, Frank M H, He Y H, Xia R. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant, 2020, 13: 1194-1202.
doi: S1674-2052(20)30187-8 pmid: 32585190 |
[40] | Zhuang J Y, Lin H X, Lu J, Qian H R, Hittalmani S, Huang N, Zheng K L. Analysis of QTL × environment interaction for yield components and plant height in rice. Theor Appl Genet, 1997, 95: 799-808. |
[41] | 师家勤. 甘蓝型油菜产量性状及其杂种优势遗传基础的全基因组解析. 华中农业大学博士学位论文, 湖北武汉, 2009. |
Shi J Q. Genome-wide Analysis of Yield Traits and Genetic Basis of Heterosis in Brassica napus. PhD Dissertation of Huazhong Agricultural University, Wuhan, Hubei, China, 2009 (in Chinese with English abstract). | |
[42] | 李娜. 甘蓝型油菜粒重母体调控机理解析. 中国农业科学院博士学位论文, 北京, 2015. |
Li N. Analysis of Maternal Regulation Mechanism of Grain Weight in Brassica napus. PhD Dissertation of Chinese Academy of Agricultural Sciences, Beijing, China, 2015 (in Chinese with English abstract). | |
[43] | Feng G P, Qin Z X, Yan J Z, Zhang X R, Hu Y X. Arabidopsis organ size related1 regulates organ growth and final organ size in orchestration with ARGOS and ARL. New Phytol, 2011, 191: 635-646. |
[44] | Khan Y, Xiong Z, Zhang H, Liu S, Yaseen T, Hui T. Expression and roles of GRAS gene family in plant growth, signal transduction, biotic and abiotic stress resistance and symbiosis formation: a review. Plant Biol, 2022, 24: 404-416. |
[45] | 官春云, 黄太平, 李栒, 陈社员. 不同植物激素对油菜角果生长和结实的影响. 中国油料作物学报, 2004, 26(1): 5-7. |
Guan C Y, Huang T P, Li X, Chen S Y. Effect of different plant hormones on siliques growth and seeds maturity in rapeseed (B. napus). Chin J Oil Crop Sci, 2004, 26(1): 5-7 (in Chinese with English abstract). |
[1] | XIE Ling-Li, LI Yong-Ling, XU Ben-Bo, ZHANG Xue-Kun. Progress on waterlogging tolerance mechanism and genetic improvement in rapeseed [J]. Acta Agronomica Sinica, 2025, 51(2): 287-300. |
[2] | LI Jia-Xin, HUANG Ying-Ying, WU Lu-Mei, ZHAO Lun, YI Bin, MA Chao-Zhi, TU Jin-Xing, SHEN Jin-Xiong, FU Ting-Dong, WEN Jing. Phylogenetic and functional analysis of the BnaSLY1 genes in Brassica napus L. [J]. Acta Agronomica Sinica, 2025, 51(1): 44-57. |
[3] | ZHAO Gai-Hui, LI Shu-Yu, ZHAN Jie-Peng, LI Yan-Bin, SHI Jia-Qin, WANG Xin-Fa, WANG Han-Zhong. Mapping and candidate gene analysis of silique number mutant in Brassica napus L. [J]. Acta Agronomica Sinica, 2022, 48(1): 27-39. |
[4] | HUANG Wen-Gong, JIANG Wei-Dong, YAO Yu-Bo, SONG Xi-Xia, LIU Yan, CHEN Si, ZHAO Dong-Sheng, WU Guang-Wen, YUAN Hong-Mei, REN Chuan-Ying, SUN Zhong-Yi, WU Jian-Zhong, KANG Qing-Hua. Transcriptome profiling of flax (Linum usttatissimum L.) response to low potassium stress [J]. Acta Agronomica Sinica, 2021, 47(6): 1070-1081. |
[5] | ZHANG Chun, ZHAO Xiao-Zhen, PANG Cheng-Ke, PENG Men-Lu, WANG Xiao-Dong, CHEN Feng, ZHANG Wei, CHEN Song, PENG Qi, YI Bin, SUN Cheng-Ming, ZHANG Jie-Fu, FU Ting-Dong. Genome-wide association study of 1000-seed weight in rapeseed (Brassica napus L.) [J]. Acta Agronomica Sinica, 2021, 47(4): 650-659. |
[6] | ZHANG Huan, LUO Huai-Yong, LI Wei-Tao, GUO Jian-Bin, CHEN Wei-Gang, ZHOU Xiao-Jing, HUANG Li, LIU Nian, YAN Li-Ying, LEI Yong, LIAO Bo-Shou, JIANG Hui-Fang. Genome-wide identification of peanut resistance genes and their response to Ralstonia solanacearum infection [J]. Acta Agronomica Sinica, 2021, 47(12): 2314-2323. |
[7] | XIE Pan, LIU Wei, KANG Yu, HUA Wei, QIAN Lun-Wen, GUAN Chun-Yun, HE Xin. Identification and relative expression analysis of CBF gene family in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(12): 2394-2406. |
[8] | FENG Tao,TAN Hui,GUAN Mei,GUAN Chun-Yun. Mechanism of BnaBZR1 and BnaPIF4 regulating photosynthetic efficiency in oilseed rape (Brassica napus L.) under poor light [J]. Acta Agronomica Sinica, 2020, 46(8): 1146-1156. |
[9] | SUN Cheng-Ming,CHEN Feng,CHEN Song,PENG Qi,ZHANG Wei,YI Bin,ZHANG Jie-Fu,FU Ting-Dong. Genome-wide association study of seed number per silique in rapeseed (Brassica napus L.) [J]. Acta Agronomica Sinica, 2020, 46(01): 147-153. |
[10] | SUN Cheng-Ming,CHEN Song,PENG Qi,ZHANG Wei,YI Bin,ZHANG Jie-Fu,FU Ting-Dong. Genome-wide association study of silique length in rapeseed (Brassica napus L.) [J]. Acta Agronomica Sinica, 2019, 45(9): 1303-1310. |
[11] | YAO Jun-Yue,HUA Ying-Peng,ZHOU Ting,WANG Tao,SONG Hai-Xing,GUAN Chun-Yun,ZHANG Zhen-Hua. Identification and function analysis of AVP1, VHA-a2, and VHA-a3 genes in Brassica napus L. [J]. Acta Agronomica Sinica, 2019, 45(8): 1146-1157. |
[12] | Jing LI,Jin-Yao YAN,Wen-Shi HU,Xiao-Kun LI,Ri-Huan CONG,Tao REN,Jian-Wei LU. Effects of combined application of nitrogen and potassium on seed yield and nitrogen utilization of winter oilseed rape (Brassica napus L.) [J]. Acta Agronomica Sinica, 2019, 45(6): 941-948. |
[13] | Qian WANG,Cui CUI,Sang YE,Ming-Sheng CUI,Yu-Feng ZHAO,Na LIN,Zhang-Lin TANG,Jia-Na LI,Qing-Yuan ZHOU. Screening and Comprehensive Evaluation of Germplasm Resources with Tribenuron-methyl Tolerance at Germination Stage in Rapeseed (Brassica napus L.) [J]. Acta Agronomica Sinica, 2018, 44(8): 1169-1184. |
[14] | JIAO Cong-Cong,HUANG Ji-Xiang,WANG Yi-Long,ZHANG Xiao-Yu,XIONG Hua-Xin,NI Xi-Yuan,ZHAO Jian-Yi. Genetic Analysis of Yield-Associated Traits by Unconditional and Conditional QTL in Brassica napus [J]. Acta Agron Sin, 2015, 41(10): 1481-1489. |
|