Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2025, Vol. 51 ›› Issue (4): 888-899.doi: 10.3724/SP.J.1006.2025.44156

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Mapping of silique length and seeds per silique and transcriptome profiling of pod walls in Brassica napus L.

WANG Xiao-Lin(), LIU Zhong-Song, KANG Lei, YANG Liu()   

  1. College of Agronomy, Hunan Agricultural University, Changsha 410128, Hunan, China
  • Received:2024-09-13 Accepted:2024-12-12 Online:2025-04-12 Published:2024-12-18
  • Contact: E-mail: yangliu@hunau.edu.cn
  • Supported by:
    National Key Research and Development Program of China(2022YFD1200400)

Abstract:

Rapeseed (Brassica napus L.) is a major oilseed crop globally, and improving yield remains a primary objective in rapeseed breeding programs. Yield in rapeseed is determined by three main components: siliques per unit area, seeds per silique, and seed weight. Although silique length is not a direct yield component, it influences both seeds per silique and seed weight, and thus indirectly affects yield. In this study, two parental lines with contrasting silique lengths and seeds per silique, YA and Zhongshuang 11, along with their 211 recombinant inbred lines (RILs), were used as experimental materials. The RIL population was genotyped through genome resequencing and grown in two environments: autumn in Changsha and summer in Mingle. Silique length and seeds per silique were measured, and quantitative trait loci (QTL) analysis was conducted. The results identified a major QTL for both silique length and seeds per silique on chromosome A09 in both environments. Comparative RNA-seq analysis of pod walls from the two parents, conducted 3-21 days after flowering, indicated that genes involved in photosynthesis, plant hormone signaling transduction, and secondary metabolite biosynthesis play critical roles in pod wall development. Among the differentially expressed genes, BnaA09.CYP78A9, BnaC08.SCL13, and BnaA04.ARL, which are associated with auxin response and signaling transduction, were identified as candidate genes regulating silique length. These findings provide a foundation for fine mapping and exploring the regulatory mechanisms of genes controlling silique length in rapeseed, which could contribute to yield improvement in breeding programs.

Key words: Brassica napus L, silique length, seeds per silique, quantitative trait location (QTL), transcriptome profiling

Table 1

Phenotypic variation and genetic analysis of silique length and seeds per silique in the RIL population YZ of rapeseed (Brassica napus L.)"

性状
Trait
环境
Environment
亲本 Parents 重组自交系群体 RIL population
YA 中双11号
ZS11
均值±标准差
Mean ± SD
变幅
Range
变异系数
CV (%)
遗传力
H2
t检验
t test
角果长度
SL (mm)
长沙CS 65.83±2.71 79.86±1.93**a 71.61±13.30 48.84-101.30 18.57 0.85 111.98**b
民乐ML 117.26±2.70 106.11±1.00**a 89.59±20.70 51.02-153.40 23.16
每角粒数
SPS
长沙CS 23.10±0.51 24.96±0.70**a 22.29±2.32 14.50-29.98 10.41 0.67 611.13**b
民乐ML 29.12±0.19 30.54±0.21**a 28.27±2.63 21.81-35.80 9.30

Fig. 1

Frequency distribution of silique length (a) and seeds per silique (b) in the RIL population YZ of rapeseed (Brassica napus L.) Abbreviations are the same as those given in Table 1."

Table 2

Correlation analysis between traits in the population YZ of rapeseed (Brassica napus L.)"

性状Trait 环境Environment 角果长度Silique length
每角粒数 长沙Changsha 0.17
Seeds per silique 民乐Minle 0.35*

Table S1

Chromosomal distribution of the variants in rapeseed (Brassica napus L.)"

染色体
Chr.
长度
Length (bp)
SNP数量
No. SNPs
InDel数量
No. InDels
SNP密度
SNP density
(No. kb-1)
InDel密度
InDel density
(No. kb-1)
A01 38,004,428 408,118 148,331 10.74 3.90
A02 35,943,954 378,213 139,136 10.52 3.87
A03 44,868,710 471,360 180,809 10.51 4.03
A04 25,679,024 331,446 113,166 12.91 4.41
A05 45,991,561 448,337 145,210 9.75 3.16
A06 48,704,706 515,232 171,757 10.58 3.53
A07 32,302,721 376,703 135,121 11.66 4.18
A08 28,329,074 270,930 90,883 9.56 3.21
A09 65,862,748 674,712 227,786 10.24 3.46
A10 26,592,803 304,512 103,703 11.45 3.90
C01 57,880,920 559,868 161,997 9.67 2.80
C02 65,293,782 616,357 172,192 9.44 2.64
C03 79,061,710 758,738 241,922 9.60 3.06
C04 71,179,181 684,885 196,442 9.62 2.76
C05 59,550,008 468,231 141,037 7.86 2.37
C06 52,512,057 444,081 139,948 8.46 2.67
C07 60,986,212 481,327 147,925 7.89 2.43
C08 53,660,391 432,875 145,004 8.07 2.70
C09 68,416,614 545,825 171,533 7.98 2.51
Whole 960,820,604 9,171,750 2,973,902 9.82 3.24

Fig. S1

Linkage map of the population of recombination inbred lines from the cross of YA with Zhongshuang 11 in Brassica napus L."

Table 3

QTLs for silique length and seeds per silique in rapeseed (Brassica napus L.)"

性状
Trait
环境
Environment
QTL名称
QTL name
染色体
Chromosome
遗传位置
Position (cM)
阈值
LOD
表型解释率
R² (%)
置信区间
Confidence interval (cM)
角果长度
Silique length
长沙Changsha qSL.A06 A06 26.28 5.44 5.00 22.32-28.13
qSL.A09-1 A09 91.82 33.48 43.60 91.82-91.82
qSL.C08 C08 6.20 4.14 3.80 5.54-6.94
民乐Minle qSL.A04 A04 61.70 3.74 2.00 59.42-64.98
qSL.A09-2 A09 87.76 40.77 57.60 87.76-91.82
每角粒数
Seeds per silique
长沙Changsha qSPS.A02 A02 38.75 2.89 5.41 35.22-39.27
民乐Minle qSPS.A06 A06 45.64 4.94 8.40 43.64-45.89
qSPS.A09 A09 95.36 6.11 10.60 93.65-95.36

Table S2

The candidate genes located within QTL intervals of silique length and seeds per silique in rapeseed (Brassica napus L.)"

QTL名称
QTL name
候选基因
Candidate genes ID
拟南芥同源基因
Arabidopsis homolog gene
基因名
Gene name
注释
Functional description
变异类型
Variation type
群体变异类型
Variation type of population
qSL.A06 BnaA06G0062200ZS AT1G09950 RAS1 对ABA和SALT1的反应
Response to ABA and SALT 1
非同义单核苷酸变异Nonsynonymous SNV 错译突变
Missense
BnaA06G0068300ZS AT2G39540 GASA8 赤霉素调节家族蛋白
Gibberellin-regulated family protein
非同义单核苷酸变异和移码突变
Nonsynonymous SNV and frameshift
移码突变
Frameshift
qSL.A09 BnaA09G0545800ZS AT3G59900 ARGOS 编码生长素调节基因参与器官大小
Encodes auxin-regulated gene involved in organ size
非同义单核苷酸变异和非移码插入
Nonsynonymous SNV and nonframeshift insertion
错译突变
Missense
BnaA09G0546200ZS AT3G59940 SKIP20 细胞分裂素反应为阴性
Negative cytokinin response
非移码插入
Nonframeshift insertion
错译突变
Missense
BnaA09G0550200ZS AT3G60490 ERF035 ERF/AP2转录因子家族
ERF/AP2 transcription factor family
非同义单核苷酸变异和非移码插入
Nonsynonymous SNV and nonframeshift insertion
错译突变
Missense
BnaA09G0551600ZS AT3G60690 SAUR59 ERF/AP2转录因子家族
ERF/AP2 transcription factor family
非移码插入
Nonframeshift insertion
错译突变
Missense
BnaA09G0553700ZS AT3G61040 CYP76C7 编码一种具有细胞色素P450结构域的蛋白质
Encodes a protein with cytochrome P450 domain
非同义单核苷酸变异和移码突变
Nonsynonymous SNV and frameshift
错译突变和移码突变
Missense and frameshift
BnaA09G0558300ZS AT3G61630 CRF6 CRF蛋白对细胞分裂素的反应
CRF proteins response to cytokinin
非同义单核苷酸变异
Nonsynonymous SNV
错译突变和移码突变
Missense and frameshift
BnaA09G0559300ZS AT3G61830 ARF18 生长素反应因子18
Auxin response factor 18
非同义单核苷酸变异和非移码插入
Nonsynonymous SNV and nonframeshift insertion
错译突变和移码突变
Missense and frameshift
BnaA09G0560100ZS AT3G61880 CYP78A9 编码一种具有细胞色素P450结构域的单氧酶
Encodes a cytochrome p450 monooxygenase
错译突变
Missense
BnaA09G0560300ZS AT3G61900 SAUR33 SAUR样生长素反应蛋白家族
SAUR-like auxin-responsive protein family
非移码插入
Nonframeshift insertion
错译突变
Missense
BnaA09G0560900ZS AT3G61970 NGA2 AP2/ B3样转录因子家族蛋白
AP2/B3-like transcriptional factor family protein
非移码插入
Nonframeshift insertion
错译突变
Missense
BnaA09G0562300ZS AT3G62100 IAA30 编码Aux/IAA蛋白家族的一个成员
Encodes a member of the Aux/IAA family of proteins
非移码插入
Nonframeshift insertion
错译突变
Missense
qSL.C08 BnaC08G0148600ZS AT4G17230 SCL13 编码稻草人样蛋白
Encodes a scarecrow-like protein (SCL13)
移码突变和非移码插入
Frameshift deletion and nonframeshift insertion
错译突变
Missense
BnaC08G0152300ZS AT4G17490 ERF6 编码ERF子家族的一个成员
Encodes a member of the ERF subfamily
非同义单核苷酸变异Nonsynonymous SNV
BnaC08G0152400ZS AT4G17500 ERF1A 编码ERF/AP3转录的一个成员
Encodes a member of the ERF/AP3 transcription
非同义单核苷酸变异
Nonsynonymous SNV
错译突变
Missense
BnaC08G0154200ZS AT4G17695 KAN3 同源结构域样超家族蛋白
Homeodomain-like superfamily protein
非同义单核苷酸变异
Nonsynonymous SNV
内含子突变
Intron
BnaC08G0155100ZS AT4G17870 PYR1 编码PYR/PYL/RCAR家族蛋白的一个成员
Encodes a member of the PYR/PYL/RCAR family protein
移码突变
Frameshift deletion
移码突变
Frameshift
qSL.A04 BnaA04G0250800ZS AT2G40260 MYS2 同源结构域样超家族蛋白
Homeodomain-like superfamily protein
移码突变和非移码插入
Frameshift deletion and nonframeshift insertion
移码突变
Frameshift
BnaA04G0251200ZS AT2G40200 BHLH51 碱性螺旋-环-螺旋DNA结合超家族蛋白
Basic helix-loop-helix DNA-binding superfamily protein
非同义单核苷酸变异
Nonsynonymous SNV
错译突变
Missense
BnaA04G0251900ZS AT2G40116 PLC6 磷酸肌醇特异性磷脂酶C家族蛋白
Phosphoinositide-specific phospholipase C family protein
非同义单核苷酸变异和移码突变
Nonsynonymous SNV and frameshift deletion
错译突变
Missense
BnaA04G0256400ZS AT2G39310 JAL22 Jacalin类凝集素 22
Jacalin-related lectin 22
移码突变和非移码插入
Frameshift deletion and nonframeshift insertion
错译突变和移码突变
Missense and frameshift
BnaA04G0257000ZS AT2G40330 PYL6 编码PYR/PYL/RCAR家族蛋白的一个成员
Encodes a member of the PYR/PYL/RCAR family protein
非同义单核苷酸变异
Nonsynonymous SNV
BnaA04G0257100ZS AT2G40340 DREB2C 编码ERF亚家族转录的一个成员
Encodes a member of the ERF subfamily transcription
非同义单核苷酸变异
Nonsynonymous SNV
错译突变
Missense
BnaA04G0261800ZS AT5G42440 MDH9 蛋白激酶超家族蛋白
Protein kinase superfamily protein
非同义单核苷酸变异
Nonsynonymous SNV
错译突变Missense
BnaA04G0263900ZS AT2G41310 ARR8 参与细胞分裂素介导的信号传导
Involve in cytokinin-mediated signalling
非同义单核苷酸变异
Nonsynonymous SNV
错译突变
Missense
BnaA04G0265500ZS AT2G41510 CKX1 类似于细胞分裂素氧化酶/脱氢酶
Similar to cytokinin oxidase/dehydrogenase
非同义单核苷酸变异和移码突变
Nonsynonymous SNV and frameshift deletion
错译突变和框内缺失
Missense and inframe_deletion
BnaA04G0267400ZS AT4G13770 CYP83A1 编码细胞色素p450,在生长素稳态中起作用
Encodes CYP450, has a role in auxin homeostasis.
非同义单核苷酸变异和移码突变
Nonsynonymous SNV and frameshift deletion
错译突变
Missense
BnaA04G0267500ZS AT1G58260 CYP79C2 细胞色素p450的CYP79C亚家族成员
Member of CYP79C subfamily of cytochrome p450s.
非同义单核苷酸变异和移码突变
Nonsynonymous SNV and frameshift deletion
错译突变移码突变
Missense and frameshift deletion
BnaA04G0272500ZS AT2G42870 PAR1 作为生长素应答基因的转录抑制因子
Transcriptional repressor of auxin-responsive genes
非同义单核苷酸变异
Nonsynonymous SNV
错译突变
Missense
BnaA04G0280200ZS AT2G44080 ARL 由芸薹素内酯上调
Upregulated by brassinosteroid.
非同义单核苷酸变异
Nonsynonymous SNV
BnaA04G0280600ZS AT5G18090 NGA2 AP2/ B3样转录因子家族蛋白
AP2/B3-like transcriptional factor family protein
非同义单核苷酸变异
Nonsynonymous SNV
错译突变
Missense
qSPS.A02 BnaA02G0199900ZS AT1G72430 SAUR78 SAUR样生长素反应蛋白家族
SAUR-like auxin-responsive protein family
非同义单核苷酸变异
Nonsynonymous SNV
-
BnaA02G0196600ZS AT1G71960 ABCG25 涉及脱落酸运输
Involve abscisic acid transport
非同义单核苷酸变异和移码突变
Nonsynonymous SNV and frameshift deletion
错译突变
Missense
BnaA02G0179200ZS AT1G69120 AP1 SRF转录因子
SRF transcription factors
非移码插入
Nonframeshift insertion
错译突变
Missense
BnaA02G0192900ZS AT1G71130 ERF070 编码ERF子家族的一个成员
Encodes a member of the ERF subfamily
非同义单核苷酸变异和移码突变
Nonsynonymous SNV and frameshift deletion
错译突变和框内缺失
Missense and inframe_insertion
qSPS.A06 BnaA06G0135100ZS AT1G19350 BZR2 编码芸薹素内酯信号蛋白
Encodes BR signalling protein
非移码插入
Nonframeshift insertion
错译突变
Missense
BnaA06G0138000ZS AT2G39670 -- 自由基SAM超家族蛋白
Radical SAM superfamily protein
非同义单核苷酸变异
Nonsynonymous SNV
错译突变和移码突变
Missense and frameshift
BnaA06G0138600ZS AT1G19770 PUP14 PUP1相关的蛋白家族成员
Member of a family of proteins related to PUP1
非同义单核苷酸变异
Nonsynonymous SNV
错译突变和移码突变
Missense and frameshift
BnaA06G0138900ZS AT1G19770 PUP14 PUP1相关的蛋白家族成员
Member of a family of proteins related to PUP1
非同义单核苷酸变异和移码突变
Nonsynonymous SNV and frameshift deletion
错译突变移码突变
Missense and frameshift
BnaA06G0144000ZS AT1G20470 SAUR60 SAUR样生长素反应蛋白家族
SAUR-like auxin-responsive protein family
非同义单核苷酸变异
Nonsynonymous SNV
错译突变和框内缺失
Missense and inframe_insertion
BnaA06G0147700ZS AT1G20925 PILS1 生长素外排载体家族蛋白
Auxin efflux carrier family protein
非同义单核苷酸变异
Nonsynonymous SNV
错译突变
Missense
qSPS.A09 BnaA09G0568300ZS AT3G63010 GID1B 具有GA结合活性,对GA4有较高亲和力
Has GA-binding activity, showing higher affinity to GA4
非同义单核苷酸变异Nonsynonymous SNV 错译突变
Missense
BnaA09G0568800ZS AT3G63110 IPT3 对细胞分裂素合成酶进行编码
Encodes cytokinin synthase involved
非同义单核苷酸变异Nonsynonymous SNV 错译突变
Missense

Fig. 2

Enrichment analysis of differentially expressed genes (DEGs) in pod walls at days after flowering between YA and Zhongshuang 11 (ZS11) of rapeseed (Brassica napus L.) a: silique length of both rapeseed parents YA and ZS11 at days after flowering (DAF); b: KEGG enrichment analysis of DEGs between YA and ZS11 at 12 DAF; c: KEGG enrichment analysis of DEGs for YA between 6 DAF and 9 DAF; d: KEGG enrichment analysis of DEGs for ZS11 between 6 DAF and 9 DAF; e: GO enrichment analysis of DEGs between YA and ZS11 at 12 DAF; f: GO enrichment analysis of DEGs for YA between 6 DAF and 9 DAF; g: GO enrichment analysis of DEGs for ZS11 between 6 DAF and 9 DAF."

Fig. 3

Expression heatmap of candidate genes within the QTL intervals for silique length in rapeseed (Brassica napus L.) Ruler: the normalized value of gene expression data."

Table S3

The insertion/deletion variations in the candidate genes for silique length between both parents YA and Zhongshuang 11 of rapeseed (Brassica napus L.)"

基因名称
Gene name
染色体上位置
Chromosomal Position
基因结构
Gene structure
基因变化
insertion/deletion Variation
氨基酸变化
Variation in amino acid residue
YA 中双11
Zhongshuang 11
BnaA09.CYP78A9 57,359,135 转座子Transposon C/CTA I/L 1|1 0/0
BnaA04.ARL 24,561,360 外显子Exon C/CCTT -/L 1|1 0/0
BnaA04.ARL 24,561,376 外显子Exon C/CTTA -/S 1|1 0/0
BnaC08.SCL13 25,560,026 外显子Exon C/A I/M 1|1 0/0
BnaC08.SCL13 25,560,032 外显子Exon G/T V/M 1|1 0/0
BnaC08.SCL13 25,560,035 外显子Exon G/A T/S 1|1 0/0
BnaC08.SCL13 25,560,683 外显子Exon A/G M/C 1|1 0/0
BnaC08.SCL13 25,560,686 外显子Exon T/A E/K 1|1 0/0
BnaC08.SCL13 25,561,346 内含子Intron TAAA/ TAAAAA -/R 1|1 0/0

Fig. 4

Weighted correlation network analysis (WGCNA) analysis of the genes expressed in pod walls of rapeseed (Brassica napus L.) a: construction of WGCNA modules; b: correlation of modules with silique length; c: KEGG enrichment analysis of key modules; d: GO enrichment analysis of key modules."

Fig. 5

Co-expression network analysis of candidate genes within the QTL intervals for silique length in rapeseed (Brassica napus L.)"

[1] Özer H, Oral E, ÜNSAL DOĞ R U. Relationships between yield and yield components on currently improved spring rapeseed cultivars. Turkish J Agric For, 1999, 23: 603-608.
[2] 丁秀琦. 白菜型春油菜角果和种子性状研究. 中国油料, 1996, 18(4): 28-30.
Ding X Q. Study on characters of silique and seed in spring rape (B. campestris L.). Chin J Oil Crop Sci, 1996, 18(4): 28-30 (in Chinese).
[3] 王艳惠, 牛应泽. 人工合成甘蓝型油菜特长角性状的遗传分析. 遗传, 2006, 28: 1273-1279.
Wang Y H, Niu Y Z. Genetic analysis of a specially long pod character in artificially resynthesized Brassica napus L. Hereditas, 2006, 28: 1273-1279 (in Chinese with English abstract).
[4] Zhang L W, Li S P, Chen L, Yang G S. Identification and mapping of a major dominant quantitative trait locus controlling seeds per silique as a single Mendelian factor in Brassica napus L. Theor Appl Genet, 2012, 125: 695-705.
doi: 10.1007/s00122-012-1861-3 pmid: 22487878
[5] Yang P, Shu C, Chen L, Xu J S, Wu J S, Liu K D. Identification of a major QTL for silique length and seed weight in oilseed rape (Brassica napus L.). Theor Appl Genet, 2012, 125: 285-296
doi: 10.1007/s00122-012-1833-7 pmid: 22406980
[6] 袁泽俊. 油菜A9染色体角果长和千粒重主效QTL的验证. 华中农业大学硕士学位论文, 湖北武汉, 2013.
Yuan Z J. Verification of Major QTL for Pod Length and 1000-grain Weight of A9 Chromosome in Rapeseed. MS Thesis of Huazhong Agricultural University, Wuhan, Hubei, China, 2013 (in Chinese with English abstract).
[7] Qi L P, Mao L, Sun C M, Pu Y Y, Fu T D, Ma C Z, Shen J X, Tu J X, Yi B, Wen J. Interpreting the genetic basis of silique traits in Brassica napus using a joint QTL network. Plant Breed, 2014, 133: 52-60.
[8] Wang H, Zaman Q U, Huang W H, Mei D S, Liu J, Wang W X, Ding B L, Hao M Y, Fu L, Cheng H T, et al. QTL and candidate gene identification for silique length based on high-dense genetic map in Brassica napus L. Front Plant Sci, 2019, 10: 1579.
doi: 10.3389/fpls.2019.01579 pmid: 31850044
[9] Zhou X M, Dai L H, Wang P F, Liu Y, Zhang H Y, Xin Q, Wan L L, Yang L Y, Yang G S, et al. Mining favorable alleles for five agronomic traits from the elite rapeseed cultivar Zhongshuang 11 by QTL mapping and integration. Crop J, 2021, 9: 1449-1459.
doi: 10.1016/j.cj.2020.12.008
[10] Liu J, Hua W, Hu Z Y, Yang H L, Zhang L, Li R J, Deng L B, Sun X C, Wang X F, Wang H Z. Natural variation in ARF18 gene simultaneously affects seed weight and silique length in polyploid rapeseed. Proc Natl Acad Sci USA, 2015, 112: E5123-E5132.
[11] Liu M, Chang W, Yu M N, Fan Y H, Shang G X, Xu Y F, Niu Y, Liu X M, Zhu H, Dai L S, et al. Overexpression of DEFECTIVE IN ANTHER DEHISCENCE 1 increases rapeseed silique length through crosstalk between JA and auxin signaling. Ind Crops Prod, 2021, 168: 113576.
[12] Shi L L, Song J R, Guo C C, Wang B, Guan Z L, Yang P, Chen X, Zhang Q H, King G J, Wang J, et al. A CACTA-like transposable element in the upstream region of BnaA9.CYP78A9 acts as an enhancer to increase silique length and seed weight in rapeseed. Plant J, 2019, 98: 524-539.
[13] Zhou X M, Zhang H Y, Wang P F, Liu Y, Zhang X H, Song Y X, Wang Z Y, Ali A, Wan L L, Yang G S, et al. BnaC7.ROT3, the causal gene of cqSL-C7, mediates silique length by affecting cell elongation in Brassica napus. J Exp Bot, 2022, 73: 154-167.
[14] Zhang L Y, Yang B, Li X D, Chen S, Zhang C, Xiang S R, Sun T T, Yang Z Y, Kong X Z, Qu C M, et al. Integrating GWAS, RNA-Seq and functional analysis revealed that BnaA02.SE mediates silique elongation by affecting cell proliferation and expansion in Brassica napus. Plant Biotechnol J, 2024, 22: 2907-2920.
[15] 郭娜, 左凯峰, 张淼, 张冰冰, 秦梦凡, 马宁, 刘翔, 李青青, 黄镇, 徐爱遐. 甘蓝型油菜主要株型和产量性状的综合分析. 西北农业学报, 2020, 29: 898-906.
Guo N, Zuo K F, Zhang M, Zhang B B, Qin M F, Ma N, Liu X, Li Q Q, Huang Z, Xu A X. Comprehensive analysis of major plant-type and yield traits in Brassica napus L. Acta Agric Boreali- Occident Sin, 2020, 29: 898-906 (in Chinese with English abstract).
[16] 张立武. 甘蓝型油菜每角粒数的遗传和主效QTL的定位. 华中农业大学博士学位论文, 湖北武汉, 2010.
Zhang L W. Inheritance of Grains per Corn and Mapping of Major QTL in Brassica napus L. PhD Dissertation of Huazhong Agricultural University, Wuhan, Hubei, China, 2010 (in Chinese with English abstract).
[17] Xing X R, Liu H D, Ye J X, Yao Y M, Li K X, Li Y L, Du D Z. QTL analysis and candidate gene prediction for seed density per silique by QTL-seq and RNA-seq in spring Brassica napus L. PLoS One, 2023, 18: e0281875.
[18] Zhu J F, Lei L, Wang W R, Jiang J X, Zhou X R. QTL mapping for seed density per silique in Brassica napus. Sci Rep, 2023, 13: 772.
[19] Yang Y, Shen Y S, Li S D, Ge X H, Li Z Y. High density linkage map construction and QTL detection for three silique-related traits in Orychophragmus violaceus derived Brassica napus population. Front Plant Sci, 2017, 8: 1512.
doi: 10.3389/fpls.2017.01512 pmid: 28932230
[20] Li X N, Ramchiary N, Dhandapani V, Choi S R, Hur Y, Nou I S, Yoon M K, Lim Y P. Quantitative trait loci mapping in Brassica rapa revealed the structural and functional conservation of genetic loci governing morphological and yield component traits in the A, B, and C subgenomes of Brassica species. DNA Res, 2013, 20: 1-16.
[21] Shi J Q, Zhan J P, Yang Y H, Ye J, Huang S M, Li R Y, Wang X F, Liu G H, Wang H Z. Linkage and regional association analysis reveal two new tightly-linked major-QTLs for pod number and seed number per pod in rapeseed (Brassica napus L.). Sci Rep, 2015, 5: 14481.
[22] Jiao Y M, Zhang K P, Cai G Q, Yu K D, Amoo O, Han S Q, Zhao X, Zhang H, Hu L M, Wang B R, et al. Fine mapping and candidate gene analysis of a major locus controlling ovule abortion and seed number per silique in Brassica napus L. Theor Appl Genet, 2021, 134: 2517-2530.
[23] Li S P, Chen L, Zhang L W, Li X, Liu Y, Wu Z K, Dong F M, Wan L L, Liu K D, Hong D F, et al. BnaC9.SMG7b functions as a positive regulator of the number of seeds per silique in Brassica napus by regulating the formation of functional female gametophytes. Plant Physiol, 2015, 169: 2744-2760.
[24] Xin S S, Dong H L, Cui Y X, Liu Y L, Tian G F, Deng N X, Wan H F, Liu Z, Li X R, Qian W. Identification of a candidate QTG for seed number per silique by integrating QTL mapping and RNA-seq in Brassica napus L. Crop J, 2023, 11: 189-197.
[25] 严威凯. 品种选育与评价的原理和方法评述. 作物学报, 2022, 48: 2137-2154.
doi: 10.3724/SP.J.1006.2022.11105
Yan W K. A critical review on the principles and procedures for cultivar development and evaluation. Acta Agron Sin, 2022, 48: 2137-2154 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2022.11105
[26] Song J M, Guan Z L, Hu J L, Guo C C, Yang Z Q, Wang S, Liu D X, Wang B, Lu S P, Zhou R, et al. Eight high-quality genomes reveal pan-genome architecture and ecotype differentiation of Brassica napus. Nat Plants, 2020, 6: 34-45.
[27] Chen S F, Zhou Y Q, Chen Y R, Gu J. Fastp: an ultra-fast all-in- one FASTQ preprocessor. Bioinformatics, 2018, 34: i884-i890.
[28] Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics, 2009, 25: 1754-1760.
doi: 10.1093/bioinformatics/btp324 pmid: 19451168
[29] McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res, 2010, 20: 1297-1303.
doi: 10.1101/gr.107524.110 pmid: 20644199
[30] Luo X B, Xu L, Wang Y, Dong J H, Chen Y L, Tang M J, Fan L X, Zhu Y L, Liu L W. An ultra-high-density genetic map provides insights into genome synteny, recombination landscape and taproot skin colour in radish (Raphanus sativus L.). Plant Biotechnol J, 2020, 18: 274-286.
[31] Xie W B, Feng Q, Yu H H, Huang X H, Zhao Q, Xing Y Z, Yu S B, Han B, Zhang Q F. Parent-independent genotyping for constructing an ultrahigh-density linkage map based on population sequencing. Proc Natl Acad Sci USA, 2010, 107: 10578-10583.
doi: 10.1073/pnas.1005931107 pmid: 20498060
[32] Li J, Wang S, Zeng Z B. Multiple interval mapping for ordinal traits. Genetics, 2006, 173: 1649-1663.
[33] 李星, 杨会, 骆璐, 李华东, 张昆, 张秀荣, 李玉颖, 于海洋, 王天宇, 刘佳琪, 等. 栽培种花生单仁重QTL定位分析. 作物学报, 2023, 49: 2160-2170.
doi: 10.3724/SP.J.1006.2023.24190
Li X, Yang H, Luo L, Li H D, Zhang K, Zhang X R, Li Y Y, Yu H Y, Wang T Y, Liu J Q, et al. QTL mapping analysis of single kernel weight of cultivated peanut. Acta Agron Sin, 2023, 49: 2160-2170 (in Chinese with English abstract).
[34] Davis E M, Sun Y, Liu Y L, Kolekar P, Shao Y, Szlachta K, Mulder H L, Ren D R, Rice S V, Wang Z M, et al. SequencErr: measuring and suppressing sequencer errors in next-generation sequencing data. Genome Biol, 2021, 22: 37.
doi: 10.1186/s13059-020-02254-2 pmid: 33487172
[35] Dobin A, Davis C A, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras T R. STAR: ultrafast universal RNA-seq aligner. Bioinformatics, 2013, 29: 15-21.
doi: 10.1093/bioinformatics/bts635 pmid: 23104886
[36] Love M I, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol, 2014, 15: 550.
[37] Kanehisa M, Goto S. KEGG Kyoto encyclopedia of genes and genomes. Nucleic Acids Res, 2000, 28: 27-30.
doi: 10.1093/nar/28.1.27 pmid: 10592173
[38] Ashburner M, Ball C A, Blake J A, Botstein D, Butler H, Cherry J M, Davis A P, Dolinski K, Dwight S S, Eppig J T, et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet, 2000, 25: 25-29.
doi: 10.1038/75556 pmid: 10802651
[39] Chen C J, Chen H, Zhang Y, Thomas H R, Frank M H, He Y H, Xia R. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant, 2020, 13: 1194-1202.
doi: S1674-2052(20)30187-8 pmid: 32585190
[40] Zhuang J Y, Lin H X, Lu J, Qian H R, Hittalmani S, Huang N, Zheng K L. Analysis of QTL × environment interaction for yield components and plant height in rice. Theor Appl Genet, 1997, 95: 799-808.
[41] 师家勤. 甘蓝型油菜产量性状及其杂种优势遗传基础的全基因组解析. 华中农业大学博士学位论文, 湖北武汉, 2009.
Shi J Q. Genome-wide Analysis of Yield Traits and Genetic Basis of Heterosis in Brassica napus. PhD Dissertation of Huazhong Agricultural University, Wuhan, Hubei, China, 2009 (in Chinese with English abstract).
[42] 李娜. 甘蓝型油菜粒重母体调控机理解析. 中国农业科学院博士学位论文, 北京, 2015.
Li N. Analysis of Maternal Regulation Mechanism of Grain Weight in Brassica napus. PhD Dissertation of Chinese Academy of Agricultural Sciences, Beijing, China, 2015 (in Chinese with English abstract).
[43] Feng G P, Qin Z X, Yan J Z, Zhang X R, Hu Y X. Arabidopsis organ size related1 regulates organ growth and final organ size in orchestration with ARGOS and ARL. New Phytol, 2011, 191: 635-646.
[44] Khan Y, Xiong Z, Zhang H, Liu S, Yaseen T, Hui T. Expression and roles of GRAS gene family in plant growth, signal transduction, biotic and abiotic stress resistance and symbiosis formation: a review. Plant Biol, 2022, 24: 404-416.
[45] 官春云, 黄太平, 李栒, 陈社员. 不同植物激素对油菜角果生长和结实的影响. 中国油料作物学报, 2004, 26(1): 5-7.
Guan C Y, Huang T P, Li X, Chen S Y. Effect of different plant hormones on siliques growth and seeds maturity in rapeseed (B. napus). Chin J Oil Crop Sci, 2004, 26(1): 5-7 (in Chinese with English abstract).
[1] XIE Ling-Li, LI Yong-Ling, XU Ben-Bo, ZHANG Xue-Kun. Progress on waterlogging tolerance mechanism and genetic improvement in rapeseed [J]. Acta Agronomica Sinica, 2025, 51(2): 287-300.
[2] LI Jia-Xin, HUANG Ying-Ying, WU Lu-Mei, ZHAO Lun, YI Bin, MA Chao-Zhi, TU Jin-Xing, SHEN Jin-Xiong, FU Ting-Dong, WEN Jing. Phylogenetic and functional analysis of the BnaSLY1 genes in Brassica napus L. [J]. Acta Agronomica Sinica, 2025, 51(1): 44-57.
[3] ZHAO Gai-Hui, LI Shu-Yu, ZHAN Jie-Peng, LI Yan-Bin, SHI Jia-Qin, WANG Xin-Fa, WANG Han-Zhong. Mapping and candidate gene analysis of silique number mutant in Brassica napus L. [J]. Acta Agronomica Sinica, 2022, 48(1): 27-39.
[4] HUANG Wen-Gong, JIANG Wei-Dong, YAO Yu-Bo, SONG Xi-Xia, LIU Yan, CHEN Si, ZHAO Dong-Sheng, WU Guang-Wen, YUAN Hong-Mei, REN Chuan-Ying, SUN Zhong-Yi, WU Jian-Zhong, KANG Qing-Hua. Transcriptome profiling of flax (Linum usttatissimum L.) response to low potassium stress [J]. Acta Agronomica Sinica, 2021, 47(6): 1070-1081.
[5] ZHANG Chun, ZHAO Xiao-Zhen, PANG Cheng-Ke, PENG Men-Lu, WANG Xiao-Dong, CHEN Feng, ZHANG Wei, CHEN Song, PENG Qi, YI Bin, SUN Cheng-Ming, ZHANG Jie-Fu, FU Ting-Dong. Genome-wide association study of 1000-seed weight in rapeseed (Brassica napus L.) [J]. Acta Agronomica Sinica, 2021, 47(4): 650-659.
[6] ZHANG Huan, LUO Huai-Yong, LI Wei-Tao, GUO Jian-Bin, CHEN Wei-Gang, ZHOU Xiao-Jing, HUANG Li, LIU Nian, YAN Li-Ying, LEI Yong, LIAO Bo-Shou, JIANG Hui-Fang. Genome-wide identification of peanut resistance genes and their response to Ralstonia solanacearum infection [J]. Acta Agronomica Sinica, 2021, 47(12): 2314-2323.
[7] XIE Pan, LIU Wei, KANG Yu, HUA Wei, QIAN Lun-Wen, GUAN Chun-Yun, HE Xin. Identification and relative expression analysis of CBF gene family in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(12): 2394-2406.
[8] FENG Tao,TAN Hui,GUAN Mei,GUAN Chun-Yun. Mechanism of BnaBZR1 and BnaPIF4 regulating photosynthetic efficiency in oilseed rape (Brassica napus L.) under poor light [J]. Acta Agronomica Sinica, 2020, 46(8): 1146-1156.
[9] SUN Cheng-Ming,CHEN Feng,CHEN Song,PENG Qi,ZHANG Wei,YI Bin,ZHANG Jie-Fu,FU Ting-Dong. Genome-wide association study of seed number per silique in rapeseed (Brassica napus L.) [J]. Acta Agronomica Sinica, 2020, 46(01): 147-153.
[10] SUN Cheng-Ming,CHEN Song,PENG Qi,ZHANG Wei,YI Bin,ZHANG Jie-Fu,FU Ting-Dong. Genome-wide association study of silique length in rapeseed (Brassica napus L.) [J]. Acta Agronomica Sinica, 2019, 45(9): 1303-1310.
[11] YAO Jun-Yue,HUA Ying-Peng,ZHOU Ting,WANG Tao,SONG Hai-Xing,GUAN Chun-Yun,ZHANG Zhen-Hua. Identification and function analysis of AVP1, VHA-a2, and VHA-a3 genes in Brassica napus L. [J]. Acta Agronomica Sinica, 2019, 45(8): 1146-1157.
[12] Jing LI,Jin-Yao YAN,Wen-Shi HU,Xiao-Kun LI,Ri-Huan CONG,Tao REN,Jian-Wei LU. Effects of combined application of nitrogen and potassium on seed yield and nitrogen utilization of winter oilseed rape (Brassica napus L.) [J]. Acta Agronomica Sinica, 2019, 45(6): 941-948.
[13] Qian WANG,Cui CUI,Sang YE,Ming-Sheng CUI,Yu-Feng ZHAO,Na LIN,Zhang-Lin TANG,Jia-Na LI,Qing-Yuan ZHOU. Screening and Comprehensive Evaluation of Germplasm Resources with Tribenuron-methyl Tolerance at Germination Stage in Rapeseed (Brassica napus L.) [J]. Acta Agronomica Sinica, 2018, 44(8): 1169-1184.
[14] JIAO Cong-Cong,HUANG Ji-Xiang,WANG Yi-Long,ZHANG Xiao-Yu,XIONG Hua-Xin,NI Xi-Yuan,ZHAO Jian-Yi. Genetic Analysis of Yield-Associated Traits by Unconditional and Conditional QTL in Brassica napus [J]. Acta Agron Sin, 2015, 41(10): 1481-1489.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!