Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2019, Vol. 45 ›› Issue (9): 1303-1310.doi: 10.3724/SP.J.1006.2019.94021

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Genome-wide association study of silique length in rapeseed (Brassica napus L.)

SUN Cheng-Ming1,2,CHEN Song1,PENG Qi1,ZHANG Wei1,YI Bin2,*(),ZHANG Jie-Fu1,*(),FU Ting-Dong2   

  1. 1 Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Key Laboratory of Cotton and Rapeseed (Nanjing), Ministry of Agriculture/Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing 210014, Jiangsu, China
    2 National Key Laboratory of Crop Genetic Improvement/College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China;
  • Received:2019-02-12 Accepted:2019-05-12 Online:2019-09-12 Published:2019-05-17
  • Contact: Bin YI,Jie-Fu ZHANG E-mail:yibin@mail.hzau.edu.cn;jiefu_z@163.com
  • Supported by:
    The study was supported by the National Key Research and Development Program of China(2018YFD0100601);the China Agriculture Research System(CARS-12)

Abstract:

Silique length is a key agronomic trait of rapeseed. Moderately increasing silique length is conducive to high seed yield by enlarging photosynthetic area and seed volume. A collection of 496 representative rapeseed accessions was genotyped by the Illumina 60K SNP array, and phenotyped for silique length in four environments. The genome-wide association study (GWAS) of silique length was performed via the MLM (Mixed linear model) and GLM (General linear model). Seven loci and 25 loci were detected with MLM and GLM, which explained 25.01% and 41.77% of the phenotypic variance, respectively. Combining the common loci between two models, we finally got 27 unique loci, of which seven were overlapped with reported QTLs, and 20 were new one. Bn-A09-p29991443, the most effective locus, was located on chromosome A09, accounting for 13.89% and 12.86% of the phenotypic variance in MLM and GLM, respectively. Silique length of accessions with the favorable allele of Bn-A09-p29991443 was averagely 0.89 cm longer than that with the unfavorable allele. The cloned silique length genes ARF18 and BnaA9.CYP78A9 in rapeseed was found to be colocalized with Bn-A09-p29991443. Besides, five candidates including GID1b, FUL, EOD3, DOF4.4 and GA20ox1, orthologous to documented Arabidopsis silique length genes, were found near our GWAS loci. The results provide an insight into the genetic basis of silique length and lay a foundation for further mechanism exploration and breeding for this trait in B. napus.

Key words: Brassica napus L, yield, silique length, GWAS, SNP

Table 1

Statistical analysis of silique length of the association panel"

环境
Environment
最小值
Min.
最大值
Max.
平均值±标准差
Mean ± SD
变异系数
CV
2013/2014 Nanjing 3.42 11.37 5.40±1.01 0.19
2013/2014 Nanjing 3.28 15.80 6.39±1.25 0.20
2014/2015 Taizhou 3.31 10.18 5.79±0.88 0.15
2015/2016 Taizhou 4.01 9.94 5.90±0.77 0.13

Fig. 1

Distribution of silique length of the association panel in four environments A and B, histogram of silique length in Nanjing and Taizhou in two years, respectively."

Table 2

Correlation coefficients of silique length among four environments"

2012/2013 Nanjing 2013/2014
Nanjing
2014/2015 Taizhou
2013/2014 Nanjing 0.57***
2014/2015 Taizhou 0.64*** 0.70***
2015/2016 Taizhou 0.56*** 0.57*** 0.75***

Table 3

Significant GWAS loci of silique length in MLM (BLUP) "

标记
Marker
染色体
Chr.
位置
Position
-lg (P) 表型变异
R2 (%)
环境
Environment
已报道QTL
Reported QTL
Bn-A07-p8572785 A07 10,018,929 5.80 5.10 13NJ/15TZ
Bn-A09-p28925363 A09 26,858,796 5.15 4.92 13NJ/15TZ [8, 22]
Bn-A09-p29991443 A09 27,815,620 13.59 13.89 13NJ/14NJ/15TZ [6, 8, 22, 23]
Bn-scaff_15712_2-p492440 C02 38,697,584 4.67 3.54
Bn-scaff_17869_1-p813291 C04 9,884,407 5.41 4.73 14NJ /15TZ
Bn-scaff_20817_1-p60579 C04 48,635,772 4.56 4.27 15TZ
Bn-scaff_15576_1-p68473 C09 41,121,951 4.29 3.21 13NJ/15TZ

Fig. 2

Genome-wide association study of rapeseed silique length (BLUP) A: Manhattan plot of MLM for silique length; B: Quantile-quantile plot of MLM for silique length; C: Manhattan plot of GLM for silique length; D: Quantile-quantile plot of GLM for silique length. The dashed horizontal line depicts the Bonferroni significance threshold."

Table 4

Significant GWAS loci of silique length in GLM (BLUP) "

标记
Marker
染色体
Chr.
位置
Position
-lg (P) 表型变异
R2 (%)
环境
Environment
已报道QTL
Reported QTL
Bn-A02-p11454573 A02 8,166,563 4.61 3.72 13NJ/14NJ/15TZ
Bn-A03-p4408895 A03 3,938,915 4.39 2.91
Bn-scaff_16092_1-p866917 A03 18,418,252 4.74 4.66 13NJ/15TZ
Bn-scaff_27914_1-p34836 A06 15,544,511 6.21 5.30 15TZ/16TZ
Bn-A06-p23042849 A06 22,092,944 4.72 3.85 15TZ/16TZ
Bn-A07-p1228602 A07 860,252 4.51 3.76 16TZ
Bn-A10-p12099059 A07 2,762,935 5.02 3.38 15TZ/16TZ
Bn-A07-p7606228 A07 9,162,030 6.03 4.90 13NJ/15TZ/16TZ [23]
Bn-A07-p8572785 A07 10,018,929 9.38 7.76 13NJ/15TZ/16TZ
Bn-A07-p10340211 A07 11,509,208 4.45 3.70 15TZ/16TZ
Bn-A07-p13957160 A07 15,884,413 5.18 4.20 15TZ/16TZ [23]
Bn-A07-p18319586 A07 20,221,220 5.14 4.33 14NJ/15TZ [6, 23]
Bn-A09-p3051349 A09 2,971,335 4.31 3.32 15TZ
Bn-A09-p28925363 A09 26,858,796 6.08 4.89 13NJ/15TZ/16TZ [8, 22]
Bn-A09-p29991443 A09 27,815,620 16.27 12.86 13NJ/14NJ/15TZ/16TZ [6, 8, 22, 23]
Bn-A10-p3966740 A10 885,133 6.47 4.46 13NJ/14NJ/15TZ/16TZ [6]
Bn-A10-p15793623 A10 15,756,213 4.60 3.65
Bn-scaff_17177_1-p381225 C02 44,843,894 5.12 4.13 15TZ
Bn-A05-p4304172 C04 6,449,454 6.96 5.75 14NJ/15TZ/16TZ
Bn-scaff_27914_1-p9919 C04 28,255,420 7.06 6.09 13NJ/14NJ/15TZ/16TZ
Bn-scaff_20817_1-p60579 C04 48,635,772 7.98 6.89 13NJ/14NJ/15TZ/16TZ
Bn-scaff_16069_1-p1668600 C07 38,086,007 6.38 5.29 15TZ/16TZ
Bn-scaff_16069_1-p3731985 C07 40,142,298 5.92 4.63 13NJ/14NJ/15TZ/16TZ
Bn-scaff_16361_1-p241830 C08 27,753,144 4.34 3.48 13NJ [9]
Bn-scaff_15576_1-p68473 C09 41,121,951 5.47 3.72 14NJ/15TZ/16TZ

Table 5

Information of candidate genes of silique length GWAS loci"

标记
Marker
油菜基因
Rapeseed gene
染色体
Chr.
位置
Position
拟南芥同源基因
Ar. homolog
参考基因组
Ref. genome
Bn-A07-p13957160 BnaA07g19530 A07 15,590,253 GID1b Darmor-bzh
Bn-A09-p3051349 BnaA09g05500 A09 2,718,832 FUL Darmor-bzh
Bn-scaff_20817_1-p60579 BnaC04g50960 C04 48,343,005 EOD3 Darmor-bzh
Bn-scaff_16069_1-p1668600 BnaC07g36530 C07 38,575,790 DOF4.4 Darmor-bzh
Bn-scaff_16069_1-p3731985 BnaC07g39650 C07 40,392,394 GA20ox1 Darmor-bzh
Bn-A09-p29991443 BnA09g0377700 A09 36,712,502 ARF18 ZS11
Bn-A09-p29991443 BnA09g0377760 A09 36,740,578 CYP78A9 ZS11
[1] 王汉中 . 我国油菜产业发展的历史回顾与展望. 中国油料作物学报, 2010,32:300-302.
Wang H Z . Review and future development of rapeseed industry in China. Chin J Oil Crop Sci, 2010,32:300-302 (in Chinese with English abstract).
[2] 冷锁虎, 唐瑶, 李秋兰, 左青松, 杨萍 . 油菜的源库关系研究: I. 角果大小对油菜后期源库的调节. 中国油料作物学报, 2005,27(3):37-40.
Leng S H, Tang Y, Li Q L, Zuo Q S, Yang P . Studies on source and sink of rapeseed: I. Regulation of pod size on source and sink in rapeseed after flowering. Chin J Oil Crop Sci, 2005,27(3):37-40 (in Chinese with English abstract).
[3] 王春丽, 海江波, 田建华, 杨建利, 赵晓光 . 油菜终花后角果和叶片光合对籽粒产量和品质的影响. 西北植物学报, 2014,34:1620-1626.
Wang C L, Hai J B, Tian J H, Yang J L, Zhao X G . Influence of silique and leaf photosynthesis on yield and quality of seed of oilseed rape (Brassica napus L.) after flowering. Acta Bot Boreal-Occident Sin, 2014,34:1620-1626 (in Chinese with English abstract).
[4] Udall J A, Quijada P A, Lambert B, Osborn T C . Quantitative trait analysis of seed yield and other complex traits in hybrid spring rapeseed (Brassica napus L.): 2. Identification of alleles from unadapted germplasm. Theor Appl Genet, 2006,113:597-609.
[5] Yang P, Shu C, Chen L, Xu J, Wu J, Liu K . Identification of a major QTL for silique length and seed weight in oilseed rape (Brassica napus L.). Theor Appl Genet, 2012,125:285-296.
[6] 漆丽萍 . 甘蓝型油菜株型与角果相关性状的QTL分析. 华中农业大学博士学位论文, 湖北武汉, 2014.
Qi L P . QTL Analysis for the Traits Associated with Plant Architecture and Silique in Brassica napus L. PhD Dissertation of Huazhong Agricultural University, Wuhan, Hubei, China, 2014. (in Chinese with English abstract).
[7] Wang X D, Chen L, Wang A N, Wang H, Tian J H, Zhao X P, Chao H B, Zhao Y J, Zhao W G, Xiang J, Gan J P, Li M T . Quantitative trait loci analysis and genome-wide comparison for silique related traits in Brassica napus. BMC Plant Biol, 2016,16:71.
[8] Fu Y, Wei D Y, Dong H L, He Y J, Cui Y X, Mei J Q, Wan H F, Li J N, Snowdon R, Friedt W, Li X R, Qian W . Comparative quantitative trait loci for silique length and seed weight in Brassica napus. Sci Rep, 2015,5:14407
[9] Yang Y, Shen Y S, Li S D, Ge X H, Li Z Y . High density linkage map construction and QTL detection for three silique-related traits in Orychophragmus violaceus derived Brassica napus population. Front Plant Sci, 2017,8:1512
[10] Li H, Peng Z Y, Yang X H, Wang W D, Fu J J, Wang J H, Han Y J, Chai Y C, Guo T T, Yang N, Liu J, Warburton M, Cheng Y B, Hao X M, Zhang P, Zhao J Y, Liu Y J, Wang G Y, Li J S, Yan J B . Genome-wide association study dissects the genetic architecture of oil biosynthesis in maize kernels. Nat Genet, 2013,45:43-52.
[11] Wen W W, Li D, Li X, Gao Y Q, Li W Q, Li H H, Liu J, Liu H J, Chen W, Luo J, Yan J B . Metabolome-based genome-wide association study of maize kernel leads to novel biochemical insights. Nat Commun, 2014,5:3438
[12] Dong H J, Zhao H, Xie W B, Han Z M, Li G W, Yao W, Bai X F, Hu Y, Guo Z L, Lu K, Yang L, Xing Y Z . A novel tiller angle gene, TAC3, together with TAC1 and D2 largely determine the natural variation of tiller angle in rice cultivars. PLoS Genet, 2016,12:e1006412.
[13] Huang X H, Kurata N, Wei X H, Wang Z X, Wang A H, Zhao Q, Zhao Y, Liu K Y, Lu H Y, Li W J, Guo Y L, Lu Y Q, Zhou C C, Fan D L, Weng Q J, Zhu C R, Huang T, Zhang L, Wang Y C, Feng L, Furuumi H, Kubo To, Miyabayashi T, Yuan X P, Xu Q, Dong G J, Zhan Q L, Li C Y, Fujiyama A, Toyoda A, Lu T T, Feng Q, Qian Q, Li J Y, Han B . A map of rice genome variation reveals the origin of cultivated rice. Nature, 2012,490:497-501.
[14] Sun C M, Wang B Q, Yan L, Hu K N, Liu S, Zhou Y M, Guan C Y, Zhang Z Q, Li J N, Zhang J F, Chen S, Wen J, Ma C Z, Tu J X, Shen J X, Fu T D, Yi B . Genome-wide association study provides insight into the genetic control of plant height in rapeseed (Brassica napus L.). Front Plant Sci, 2016,7:1102.
[15] Sun C M, Wang B Q, Wang X H, Hu K N, Li K D, Li Z Y, Li S, Yan L, Guan C Y, Zhang J F, Zhang Z Q, Chen S, Wen J, Tu J X, Shen J X, Fu T D, Yi B . Genome-wide association study dissecting the genetic architecture underlying the branch angle trait in rapeseed (Brassica napus L.). Sci Rep, 2016,6:33673.
[16] Ihaka R, Gentleman R . R: a language for data analysis and graphics. J Comput Graph Stat, 1996,5:299-314.
[17] Merk H L, Yarnes S C, Van Deynze A, Tong N, Menda N, Mueller L A, Mutschler M A, Loewen S A, Myers J R, Francis D M . Trait diversity and potential for selection indices based on variation among regionally adapted processing tomato germplasm. J Am Soc Hortic Sci, 2012,13:427-437.
[18] Evanno G, Regnaut S, Goudet J . Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol, 2005,14:2611-2620.
[19] Hardy O J, Vekemans X . SPAGeDi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol Ecol Notes, 2002,2:618-620.
[20] Bradbury P J, Zhang Z, Kroon D E, Casstevens T M, Ramdoss Y, Buckler E S . TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics, 2007,23:2633-2635.
[21] Turner S D . qqman: an R package for visualizing GWAS results using QQ and manhattan plots. BioRxiv, 2014. doi: 10.1101/005165.
[22] 周庆红, 周灿, 郑伟, 付东辉 . 甘蓝型油菜角果长度全基因组关联分析. 中国农业科学, 2017,50:228-239.
Zhou Q H, Zhou C, Zheng W, Fu D H . Genome wide association analysis of silique length in Brassica napus L. Sci Agric Sin, 2017,50:228-239 (in Chinese with English abstract).
[23] Dong H, Tan C, Li Y, He Y, Wei S, Cui Y, Chen Y, Wei D, Fu Y, He Y, Wan H, Liu Z, Xiong Q, Lu K, Li J, Qian W . Genome-wide association study reveals both overlapping and independent genetic loci to control seed weight and silique length in Brassica napus. Front Plant Sci, 2018,9:921.
[24] Liu J, Hua W, Hu Z, Yang H, Zhang L, Li R, Deng L, Sun X, Wang X, Wang H . Natural variation in ARF18 gene simultaneously affects seed weight and silique length in polyploid rapeseed. Proc Natl Acad Sci USA, 2015,112:5123-5132.
[25] Shi L, Song J, Guo C, Wang B, Guan Z, Yang P, Chen X, Zhang Q, King G J, Wang J, Liu K . A CACTA-like transposable element in the upstream region of BnaA9. CYP 78A9 acts as an enhancer to increase silique length and seed weight in rapeseed. Plant J, 2019. doi: 10.1111/tpj.14236.
[26] Gu Q, Ferrándiz C, Yanofsky M F, Martienssen R . The FRUITFULL MADS-box gene mediates cell differentiation during Arabidopsis fruit development. Development, 1998,125:1509-1517.
[27] Fang W, Wang Z, Cui R, Li J, Li Y . Maternal control of seed size by EOD3/CYP78A6 inArabidopsis thaliana. Plant J, 2012,70:929-939.
[28] Zou H F, Zhang Y Q, Wei W, Chen H W, Song Q X, Liu Y F, Zhao M Y, Wang F, Zhang B C, Lin Q . The transcription factor AtDOF4.2 regulates shoot branching and seed coat formation in Arabidopsis. Biochem J, 2013,449:373-388.
[29] Griffiths J, Murase K, Rieu I, Zentella R, Zhang Z L, Powers S J, Gong F, Phillips A L, Hedden P, Sun T P . Genetic characterization and functional analysis of the GID1 gibberellin receptors in Arabidopsis. Plant Cell, 2006,18:3399-3414.
[30] Rieu I, Ruiz-Rivero O, Fernandez-Garcia N, Griffiths J, Powers S J, Gong F, Linhartova T, Eriksson S, Nilsson O, Thomas S G . The gibberellin biosynthetic genes AtGA20ox1 and AtGA20ox2 act, partially redundantly, to promote growth and development throughout the Arabidopsis life cycle. Plant J, 2008,53:488-504.
[1] CHEN Ling-Ling, LI Zhan, LIU Ting-Xuan, GU Yong-Zhe, SONG Jian, WANG Jun, QIU Li-Juan. Genome wide association analysis of petiole angle based on 783 soybean resources (Glycine max L.) [J]. Acta Agronomica Sinica, 2022, 48(6): 1333-1345.
[2] HU Wen-Jing, LI Dong-Sheng, YI Xin, ZHANG Chun-Mei, ZHANG Yong. Molecular mapping and validation of quantitative trait loci for spike-related traits and plant height in wheat [J]. Acta Agronomica Sinica, 2022, 48(6): 1346-1356.
[3] WANG Dan, ZHOU Bao-Yuan, MA Wei, GE Jun-Zhu, DING Zai-Song, LI Cong-Feng, ZHAO Ming. Characteristics of the annual distribution and utilization of climate resource for double maize cropping system in the middle reaches of Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(6): 1437-1450.
[4] WANG Wang-Nian, GE Jun-Zhu, YANG Hai-Chang, YIN Fa-Ting, HUANG Tai-Li, KUAI Jie, WANG Jing, WANG Bo, ZHOU Guang-Sheng, FU Ting-Dong. Adaptation of feed crops to saline-alkali soil stress and effect of improving saline-alkali soil [J]. Acta Agronomica Sinica, 2022, 48(6): 1451-1462.
[5] YAN Jia-Qian, GU Yi-Biao, XUE Zhang-Yi, ZHOU Tian-Yang, GE Qian-Qian, ZHANG Hao, LIU Li-Jun, WANG Zhi-Qin, GU Jun-Fei, YANG Jian-Chang, ZHOU Zhen-Ling, XU Da-Yong. Different responses of rice cultivars to salt stress and the underlying mechanisms [J]. Acta Agronomica Sinica, 2022, 48(6): 1463-1475.
[6] YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487.
[7] CHEN Jing, REN Bai-Zhao, ZHAO Bin, LIU Peng, ZHANG Ji-Wang. Regulation of leaf-spraying glycine betaine on yield formation and antioxidation of summer maize sowed in different dates [J]. Acta Agronomica Sinica, 2022, 48(6): 1502-1515.
[8] LI Yi-Jun, LYU Hou-Quan. Effect of agricultural meteorological disasters on the production corn in the Northeast China [J]. Acta Agronomica Sinica, 2022, 48(6): 1537-1545.
[9] SHI Yan-Yan, MA Zhi-Hua, WU Chun-Hua, ZHOU Yong-Jin, LI Rong. Effects of ridge tillage with film mulching in furrow on photosynthetic characteristics of potato and yield formation in dryland farming [J]. Acta Agronomica Sinica, 2022, 48(5): 1288-1297.
[10] SUN Si-Min, HAN Bei, CHEN Lin, SUN Wei-Nan, ZHANG Xian-Long, YANG Xi-Yan. Root system architecture analysis and genome-wide association study of root system architecture related traits in cotton [J]. Acta Agronomica Sinica, 2022, 48(5): 1081-1090.
[11] YU Chun-Miao, ZHANG Yong, WANG Hao-Rang, YANG Xing-Yong, DONG Quan-Zhong, XUE Hong, ZHANG Ming-Ming, LI Wei-Wei, WANG Lei, HU Kai-Feng, GU Yong-Zhe, QIU Li-Juan. Construction of a high density genetic map between cultivated and semi-wild soybeans and identification of QTLs for plant height [J]. Acta Agronomica Sinica, 2022, 48(5): 1091-1102.
[12] YAN Xiao-Yu, GUO Wen-Jun, QIN Du-Lin, WANG Shuang-Lei, NIE Jun-Jun, ZHAO Na, QI Jie, SONG Xian-Liang, MAO Li-Li, SUN Xue-Zhen. Effects of cotton stubble return and subsoiling on dry matter accumulation, nutrient uptake, and yield of cotton in coastal saline-alkali soil [J]. Acta Agronomica Sinica, 2022, 48(5): 1235-1247.
[13] KE Jian, CHEN Ting-Ting, WU Zhou, ZHU Tie-Zhong, SUN Jie, HE Hai-Bing, YOU Cui-Cui, ZHU De-Quan, WU Li-Quan. Suitable varieties and high-yielding population characteristics of late season rice in the northern margin area of double-cropping rice along the Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(4): 1005-1016.
[14] LI Rui-Dong, YIN Yang-Yang, SONG Wen-Wen, WU Ting-Ting, SUN Shi, HAN Tian-Fu, XU Cai-Long, WU Cun-Xiang, HU Shui-Xiu. Effects of close planting densities on assimilate accumulation and yield of soybean with different plant branching types [J]. Acta Agronomica Sinica, 2022, 48(4): 942-951.
[15] WANG Lyu, CUI Yue-Zhen, WU Yu-Hong, HAO Xing-Shun, ZHANG Chun-Hui, WANG Jun-Yi, LIU Yi-Xin, LI Xiao-Gang, QIN Yu-Hang. Effects of rice stalks mulching combined with green manure (Astragalus smicus L.) incorporated into soil and reducing nitrogen fertilizer rate on rice yield and soil fertility [J]. Acta Agronomica Sinica, 2022, 48(4): 952-961.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!