Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica

   

Functional identification of MeTCP3a transcription factor in cassava leaf development

WANG Lian-Nan1,LI Yuan-Chao3,YU Nai-Tong2,MAI Wei-Tao1,LI Ya-Jun2,*, CHEN Xin2,*   

  1. 1 College of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, Hainan, China; 2 Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, Hainan, China; 3 College of Life Science and Technology, Guangxi University, Nanning 530004, Guangxi, China
  • Published:2024-07-11
  • Supported by:
    This study was supported by Chinese Academy of Tropical Agricultural Sciences for Science and Technology Innovation Team of National Tropical Agricultural Science Center (CATASCXTD202301) and the China Agriculture Research System of MOF and MARA (Cassava, CARS11-HNCX).

Abstract:

Leaves are the primary organs of photosynthesis in green plants, and their development indirectly affects the yield and starch content of cassava storage roots. However, the regulatory mechanisms governing cassava leaf development remain unclear. In this study, we explored the function of the MeTCP3a transcription factor in cassava leaf development. Amino acid sequence alignment and phylogenetic analysis showed that MeTCP3a was closely related to the TCP4 protein in rubber (Hevea brasiliensis Muell. Arg.). Subcellular localization and protein interaction assays demonstrated that MeTCP3a was localized in the nucleus, possessed transcriptional activation ability, and could form both homodimers and heterodimers in the nucleus, indicating its properties as a transcription factor. Expression analysis showed that the relative expression level of MeTCP3a was significantly higher in mature leaves compared to other tissues. When MeTCP3a expression was suppressed using VIGS (virus-induced gene silencing) technology, cassava heart leaves exhibited curled edges and a wrinkled appearance. Further real-time quantitative PCR analysis revealed that the expression levels of downstream genes related to leaf morphological development, such as MeCUC1/2/3 and MeIAA, were also down-regulated. This result suggested that MeTCP3a might influence leaf morphological development by regulating the expression of these downstream genes. This study provides a theoretical basis for further exploring the regulatory mechanisms of TCP-like transcription factors associated with leaf growth and development in cassava.

Key words: cassava, leaf development, MeTCP3a, protein interaction, VIGS

[1] 杨梅琼. 广西木薯产业发展形势与对策建议. 农业研究与应用, 2020, 33(6): 7477.

Yang M Q. Development situation of Guangxi’s cassava industry and its countermeasures. Agric Res Appl, 2020, 33(6): 74–77 (in Chinese with English abstract).

[2] 欧桂宁, 贝丽萍, 张静柔, 韩笑, 彭晓辉, 黎亮武, 阳太亿, 黄苑航, 韦茂贵. 木薯不同叶形及叶片着生姿态对光能利用效率的影响. 分子植物育种, 网络首发[2024-01-30], https://kns.cnki.net/kcms2/detail/46.1068.S.20230529.0910.002.html.

Ou G N, Bei L P, Zhang J R, Han X, Peng X H, Li L W, Yang T Y, Huang Y H, Wei M G. Effects of the leaf shape and growth posture on light use efficiency of cassava. Mol Plant Breed, Published online [2024-01-30], https://kns.cnki.net/kcms2/detail/46.1068.S.20230529.0910.002.html (in Chinese with English abstract).

[3] 陆柳英, 曹升, 谢向誉, 曾文丹, 严华兵. 木薯叶形与光合特性、SPAD值的相关性研究. 南方农业学报, 2014, 45: 558564.

Lu L Y, Cao S, Xie X Y, Zeng W D, Yan H B. Correlation of leaf shape of cassava with SPAD value and photosynthetic characteristics. J Southern Agric, 2014, 45: 558–564 (in Chinese with English abstract).

[4] 陈代波, 程式华, 曹立勇. 水稻窄叶性状的研究进展. 中国稻米, 2010, 16(3): 14.

Chen D B, Cheng S H, Cao L Y. Research progress of narrow leaf traits in rice. China Rice, 2010, 16(3): 1–4 (in Chinese).

[5] Yu X L, Ruan M B, Wang B, Yang Y L, Wang S C, Peng M. A homeodomain-leucine zipper I transcription factor, MeHDZ14, regulates internode elongation and leaf rolling in cassava (Manihot esculenta Crantz). Crop J, 2023, 11: 1419–1430.

[6] Aguilar-Martínez J A, Poza-Carrión C, Cubas P. Arabidopsis BRANCHED1 acts as an integrator of branching signals within axillary buds. Plant Cell, 2007, 19: 458–472.

[7] Rubio-Somoza I, Weigel D. Coordination of flower maturation by a regulatory circuit of three microRNAs. PLoS Genet, 2013, 9: e1003374.

[8] Sun X D, Wang C D, Xiang N, Li X, Yang S H, Du J C, Yang Y P, Yang Y Q. Activation of secondary cell wall biosynthesis by miR319-targeted TCP4 transcription factor. Plant Biotechnol J, 2017, 15: 1284–1294.

[9] Lopez J A, Sun Y, Blair P B, Mukhtar M S. TCP three-way handshake: linking developmental processes with plant immunity. Trends Plant Sci, 2015, 20: 238–245.

[10] Danisman S. TCP transcription factors at the interface between environmental challenges and the plant’s growth responses. Front Plant Sci, 2016, 7: 1930.

[11] Cubas P, Lauter N, Doebley J, Coen E. The TCP domain: a motif found in proteins regulating plant growth and development. Plant J, 1999, 18: 215–222.

[12] Palatnik J F, Allen E, Wu X, Schommer C, Schwab R, Carrington J C, Weigel D. Control of leaf morphogenesis by microRNAs. Nature, 2003, 425: 257–263.

[13] Martín-Trillo M, Cubas P. TCP genes: a family snapshot ten years later. Trends Plant Sci, 2010, 15: 31–39.

[14] Cao B T, Wang H F, Bai J J, Wang X, Li X R, Zhang Y F, Yang S X, He Y K, Yu X. miR319-regulated TCP3 modulates silique development associated with seed shattering in Brassicaceae. Cells, 2022, 11: 3096.

[15] Ori N, Cohen A R, Etzioni A, Brand A, Yanai O, Shleizer S, Menda N, Amsellem Z, Efroni I, Pekker I, Alvarez J P, Blum E, Zamir D, Eshed Y. Regulation of LANCEOLATE by miR319 is required for compound-leaf development in tomato. Nat Genet, 2007, 39: 787–791.

[16] Li D B, Zhang H Y, Mou M H, Chen Y L, Xiang S Y, Chen L G, Yu D Q. Arabidopsis Class II TCP transcription factors integrate with the FT-FD module to control flowering. Plant Physiol, 2019, 181: 97–111.

[17] Wei B Y, Zhang J Z, Pang C X, Yu H, Guo D S, Jiang H, Ding M X, Chen Z Y, Tao Q, Gu H Y, Qu L J, Qin G J. The molecular mechanism of sporocyteless/nozzle in controlling Arabidopsis ovule development. Cell Res, 2015, 25: 121–134.

[18] Vadde B V L, Challa K R, Nath U. The TCP4 transcription factor regulates trichome cell differentiation by directly activating GLABROUS INFLORESCENCE STEMS in Arabidopsis thaliana. Plant J, 2018, 93: 259–269.

[19] Danisman S, Wal F D, Dhondt S, Waites R, Folter S D, Bimbo A, Dijk A D, Muino J M, Cutri L, Dornelas M C, Angenent G C, Immink R G. Arabidopsis Class I and Class II TCP transcription factors regulate Jasmonic Acid metabolism and leaf development antagonistically. Plant Physiol, 2012, 159: 1511–1523.

[20] 兰婧秋, 秦跟基. Class Ⅱ TCP转录因子的主要功能和分子调控机制. 中国科学: 生命科学, 2021, 51: 15421557.

Lan J Q, Qin G J. The molecular function and regulation of Class II TCP transcription factors. Sci Sin Vitae, 2021, 51: 1542–1557 (in Chinese with English abstract).

[21] Li S T, Zachgo S. TCP3 interacts with R2R3-MYB proteins, promotes flavonoid biosynthesis and negatively regulates the auxin response in Arabidopsis thaliana. Plant J, 2013, 76: 901–913.

[22] Lei N, Yu X, Li S X, Zeng C Y, Zou L P, Liao W B, Peng M. Phylogeny and expression pattern analysis of TCP transcription factors in cassava seedlings exposed to cold and/or drought stress. Sci Rep, 2017, 7: 10016.

[23] Tuo D C, Zhou P, Yan P, Cui H G, Liu Y, Wang H, Yang X K, Liao W B, Sun D, Li X Y, Shen W T. A cassava common mosaic virus vector for virus-induced gene silencing in cassava. Plant Methods, 2021, 17: 1–12.

[24] Yu H Y, Zhang L, Wang W Y, Tian P, Wang W, Wang K Y, Gao Z, Liu S, Zhang Y X, Irish VF, Huang T B. TCP5 controls leaf margin development by regulating KNOX and BEL-like transcription factors in Arabidopsis. J Exp Bot, 2021, 72: 1809–1821.

[25] 杨文源, 俞玉, 张世媛, 张娟, 玛伊努尔·图尔荪, 杨涛, 徐丽萍. 一种基于Image J软件的植物叶片表型参数测量方法. 北方农业学报, 2022, 50(6): 128134.

Yang W Y, Yu Y, Zhang S Y, Zhang J, Tuersun M Y N E, Yang T, Xu L P. A method of measuring plant leaves phenotypic parameters based on Image J software. J Nouthern Agric, 2022, 50(6): 128–134 (in Chinese with English abstract).

[26] Danisman S, Dijk A D, Bimbo A, Wal F D, Hennig L, Folter S D, Angenent G C, Immink R G. Analysis of functional redundancies within the Arabidopsis TCP transcription factor family. J Exp Bot, 2013, 64: 5673–5685.

[27] Lin Y F, Chen Y Y, Hsiao Y Y, Shen C Y, Hsu J L, Yeh C M, Mitsuda N, Ohme-Takagi M, Liu Z J, Tsai W C. Genome-wide identification and characterization of TCP genes involved in ovule development of Phalaenopsis equestris. J Exp Bot, 2016, 67: 5051–5066.

[28] Andriankaja M E, Danisman S, Mignolet-Spruyt L F, Claeys H, Kochanke I, Vermeersch M, Milde L D, Bodt S D, Storme V, Skirycz A, Maurer F, Bauer P, Mühlenbock P, Breusegem F V, Angenent G C, Immink R G, Inzé D. Transcriptional coordination between leaf cell differentiation and chloroplast development established by TCP20 and the subgroup Ib bHLH transcription factors. Plant Mol Biol, 2014, 85: 233–245.

[29] Song C B, Shan W, Yang Y Y, Tan X L, Fan Z Q, Chen J Y, Lu W J, Kuang J F. Heterodimerization of MaTCP proteins modulates the transcription of MaXTH10/11 genes during banana fruit ripening. Biochim Biophys Acta Gene Regul Mech, 2018, 1861: 613–622.

[30] 李文略, 柳婷婷, 陈常理, 骆霞虹, 安霞, 邹丽娜, 朱关林, 李苹芳. 植物TCP蛋白作用机制研究进展. 分子植物育种, 2023, 21: 46504658.

Li W L, Liu T T, Chen C L, Luo X H, An X, Zou L N, Zhu G L, Li P F. Advances in the mechanism of action of TCP proteins in plants. Mol Plant Breed, 2023, 21: 4650–4658 (in Chinese with English abstract).

[31] Nath U, Crawford B C, Carpenter R, Coen E. Genetic control of surface curvature. Science, 2003, 299: 1404–1407.

[32] Efroni I, Blum E, Goldshmidt A, Eshed Y. A protracted and dynamic maturation schedule underlies Arabidopsis leaf development. Plant Cell, 2008, 20: 2293–2306.

[33] Seki K, Komatsu K, Tanaka K, Hiraga M, Kajiya-Kanegae H, Matsumura H, Uno Y. A CIN-like TCP transcription factor (LsTCP4) having retrotransposon insertion associates with a shift from Salinas type to Empire type in crisphead lettuce (Lactuca sativa L.). Hortic Res, 2020, 1: 223–236.

[34] Viola I L, Gonzalez D H. TCP transcription factors in plant reproductive development: juggling multiple roles. Biomolecules, 2023, 13: 750.

[35] Koyama T, Mitsuda N, Seki M, Shinozaki K, Ohme-Takagi M. TCP transcription factors regulate the activities of ASYMMETRIC LEAVES1 and miR164, as well as the auxin response, during differentiation of leaves in Arabidopsis. Plant Cell, 2010, 22: 3574–3588.

[36] Nikovics K, Blein T, Peaucelle A, Ishida T, Morin H, Aida M, Laufs P. The balance between the MIR164A and CUC2 genes controls leaf margin serration in Arabidopsis. Plant Cell, 2006, 18: 2929–2945.

[37] Wang J, Bao J L, Zhou B B, Li M, Li X Z, Jin J. The osa-miR164 target OsCUC1 functions redundantly with OsCUC3 in controlling rice meristem/organ boundary specification. New Phytol, 2021, 229: 1566–1581.

[38] Bilsborough G D, Runions A, Barkoulas M, Jenkins H W, Hasson A, Galinha C, Laufs P, Hay A, Prusinkiewicz P, Tsiantis M. Model for the regulation of Arabidopsis thaliana leaf margin development. Proc Natl Acad Sci USA, 2011, 108: 3424–3429.

[39] 柯锦秀, 陈多, 郭延平. 植物叶缘形态的发育调控机理. 生物多样性, 2018, 26: 988997.

Ke J X, Chen D, Guo Y P. Designing leaf marginal shapes: regulatory mechanisms of leaf serration or dissection. Biodivers Sci, 2018, 26: 988–997 (in Chinese with English abstract).

[40] Das Gupta M, Aggarwal P, Nath U. CINCINNATA in Antirrhinum majus directly modulates genes involved in cytokinin and auxin signaling. New Phytol, 2014, 204: 901–912.

[41] Ben-Gera H, Shwartz I, Shao M R, Shani E, Estelle M, Ori N. ENTIRE and GOBLET promote leaflet development in tomato by modulating auxin response. Plant J, 2012, 70: 903–915.

[1] XIAO Ming-Kun, YAN Wei, SONG Ji-Ming, ZHANG Lin-Hui, LIU Qian, DUAN Chun-Fang, LI Yue-Xian, JIANG Tai-Ling, SHEN Shao-Bin, ZHOU Ying-Chun, SHEN Zheng-Song, XIONG Xian-Kun, LUO Xin, BAI Li-Na, LIU Guang-Hua. Comparative transcriptome profiling of leaf in curled-leaf cassava and its mutant [J]. Acta Agronomica Sinica, 2024, 50(8): 2143-2156.
[2] YU Quan-Xin, YANG Zong-Tao, ZHANG Hai, CHENG Guang-Yuan, JIAO Wen-Di, ZENG Kang, LUO Ting-Xu, HUANG Guo-Qiang, WANG Lu, XU Jing-Sheng. Interaction between calmodulin-like ScCML13 of sugarcane and SCMV movement protein P3N-PIPO [J]. Acta Agronomica Sinica, 2024, 50(7): 1855-1866.
[3] WANG Jia-Xiang, YU Xue-Ting, LI Meng-Tao, MAI Wei-Tao, CHEN Xin, WANG Wen-Quan. Preliminary study on the regulation of cassava plant type by MeLAZY1c gene [J]. Acta Agronomica Sinica, 2024, 50(6): 1514-1524.
[4] WU Fa-Xuan, LI Qin, YANG Xin, LI Xin-Gen, XU Jian-Tang, TAO Ai-Fen, FANG Ping-Ping, QI Jian-Min, ZHANG Li-Wu. Cloning, expression, and function of HcKAN4 gene of kenaf in flavonoid synthesis [J]. Acta Agronomica Sinica, 2024, 50(3): 645-655.
[5] YU Xue-Ting, LI Ke, LI Meng-Tao, BAO Ru-Xue, CHEN Xin, WANG Wen-Quan. Interaction identification between protein kinase MeSnRK2.12 and transcription factor MebHLH1 and its relative expression level in cassava [J]. Acta Agronomica Sinica, 2023, 49(9): 2594-2600.
[6] YU Quan-Xin, YANG Zong-Tao, ZHANG Hai, CHENG Guang-Yuan, ZHOU Ying-Shuan, JIAO Wen-Di, ZENG Kang, LUO Ting-Xu, HUANG Guo-Qiang, ZHANG Mu-Qing, XU Jing-Sheng. Interaction of sugarcane VAMP associated protein ScPVA12 with SCMV P3N-PIPO [J]. Acta Agronomica Sinica, 2023, 49(9): 2472-2484.
[7] BAI Cheng-Cheng, YAO Xiao-Yao, WANG Yu-Lu, WANG Sai-Yu, LI Jin-Ying, JIANG You-Wei, JIN Shu-Rong, CHEN Chun-Jie, LIU Yu, WEI Xing-Yue, XU Xin-Fu, LI Jia-Na, NI Yu. Cloning of genes involved in cuticular very-long-chain alkane synthesis and its interaction with BnCER1-2 in Brassica napus [J]. Acta Agronomica Sinica, 2023, 49(4): 1016-1027.
[8] XU Zi-Yin, YU Xiao-Ling, ZOU Liang-Ping, ZHAO Ping-Juan, LI Wen-Bin, GENG Meng-Ting, RUAN Meng-Bin. Expression pattern analysis and interaction protein screening of cassava MYB transcription factor MeMYB60 [J]. Acta Agronomica Sinica, 2023, 49(4): 955-965.
[9] CHEN Hui-Xian, LIANG Zhen-Hua, HUANG Zhen-Ling, WEI Wan-Ling, ZHANG Xiu-Fen, YANG Hai-Xia, LI Heng-Rui, HE Wen, LI Tian-Yuan, LAN Xiu, RUAN Li-Xia, CAI Zhao-Qin, NONG Jun-Xin. Transcriptomic profile of key stages of sex differentiation in cassava flowers and discovery of candidate genes related to female flower differentiation [J]. Acta Agronomica Sinica, 2023, 49(12): 3250-3260.
[10] DU Juan, PENG Xiao-Jun, HOU Juan, LIU Teng-Fei, LIU Zeng, SONG Bo-Tao. Identification of potato amylase StBAM9 interacting protein and analysis of the interaction mechanism [J]. Acta Agronomica Sinica, 2023, 49(10): 2643-2653.
[11] YANG Zong-Tao, JIAO Wen-Di, ZHANG Hai, ZHANG Ke-Ming, CHENG Guang-Yuan, LUO Ting-Xu, ZENG Kang, ZHOU Ying-Shuan, XU Jing-Sheng. Interaction of sugarcane glutathione S-transferase ScGSTF1 with P3N-PIPO in response to SCMV infection [J]. Acta Agronomica Sinica, 2023, 49(10): 2665-2676.
[12] LIANG Xi-Tong, GAO Xian-Yuan, ZHOU Lin, MU Chun, DU Ming-Wei, LI Fang-Jun, TIAN Xiao-Li, LI Zhao-Hu. High throughput identification of cotton gene via screening cotton cDNA library of virus induced gene silencing [J]. Acta Agronomica Sinica, 2022, 48(12): 2967-2977.
[13] LIU Shu-Xian, YANG Zong-Tao, CHENG Guang-Yuan, ZHANG Hai, ZHOU Ying-Shuan, SHANG He-Yang, HUANG Guo-Qiang, XU Jing-Sheng. Interaction of sugarcane main facilitator superfamily member ScZIFL1 with 6K2 in response to Sugarcane mosaic virus infection [J]. Acta Agronomica Sinica, 2022, 48(12): 3080-3090.
[14] LI Xiang-Chen, SHEN Xu, ZHOU Xin-Cheng, CHEN Xin, WANG Hai-Yan, WANG Wen-Quan. Identification and relative expression levels of PEPC gene family members in cassava [J]. Acta Agronomica Sinica, 2022, 48(12): 3108-3119.
[15] XU Bin, CAO Shao-Yu, SU Tian, PENG Meng-Ling, LYU Xia, LI Zhen-Lin, ZHANG Guo-Ping, XU Jun-Qiang. Interactions between CMLs and NPG1 and related proteins in pollen germination of Brassica oleracea L. var. capitata [J]. Acta Agronomica Sinica, 2022, 48(11): 2934-2944.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!