Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2024, Vol. 50 ›› Issue (8): 2143-2156.doi: 10.3724/SP.J.1006.2024.34168

• RESEARCH NOTES • Previous Articles    

Comparative transcriptome profiling of leaf in curled-leaf cassava and its mutant

XIAO Ming-Kun1(), YAN Wei1,2,*(), SONG Ji-Ming1,2(), ZHANG Lin-Hui1,2, LIU Qian1, DUAN Chun-Fang1,2, LI Yue-Xian1,2, JIANG Tai-Ling1,2, SHEN Shao-Bin1,2, ZHOU Ying-Chun1, SHEN Zheng-Song1,2, XIONG Xian-Kun1, LUO Xin1, BAI Li-Na1, LIU Guang-Hua3,*()   

  1. 1Tropical and Subtropical Cash Crops Research Institute, Yunnan Academy of Agricultural Sciences, Baoshan 678000, Yunnan, China
    2National Key Laboratory of Tropical Crop Breeding, Kunming 650205, Yunnan, China
    3International Agricultural Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205, Yunnan, China
  • Received:2023-10-15 Accepted:2024-04-01 Online:2024-08-12 Published:2024-04-24
  • Contact: * E-mail: rjsyw@yaas.org.cn;E-mail: rjslgh@vip.126.com
  • About author:** Contributed equally to this work
  • Supported by:
    Xingdian Talent Support Plan Project: Integrated Demonstration of Key Technologies for the Breeding and Industrialization of Excellent Forage Varieties in Yunnan, and the China Agriculture Research System of MOF and MARA (Cassava-Comprehensive Experimental Station Project);Xingdian Talent Support Plan Project: Integrated Demonstration of Key Technologies for the Breeding and Industrialization of Excellent Forage Varieties in Yunnan, and the China Agriculture Research System of MOF and MARA(CARS-11-YNLGH)

Abstract:

The objective of this study is to elucidate the molecular regulatory mechanisms and metabolic pathways underlying the abnormal development in the leaf of curled-leaf cassava. Normal curled cassava leaf (JY), mutant expanded leaf (ZY), and mutant curled leaf (BJ) were used as the experimental materials, and bioinformatics analysis was conducted based on transcriptome sequencing (RNA-seq) data. DESeq differential analysis showed that there were 327 (255 up-regulated, 72 down-regulated) DEGs for ZY vs BJ, 1085 (337 up-regulated, 748 down-regulated) DEGs for JY vs ZY, and 689 (381 up-regulated, 308 down-regulated) DEGs for JY vs BJ, and 19 DEGs were co-expressed by three comparative groups. GO functional analysis showed that DEGs had significant differences in the pathways of stimulus response, components of membranes, and transmembrane transporter protein activity. KEGG enrichment analysis indicated that the DEGs were more active in pathways such as phenylpropanoid biosynthesis, phytohormone signaling, and protein processing in the endoplasmic reticulum. Further analysis of the DEGs in the mutated leaf expansion, curled leaves of the same plant, and normal curled leaves of other plants, demonstrated that the DEGs were concentrated in the phenylpropanoid biosynthesis pathways, starch and sucrose metabolism, and plant hormone signal transduction, which may be the key factors causing leaf expansion mutants. There were 9 main KEGG metabolic pathways and 9 important differentially expressed genes involved in leaf expansion and leaf curling. Microscopic analysis of different types of leaf revealed an increase in the number of epidermal cell layers, a loosening of sponge tissue structure, and a decrease in vascular bundle cells in mutated expanded cassava. The results of this study provide theoretical guidance for further understanding the molecular mechanisms underlying the abnormal development of cassava leaf, as well as genetic resources and improvement strategies for cassava genetic improvement and germplasm innovation.

Key words: cassava, transcriptome analysis, mutation, differential gene expression

Fig. 1

Phenotypic characteristics of curled-leaf cassava mutant strain (A) and normal curled-leaf cassava (B) BJ: the curled leaf of mutant strain; ZY: the expanded leaf of mutant strain; JY: leaf of normal curled-leaf cassava."

Table 1

Comparison of agronomic traits of BJ, ZY, and JY"

名称
Name
株高
Plant height (cm)
主茎粗
Stem diameter (mm)
地上鲜重
Aboveground fresh weight (kg)
鲜薯个数
Number of fresh cassava
单株产量
Yield per plant (kg)
鲜薯内皮/外皮/薯肉颜色
Cassava inner skin color/exterior skin color/flesh color
BJ 220.80±10.71 a 24.18±1.30 a 1.70±0.55 a 10.0±2.36 a 1.54±0.69 a 白色/红褐色/白色
White/reddish brown/white
ZY 278.60±16.57 b 28.16±4.20 a 2.46±0.71 a 12.2±3.27 a 2.66±0.73 b 白色/红褐色/白色
White/reddish brown/white
JY 257.40±11.85 c 24.06±4.96 a 1.92±0.61 a 10.0±3.32 a 2.02±0.31 ab 白色/红褐色/白色
White/reddish brown/white

Table 2

Quality analysis of transcriptome sequencing"

样品名
Sample name
原始Reads总数
Total number of original Reads
碱基总数
Base total
过滤后Reads总数
Total number of Reads after filtering (%)
比对上参考基因组的Reads总数
Total number of Reads for the
reference genome on the comparison (%)
Phred>20的百分比Q20 (%) Phred>30的百分比Q30 (%)
BJ1 48,631,342 7,294,701,300 42,424,940 (87.24%) 39,417,519 (92.91%) 97.98 94.44
BJ2 48,954,268 7,343,140,200 43,028,526 (87.9%) 40,024,972 (93.02%) 97.88 94.15
BJ3 46,016,900 6,902,535,000 40,829,784 (88.73%) 37,826,541 (92.64%) 98.03 94.51
JY1 56,255,460 8,438,319,000 49,247,380 (87.54%) 46,094,300 (93.60%) 98.01 94.48
JY2 48,692,404 7,303,860,600 43,869,232 (90.09%) 40,496,556 (92.31%) 97.96 94.37
JY3 53,605,768 8,040,865,200 47,008,274 (87.69%) 43,423,863 (92.37%) 98.01 94.49
ZY1 55,114,316 8,267,147,400 48,942,778 (88.80%) 45,888,649 (93.76%) 97.96 94.37
ZY2 48,301,582 7,245,237,300 41,856,280 (86.66%) 39,058,323 (93.32%) 97.92 94.30
ZY3 50,036,022 7,505,403,300 44,199,486 (88.34%) 40,576,149 (91.80%) 97.90 94.26

Fig. 2

Differential gene expression in pairwise comparison of different types of cassava leaf BJ: the curled leaf of mutant strain; ZY: the expanded leaf of mutant strain; JY: leaf of normal curled-leaf cassava."

Fig. 3

Top 10 items of GO enrichment of DEGs in cassava leaves a: GO entries enriched in ZY vs BJ DEGs; b: GO entries enriched in JY vs ZY DEGs; c: GO entries enriched in JY vs BJ DEGs. The vertical axis represents the number of genes, and the horizontal axis represents GO entries."

Fig. 4

Top 20 KEGG enrichment pathways of DEGs in casava leaves a: the KEGG pathway enriched by ZY vs BJ DEGs; b: the KEGG pathway enriched by JY vs ZY DEGs; c: the KEGG pathway enriched by JY vs BJ DEGs. The vertical axis represents the enriched KEGG pathway, the horizontal axis represents the ratio of enriched genes, and the point size represents the number of enriched genes in the pathway."

Table 3

Analysis of codon mutation types"

突变类型
Mutation type
ZY突变
基因数量
Number of ZY mutated genes
占ZY突变
基因数量
Percentage of the number of ZY
mutated genes (%)
BJ突变
基因数量
Number of BJ mutated genes
占BJ突变
基因数量
Percentage of the number of BJ
mutated genes (%)
JY突变
基因数量
Number of JY mutated genes
占JY突变
基因数量
Percentage of the number of JY
mutated genes (%)
同义单核苷酸突变Synonymous SNV 43,071 51.32 43,602 51.26 44,439 50.89
非同义单核苷酸突变
Non synonymous SNV
39,678 47.28 40,291 47.37 41,641 47.69
非移码替换
Non frameshift substitution
591 0.70 587 0.69 608 0.70
未知类型
Unknown
194 0.23 187 0.22 233 0.27
移码替换
Frameshift substitution
170 0.20 172 0.20 182 0.21
终止密码子增加
Stopgain
167 0.20 164 0.19 171 0.20

Table 4

Annotation on the main KEGG metabolic pathways"

路径ID
Pathway ID
条目
Term
数量Number
ZY vs BJ JY vs ZY
mesc00360 苯丙氨酸代谢 Phenylalanine metabolism 2 6
mesc00460 氰胺酸代谢 Cyanoamino acid metabolism 3 8
mesc00480 谷胱甘肽代谢 Glutathione metabolism 3 7
mesc00500 淀粉和蔗糖代谢 Starch and sucrose metabolism 7 12
mesc00592 α-亚麻酸代谢 Alpha-Linolenic acid metabolism 5 7
mesc00904 二萜类化合物的生物合成 Diterpenoid biosynthesis 2 5
mesc00940 苯丙素类化合物的生物合成 Phenylpropanoid biosynthesis 9 22
mesc00941 类黄酮的生物合成 Flavonoid biosynthesis 2 6
mesc04075 植物激素信号转导 Plant hormone signal transduction 5 12

Table 5

Significant differential gene expression analysis"

基因ID
基因长度
Gene length
上调出现频数
Frequency
of gene up-regulation
下调出现频数Frequency
of gene
downregulation
描述
Description
条目
Term
LOC110625143 1706 3 3 β-葡萄糖苷酶12 [木薯]
XP_021626382.1 beta-glucosidase 12-like [Manihot esculenta]
苯丙素类化合物的生物合成
Phenylpropanoid
biosynthesis
α-亚麻酸代谢
Starch and sucrose metabolism
谷胱甘肽代谢
Cyanoamino acid
metabolism
LOC110619850 1880 3 3 木薯亚麻苦甙水解酶
AAB22162.1 linamarase [Manihot esculenta]
LOC122724051 1849 3 3 木薯亚麻苦甙水解酶
AAB22162.1 linamarase [Manihot esculenta]
LOC110603741 1879 3 0 β-葡萄糖苷酶45 [木薯]
XP_021597319.1 beta-glucosidase 45
[Manihot esculenta]
LOC110618460 1829 3 0 β-葡萄糖苷酶24-样异构体 X2 [木薯]
XP_021617285.1 beta-glucosidase 24-like isoform X2 [Manihot esculenta]
LOC110618773 1768 3 0 β-葡萄糖苷酶24-样异构体 X1 [木薯]
XP_021617701.1 beta-glucosidase 24-like isoform X1 [Manihot esculenta]
LOC110615840 2048 0 3 β-葡萄糖苷酶11 [木薯]
XP_021613689.1 beta-glucosidase 11-like [Manihot esculenta]
LOC110625014 2363 2 2 PLA:苯丙氨酸氨解酶G4 [木薯]
PLA: phenylalanine ammonia-lyase G4-like [Manihot esculenta]
苯丙氨酸代谢
Phenylalanine
metabolism
类黄酮的生物合成
Flavonoid biosynthesis
LOC110618581 1657 2 2 肌酸合成酶[木薯]
XP_021617435.1 vinorine synthase-like [Manihot esculenta]

Fig. 5

Observation of different types of cassava leaf slices BJ: the curled leaf of mutant strain; ZY: the expanded leaf of mutant strain; JY: leaf of normal curled-leaf cassava; a-c: leaf blade transverse; d-f: main vein transverse; g-i: main vein transverse magnification."

[1] Ano C U, Ochwo-Ssemakula M, Ibanda A, Ozimati A, Gibson P, Onyeka J, Njoku D, Egesi C, Kawuki R S. Cassava brown streak disease response and association with agronomic traits in elite Nigerian cassava cultivars. Front Plant Sci, 2021, 12: 720532.
[2] Ceballos H, Hershey C, Iglesias C, Zhang X F. Fifty years of a public cassava breeding program: evolution of breeding objectives, methods, and decision-making processes. Theor Appl Genet, 2021, 134: 2335-2353.
doi: 10.1007/s00122-021-03852-9 pmid: 34086085
[3] 刘翠娟, 郑刚辉, 梁海波. 不同种植方式对华南205木薯产量的影响. 现代农业科技, 2016, (14): 15-16.
Liu C J, Zheng G H, Liang H B. Effects of different planting methods on the yield of cassava South China 205. Modern Agric Sci Technol, 2016, (14): 15-16 (in Chinese).
[4] 刘月娥, 徐田军, 蔡万涛, 吕天放, 张勇, 薛洪贺, 王荣焕, 赵久然. 我国玉米超高产研究现状与展望. 生物技术通报, 2023, 39(8): 52-61.
doi: 10.13560/j.cnki.biotech.bull.1985.2023-0555
Liu Y E, Xu T J, Cai W T, Lyu T F, Zhang Y, Xue H H, Wang R H, Zhao J R. Current status and prospects of maize super high yield research in China. Biotechnol Bull, 2023, 39(8): 52-61 (in Chinese with English abstract).
[5] Jathar V, Saini K, Chauhan A, Rani R, Ichihashi Y, Ranjan A. Spatial control of cell division by GA-OSGRF7/8 module in a leaf explains the leaf length variation between cultivated and wild rice. New Phytol, 2022, 234: 867-883.
[6] Zhang T, Li C, Li D, Liu Y, Yang X. Roles of YABBY transcription factors in the modulation of morphogenesis, development, and phytohormone and stress responses in plants. J Plant Res, 2020, 133: 751-763.
doi: 10.1007/s10265-020-01227-7 pmid: 33033876
[7] Wang H F, Kong F J, Zhou C. From genes to networks: the genetic control of leaf development. J Integr Plant Biol, 2021, 63: 1181-1196.
doi: 10.1111/jipb.13084
[8] 孙虎声. 卷叶型和展叶型水稻的生理、生长性状的对比研究. 南京信息工程大学硕士学位论文, 江苏南京, 2006.
Sun H S. Comparison of Rice Physiology and Growth between Curled-Leaf and Uncurled-Leaf Varieties. MS Thesis of Nanjing University of Information Science & Technology, Nanjing, Jiangsu, China, 2006 (in Chinese with English abstract).
[9] 黄桂荣. 冬小麦品种间水分利用效率差异及其关键影响因素分析. 中国农业科学院博士学位论文, 北京, 2021.
Huang G R. Analysis of Differences in Water Use Efficiency among Winter Wheat Cultivars and Key Influencing Factors. PhD Dissertation of Chinese Academy of Agricultural Sciences, Beijing, China, 2021 (in Chinese with English abstract).
[10] Hayakawa Y, Tachikawa M, Mochizuki A. Flat leaf formation realized by cell-division control and mutual recessive gene regulation. J Theor Biol, 2016, 404: 206-214.
doi: S0022-5193(16)30139-4 pmid: 27287339
[11] 贾越. 生菜叶卷曲控制基因的遗传克隆与分子机制. 华中农业大学博士学位论文, 湖北武汉, 2022.
Jia Y. Genetic and Molecular Mechanisms Underlying Lettuce Wavy Leaves. PhD Dissertation of Huazhong Agricultural University, Wuhan, Hubei, China, 2022 (in Chinese with English abstract).
[12] Nath U, Crawford B C, Carpenter R, Coen E. Genetic control of surface curvature. Science, 2003, 299: 1404-1407.
doi: 10.1126/science.1079354 pmid: 12610308
[13] Palatnik J F, Allen E, Wu X L, Schommer C, Schwab R, Carrington J C, Weigel D. Control of leaf morphogenesis by microRNAs. Nature, 2003, 425: 257-263.
[14] Alvarez J P, Goldshmidt A, Efroni I, Bowman J L, Eshed Y. The NGATHA distal organ development genes are essential for style specification in Arabidopsis. Plant Cell, 2009, 21: 1373-1393.
doi: 10.1105/tpc.109.065482 pmid: 19435933
[15] Chen N, Yu B, Dong R, Lei J J, Chen C M, Cao B H. RNA-Seq-derived identification of differential transcription in the eggplant (Solanum melongena) following inoculation with bacterial wilt. Gene, 2018, 644: 137-147.
doi: S0378-1119(17)30936-8 pmid: 29104166
[16] 杨亚杰, 李昱樱, 申状状, 陈天, 荣二花, 吴玉香. 草棉不同倍性材料叶片转录组差异表达分析. 作物学报, 2022, 48: 2733-2748.
doi: 10.3724/SP.J.1006.2022.14168
Yang Y J, Li Y Y, Shen Z Z, Chen T, Rong E H, Wu Y X. Differential expressed analysis by transcriptome sequencing in leaves of different ploidy Gossypium herbaceum. Acta Agron Sin, 2022, 48: 2733-2748 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2022.14168
[17] 刘敏, 黄炜忠, 何孟璐, 梅瑜, 王继华. 大青转录组测序及生物信息学分析. 广州中医药大学学报, 2022, 39: 177-183.
Liu M, Huang W Z, He M L, Mei Y, Wang J H. Transcriptome sequencing and bioinformatic analysis of Clerodendron cyrtophyllum Turez. J Guangzhou Univ Tradit Chin Med, 2022, 39(1): 177-183 (in Chinese with English abstract).
[18] 韦丽君, 俞奔驰, 宋恩亮, 郑华, 卢赛清, 付海天. 基于转录组测序的木薯性别决定相关基因挖掘. 南方农业学报, 2020, 51: 1785-1796.
Wei L J, Yu B C, Song E L, Zheng H, Lu S Q, Fu H T. Gene mining for sex determination in cassava (Manihot esculenta Crantz) based on transcriptome sequencing. J South Agric, 2020, 51: 1785-1796 (in Chinese with English abstract).
[19] 张雨晨, 王国镇, 洪启浩, 刘紫佳, 郑雨晨, 唐铎, 周志祥. 基于转录组测序探究PM 2.5引起THP-1细胞发生炎性反应的关键因子. 环境科学学报, 2023, 43: 454-463.
Zhang Y C, Wang G Z, Hong Q H, Liu Z J, Zheng Y C, Tang D, Zhou Z X. Transcriptome sequencing to explore key factors in the inflammatory response of PM2.5 induced THP-1 cells. Acta Sci Circumstant, 2023, 43: 454-463 (in Chinese with English abstract).
[20] 刘鹏, 毕江涛, 李文兵, 惠治兵, 肖国举, 孙权, 王静. 生物有机肥对盐碱地水稻叶片的影响转录组分析. 生态学报, 2022, 42: 2342-2356.
Liu P, Bi J T, Li W B, Hui Z B, Xiao G J, Sun Q, Wang J. Transcriptome analysis of the effect of bio-organic fertilizer on rice leaves. Acta Ecol Sin, 2022, 42: 2342-2356 (in Chinese with English abstract).
[21] 范小锋, 古佳玉, 赵明辉, 赵林姝, 郭会君, 熊宏春, 谢永盾, 赵世荣, 丁玉萍, 乔文臣, 徐延浩, 刘录祥. 小麦直立叶突变体MtHS29的转录组分析. 植物遗传资源学报, 2022, 23: 871-880.
doi: 10.13430/j.cnki.jpgr.20211115001
Fan X F, Gu J Y, Zhao M H, Zhao L S, Guo H J, Xiong H C, Xie Y D, Zhao S R, Ding Y P, Qiao W C, Xu Y H, Liu L X. Transcriptome analysis of wheat erect leaf mutant MtHS29. J Plant Genet Resour, 2022, 23: 871-880 (in Chinese with English abstract).
[22] 苏湘杰, 岳晓楠, 卢银, 解紫薇, 王彦华, 赵建军, 刘梦洋. 大白菜叶色深绿突变dg的转录组差异表达调控分析. 河北农业大学学报, 2023, 46(4): 22-32.
Su X J, Yue X N, Lu Y, Xie Z W, Wang Y H, Zhao J J, Liu M Y. Differential expression regulation analysis of dark-green leaf mutant dg in Chinese cabbage. J Hebei Agric Univ, 2023, 46(4): 22-32 (in Chinese with English abstract).
[23] 吴连成, 李沛, 田磊, 王顺喜, 李明娜, 王宇宇, 王赛, 陈彦惠. 阻断授粉诱导玉米叶片提前衰老的转录组分析. 作物学报, 2018, 44: 1661-1672.
doi: 10.3724/SP.J.1006.2018.01661
Wu L C, Li P, Tian L, Wang S X, Li M N, Wang Y Y, Wang S, Chen Y H. Transcriptome analysis of premature senescence induced by pollination-prevention in maize. Acta Agron Sin, 2018, 44: 1661-1672 (in Chinese with English abstract).
[24] Luo X Q, An F F, Xue J J, Zhu W L, Wei Z W, Ou W J, Li K M, Chen S B, Cai J. Integrative analysis of metabolome and transcriptome reveals the mechanism of color formation in cassava (Manihot esculenta Crantz) leaves. Front Plant Sci, 2023, 14: 1181257.
[25] Ding Z H, Zhang Y, Xiao Y, Liu F F, Wang M H, Zhu X G, Liu P, Sun Q, Wang W Q, Peng M, Brutnell T, Li P H. Transcriptome response of cassava leaves under natural shade. Sci Rep, 2016, 6: 31673.
doi: 10.1038/srep31673 pmid: 27539510
[26] 韦丽君, 俞奔驰, 吕平, 檀小辉, 雷开文, 马崇熙, 卢赛清, 唐玉娟. 木薯叶芽和花芽的转录组差异分析. 分子植物育种, 2020, 18: 2108-2117.
Wei L J, Yu B C, Lyu P, Tan X H, Lei K W, Ma C X, Lu S Q, Tang Y J. Transcriptome difference analysis of cassava (Manihot esculenta) leaf bud and flower bud. Mol Plant Breed, 2020, 18: 2108-2117 (in Chinese with English abstract).
[27] 张书敏, 杨尚君, 刘红云, 刘征. 微波快速石蜡切片法观察谷子幼嫩叶片组织技术的优化. 基因组学与应用生物学, 2015, 34: 669-673.
Zhang S M, Yang S J, Liu H Y, Liu Z. Optimization of microwave paraffin techniques for clear observation of cell structures of millet (Setaria italica) young leaves. Genomics Appl Biol, 2015, 34: 669-673 (in Chinese with English abstract).
[28] 张贤, 王建红, 喻曼, 曹凯, 庄俐, 徐昌旭, 曹卫东. 基于RNA-seq的能源植物芒转录组分析. 生物工程学报, 2015, 31: 1437-1448.
Zhang X, Wang J H, Yu M, Cao K, Zhuang L, Xu C X, Cao W D. Transcriptome analysis of bioenergy plant Miscanthus sinensis Anderss. by RNA-Seq. Chin J Biotechnol, 2015, 31: 1437-1448 (in Chinese with English abstract).
[29] 翟莹. 不同光质和基质对韭菜生长及营养品质影响规律研究. 东北农业大学硕士学位论文, 黑龙江哈尔滨, 2018.
Zhai Y. Effect of Different Light Quality and Substrate on the Growth and Nutritional Quality of Chinese Chive. MS Thesis of Northeast Agricultural University, Harbin, Heilongjiang, China, 2018 (in Chinese with English abstract).
[30] 韦云飞, 白璐嘉, 宋晓叶, 肖晓荣, 马启林. 基于水稻幼穗盐胁迫响应转录组的MYB基因分析及耐盐基因挖掘. 分子植物育种, 2023, 21: 360-369.
Wei Y F, Bai L J, Song X Y, Xiao X R, Ma Q L. Transcriptome analysis of MYB based on salt stress response in young rice panicles and mining of salt tolerance genes. Mol Plant Breed, 2023, 21: 360-369 (in Chinese with English abstract).
[31] Jia Y, Yu P, Shao W, An G H, Chen J J, Yu C C, Kuang H H, Up-regulation of LsKN1 promotes cytokinin and suppresses gibberellin biosynthesis to generate wavy leaves in lettuce. J Exp Bot, 2022, 73: 6615-6629.
[32] 李祥燕. 白掌叶片生长规律研究及转录组测序分析. 华南农业大学硕士学位论文, 广东广州, 2020.
Li X Y. Research on Growth Rhythm and Transcriptome Analysis of Leaves of Spathiphyllum. MS Thesis of South China Agricultural University, Guangzhou, Guangdong, China, 2020 (in Chinese with English abstract).
[33] Hupp S, Rosenkranz M, Bonfig K, Pandey C, Roitsch T. Noninvasive phenotyping of plant-pathogen interaction: consecutive in situ imaging of fluorescing pseudomonas syringae, plant phenolic fluorescence, and chlorophyll fluorescence in Arabidopsis leaves. Front Plant Sci, 2019, 10: 1239.
[34] de Wit P J G M. How plants recognize pathogens and defend themselves. Cell Mol Life Sci, 2007, 64: 2726-2732.
pmid: 17876517
[35] Zipfel C. Pattern-recognition receptors in plant innate immunity. Curr Opin Immunol, 2008, 20: 10-16.
doi: 10.1016/j.coi.2007.11.003 pmid: 18206360
[36] Cal A J, Sanciangco M, Rebolledo M C, Luquet D, Torres R O, McNally K L, Henry A. Leaf morphology, rather than plant water status, underlies genetic variation of rice leaf rolling under drought. Plant Cell Environ, 2019, 42: 1532-1544.
[37] 范玉斌, 梁婉琪. 水稻叶极性发育分子机制研究进展. 上海交通大学学报(农业科学版), 2014, 32(1): 16-22.
Fan Y B, Liang W Q. Research progress on the mechanism of leaf polarity establishment in rice. J Shanghai Jiaotong Univ (Agric Sci), 2014, 32(1): 16-22 (in Chinese with English abstract).
[38] 王灿, 王艳芳, 张应华, 许俊强. 泛基因组学在植物中的应用研究进展. 湖南生态科学学报, 2020, 7(2): 51-58.
Wang C, Wang Y F, Zhang Y H, Xu J Q. Research progress on the applications of pan-genomics in plants. J Hunan Ecol Sci, 2020, 7(2): 51-58 (in Chinese with English abstract).
[39] 王雅利. 谷子类胡萝卜素含量合成的相关性分析及其SiERF-ANT基因的表达模式研究. 山西师范大学硕士学位论文, 山西太原, 2022.
Wang Y L. Correlation Analysis of Carotenoid Content Synthesis in Millet and Its Expression Pattern of SiERF-ANT Gene. MS Thesis of Shanxi Normal University, Taiyuan, Shanxi, China, 2022 (in Chinese with English abstract).
[40] 秦智. 基于转录组测序和QTL定位的草莓香型葡萄香气相关基因挖掘. 沈阳农业大学硕士学位论文, 辽宁沈阳, 2021.
Qin Z. Aroma-related Gene Mining in Labrusca-flavored Grapes Based on Transcriptome Sequencing and QTL Mapping. MS Thesis of Shenyang Agricultural University, Shenyang, Liaoning, China, 2021 (in Chinese with English abstract).
[41] 赵芳明, 魏霞, 马玲, 桑贤春, 王楠, 张长伟, 凌英华, 何光华. 水稻生育后期卷叶突变体lrl1的鉴定及基因定位和候选基因预测. 科学通报, 2015, 60: 3133-3143.
Zhao F M, Wei X, Ma L, Sang X C, Wang N, Zhang C W, Ling Y H, He G H. Identification, gene mapping and candidate gene prediction of a late-stage rolled leaf mutant lrl1in rice (Oryza sativa L.). Chin Sci Bull, 2015, 60: 3133-3143 (in Chinese with English abstract).
[42] Hammerschmidt R. PHYTOALEXINS: what have we learned after 60 years? Annu Rev Phytopathol, 1999, 37: 285-306.
pmid: 11701825
[43] Baslam M, Toshiaki M, Kuni S, Takuji O. Recent advances in carbon and nitrogen metabolism in C3 plants. Int J Mol Sci, 2021, 22: 318.
[44] 李良良, 李燕, 丁贵杰. 高温和干旱对木本植物碳代谢影响的研究进展. 山地农业生物学报, 2022, 41(6): 30-36.
Li L L, Li Y, Ding G J. Research progress on effects of high temperature and drought on carbon metabolism in woody plants. J Mount Agric Biol, 2022, 41(6): 30-36 (in Chinese with English abstract).
[45] Chandel S S, Sharma K D. Down-regulation of carbohydrate metabolic pathway genes lowers sucrose and starch content in chickpea leaves under high temperature stress. Natl Acad Sci Lett, 2023, 46: 445-449.
[46] Yin X, Yang D N, Liu Y M, Yang S H, Zhang R, Sun X L, Liu H X, Duan Y W, Yang Y Q, Yang Y P. Sophora moorcroftiana genome analysis suggests association between sucrose metabolism and drought adaptation. Plant Physiol, 2023, 19: 844-848.
[47] Gómez-Vásquez R, Day R, Buschmann H, Randles S, Beeching J R, Cooper R M. Phenylpropanoids, phenylalanine ammonia lyase and peroxidases in elicitor-challenged cassava (Manihot esculenta) suspension cells and leaves. Ann Bot, 2024, 19: 87-97.
[48] Kavil S, Otti G, Bouvaine S, Armitage A, Maruthi M N. PAL1 gene of the phenylpropanoid pathway increases resistance to the cassava brown streak virus in cassava. Virol J, 2021, 18: 184.
doi: 10.1186/s12985-021-01649-2 pmid: 34503522
[49] Fu L L, Ding Z H, Tie W W, Yan Y, Hu W, Zhang J M. Large- scale RNA-seq analysis reveals new insights into the key genes and regulatory networks of anthocyanin biosynthesis during development and stress in cassava. Ind Crops Prod, 2021, 169: 113627.
[50] 陈会鲜, 梁振华, 黄珍玲, 韦婉羚, 张秀芬, 杨海霞, 李锐, 何文, 李天元, 兰秀, 阮丽霞, 蔡兆琴, 农君鑫. 木薯花性别分化关键时期的转录组分析及雌花分化相关候选基因的筛选. 作物学报, 2023, 49: 2863-2875.
Chen H X, Liang Z H, Huang Z L, Wei W L, Zhang X F, Yang H X, Li R, He W, Li T Y, Lan X, Ruan L X, Cai Z Q, Nong J X. Transcriptomic profile of key stages of sex differentiation in cassava flowers and discovery of candidate genes related to female flower differentiation. Acta Agron Sin, 2023, 49: 2863-2875 (in Chinese with English abstract).
[51] 刘嘉伟. 高加索三叶草根瘤菌多样性及结瘤固氮机制研究. 内蒙古农业大学硕士学位论文, 内蒙古呼和浩特, 2022.
Liu J W. Rhizobium Diversity and Nodulation and Nitrogen Fixation Mechanism in Trifolium ambiguum. MS Thesis of Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China, 2022 (in Chinese with English abstract).
[52] Qi J Y, Wu B B, Feng S L, Lu S Q, Guan C M, Zhang X, Qiu D L, Hu Y C, Zhou Y H, Li C Y, Long M, Jiao Y L. Mechanical regulation of organ asymmetry in leaves. Nat Plants, 2017, 3: 724-733.
doi: 10.1038/s41477-017-0008-6 pmid: 29150691
[53] Guan C M, Wu B B, Yu T, Wang Q Q, Krogan N T, Liu X G, Jiao Y L. Spatial auxin signaling controls leaf flattening in Arabidopsis. Curr Biol, 2017, 27: 2940-2950.
[54] Xiong Y Y, Wu B B, Du F, Guo X L, Tian C H, Hu J R, Lü S Q, Long M, Zhang L, Wang Y, Jiao Y L. A crosstalk between auxin and brassinosteroid regulates leaf shape by modulating growth anisotropy. Mol Plant, 2021, 14: 949-962.
doi: 10.1016/j.molp.2021.03.011 pmid: 33722761
[55] Yu X L, Guo X, Zhao P J, Li S X, Zou L P, Li W B, Xu Z Y, Peng M, Ruan M B. A homeodomain-leucine zipper I transcription factor, MeHDZ14, regulates internode elongation and leaf rolling in cassava (Manihot esculenta Crantz). Crop J, 2023, 11: 1419-1430.
[56] 赵亚林, 闫青地, 冯佳佳, 肖锋, 杨卓, 王凤茹, 董金泉. 石蜡切片方法的改良. 安徽农业科学, 2017, 45(32): 6-8.
Zhao Y L, Yan Q D, Feng J J, Xiao F, Yang Z, Wang F R, Dong J Q. Method improvement of paraffin section. J Anhui Agric Sci, 2017, 45(32): 6-8 (in Chinese with English abstract).
[57] 张俊环, 张美玲, 杨丽, 姜凤超, 于文剑, 王玉柱, 孙浩元. 基于叶片显微结构综合评价杏不同品种(系)的抗旱性. 果树学报, 2023, 40: 2050-2060.
Zhang J H, Zhang M L, Yang L, Jiang F C, Yu W J, Wang Y Z, Sun H Y. Comprehensive evaluation of drought resistance of different apricot cultivars (lines) based on leaf microstructure. J Fruit Sci, 2023, 40: 2050-2060 (in Chinese with English abstract).
[58] 王兆成, 王磊, 周梦钰, 何的明, 毕慧慧, 葛翔, 沈军城, 傅松玲. 3个薄壳山核桃品种叶片结构特征和枝条导水功能比较. 植物资源与环境学报, 2021, 30(3): 38-45.
Wang Z C, Wang L, Zhou M Y, He D M, Bi H H, Ge X, Shen J C, Fu S L. Comparison on leaf structure characteristics and branch hydraulic function of three Carya illinoinensis cultivars. J Plant Resour Environ, 2021, 30(3): 38-45 (in Chinese with English abstract).
[59] 丁祥, 钟海霞, 王西平, 宋军阳, 吴久赟, 刘国宏, 张付春, 胡鑫, 潘明启, 伍新宇. 新疆葡萄砧木叶片解剖结构观察及抗旱性评价. 分子植物育种, 2023, 22: 7318-7324.
Ding X, Zhong H X, Wang X P, Song J Y, Wu J Y, Liu G H, Zhang F C, Hu X, Pan M Q, Wu X Y. Observation on leaf anatomical structure and evaluation of drought resistance of grape rootstocks in Xinjiang. Mol Plant Breed, 2023, 22: 7318-7324 (in Chinese with English abstract).
[60] 黄州, 杜志喧, 王建平, 李剑镔, 鲍建中, 任伟芳, 傅军如. 水稻卷叶性状与分子调控机制研究进展. 分子植物育种, 2021, 19: 7604-7611.
Huang Z, Du Z X, Wang J P, Li J B, Bao J Z, Ren W F, Fu J R. Research progress on rolled leaf traits and molecular regulation mechanism in rice (Oryza sativa). Mol Plant Breed, 2021, 19: 7604-7611 (in Chinese with English abstract).
[61] 秦茜, 朱俊杰, 关心怡, 于天卉, 曹坤芳. 七个甘蔗品种叶片解剖结构特征与光合能力和耐旱性的关联. 植物生理学报, 2017, 53: 705-712.
Qin X, Zhu J J, Guan X Y, Yu T H, Cao K F. The correlations of leaf anatomical characteristics with photosynthetic capacity and drought tolerance in seven sugarcane cultivars. Plant Physiol J, 2017, 53: 705-712 (in Chinese with English abstract).
[62] 马胜, 齐恩芳, 文国宏, 李掌, 曲亚英, 郑永伟, 白永杰, 贾小霞. 基于叶片显微结构综合评价马铃薯不同品种的抗旱性. 中国马铃薯, 2021, 35: 500-506.
Ma S, Qi E F, Wen G H, Li Z, Qu Y Y, Zheng Y W, Bai Y J, Jia X X. Leaf microstructure comprehensive evaluation of drought resistance of different potato varieties based on. Chin Potato J, 2021, 35: 500-506 (in Chinese with English abstract).
[63] 许慧慧, 刘肖娟, 王孟珂, 毕泉鑫, 王利兵, 于海燕. 文冠果不同种质资源的叶片解剖结构分析及抗旱性评价. 浙江农林大学学报, 2023, 40: 348-355.
Xu H H, Liu X J, Wang M K, Bi Q X, Wang L B, Yu H Y. Leaf anatomical structure and evaluation of drought resistance of different germplasm resources of Xanthoceras sorbifolium. J Zhejiang A&F Univ, 2023, 40: 348-355 (in Chinese with English abstract).
[64] 朱婧. 不同水分条件下6种园林灌木的生理反应研究. 河北农业大学硕士学位论文, 河北保定, 2022.
Zhu J. Study on Physiological Responses under Different Water Conditions of Six Kinds Garden Shrubs. MS Thesis of Hebei Agricultural University, Baoding, Hebei, China, 2022 (in Chinese with English abstract).
[1] YE Liang, ZHU Ye-Lin, PEI Lin-Jing, ZHANG Si-Ying, ZUO Xue-Qian, LI Zheng-Zhen, LIU Fang, TAN Jing. Screening candidate resistance genes to ear rot caused by Fusarium verticillioides in maize by combined GWAS and transcriptome analysis [J]. Acta Agronomica Sinica, 2024, 50(9): 2279-2296.
[2] WANG Jia-Xiang, YU Xue-Ting, LI Meng-Tao, MAI Wei-Tao, CHEN Xin, WANG Wen-Quan. Preliminary study on the regulation of cassava plant type by MeLAZY1c gene [J]. Acta Agronomica Sinica, 2024, 50(6): 1514-1524.
[3] CAO Song, YAO Min, REN Rui, JIA Yuan, XIANG Xing-Ru, LI Wen, HE Xin, LIU Zhong-Song, GUAN Chun-Yun, QIAN Lun-Wen, XIONG Xing-Hua. A combination of genome-wide association and transcriptome analysis reveal candidate genes affecting seed oil accumulation in Brassica napus [J]. Acta Agronomica Sinica, 2024, 50(5): 1136-1146.
[4] ZHANG Hui, ZHANG Xin-Yu, YUAN Xu, CHEN Wei-Da, YANG Ting. Transcriptome analysis of tobacco in response to cadmium stress [J]. Acta Agronomica Sinica, 2024, 50(4): 944-956.
[5] YU Xue-Ting, LI Ke, LI Meng-Tao, BAO Ru-Xue, CHEN Xin, WANG Wen-Quan. Interaction identification between protein kinase MeSnRK2.12 and transcription factor MebHLH1 and its relative expression level in cassava [J]. Acta Agronomica Sinica, 2023, 49(9): 2594-2600.
[6] XU Zi-Yin, YU Xiao-Ling, ZOU Liang-Ping, ZHAO Ping-Juan, LI Wen-Bin, GENG Meng-Ting, RUAN Meng-Bin. Expression pattern analysis and interaction protein screening of cassava MYB transcription factor MeMYB60 [J]. Acta Agronomica Sinica, 2023, 49(4): 955-965.
[7] CHEN Hui-Xian, LIANG Zhen-Hua, HUANG Zhen-Ling, WEI Wan-Ling, ZHANG Xiu-Fen, YANG Hai-Xia, LI Heng-Rui, HE Wen, LI Tian-Yuan, LAN Xiu, RUAN Li-Xia, CAI Zhao-Qin, NONG Jun-Xin. Transcriptomic profile of key stages of sex differentiation in cassava flowers and discovery of candidate genes related to female flower differentiation [J]. Acta Agronomica Sinica, 2023, 49(12): 3250-3260.
[8] DING Hong, ZHANG Zhi-Meng, XU Yang, ZHANG Guan-Chu, GUO Qing, QIN Fei-Fei, DAI Liang-Xiang. Physiological and transcriptional regulation mechanisms of nitrogen alleviating drought stress in peanut [J]. Acta Agronomica Sinica, 2023, 49(1): 225-238.
[9] LI Xiang-Chen, SHEN Xu, ZHOU Xin-Cheng, CHEN Xin, WANG Hai-Yan, WANG Wen-Quan. Identification and relative expression levels of PEPC gene family members in cassava [J]. Acta Agronomica Sinica, 2022, 48(12): 3108-3119.
[10] LI Ling-Hong, ZHANG Zhe, CHEN Yong-Ming, YOU Ming-Shan, NI Zhong-Fu, XING Jie-Wen. Transcriptome profiling of glossy1 mutant with glossy glume in common wheat (Triticum aestivum L.) [J]. Acta Agronomica Sinica, 2022, 48(1): 48-62.
[11] SUN Qian, ZOU Mei-Ling, ZHANG Chen-Ji, JIANG Si-Rong, Eder Jorge de Oliveira, ZHANG Sheng-Kui, XIA Zhi-Qiang, WANG Wen-Quan, LI You-Zhi. Genetic diversity and population structure analysis by SNP and InDel markers of cassava in Brazil [J]. Acta Agronomica Sinica, 2021, 47(1): 42-49.
[12] FENG Tao,TAN Hui,GUAN Mei,GUAN Chun-Yun. Mechanism of BnaBZR1 and BnaPIF4 regulating photosynthetic efficiency in oilseed rape (Brassica napus L.) under poor light [J]. Acta Agronomica Sinica, 2020, 46(8): 1146-1156.
[13] PAN Li-Juan,CHEN Na,Ming-CHEN Na,WANG Tong,WANG Mian,CHEN Jing,YANG Zhen,WAN Yong-Shan,YU Shan-Lin,CHI Xiao-Yuan,LIU Feng-Zhen. Transcriptome analysis of the peanut transgenic offspring with depressing AhPEPC1 gene [J]. Acta Agronomica Sinica, 2019, 45(7): 993-1001.
[14] Kai CHEN,Guo-Liang SUN,Gao-Yuan SONG,Ai-Li LI,Chuan-Xiao XIE,Long MAO,Shuai-Feng GENG. Establishment of a CRISPR/Cas9-VQR gene editing system [J]. Acta Agronomica Sinica, 2019, 45(6): 848-855.
[15] DENG Chang-Zhe,YAO Hui,AN Fei-Fei,LI Kai-Mian,CHEN Song-Bi. Chromoplast Isolation and Its Proteomic Analysis from Cassava Storage Roots [J]. Acta Agron Sin, 2017, 43(09): 1290-1299.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[2] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[3] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .
[4] ZHENG Yong-Mei;DING Yan-Feng;WANG Qiang-Sheng;LI Gang-Hua;WANG Hui-Zhi;WANG Shao-Hua. Effect of Nitrogen Applied before Transplanting on Tillering and Nitrogen Utilization in Rice[J]. Acta Agron Sin, 2008, 34(03): 513 -519 .
[5] QIN En-Hua;YANG Lan-Fang;. Selenium Content in Seedling and Selenium Forms in Rhizospheric Soil of Nicotiana tabacum L.[J]. Acta Agron Sin, 2008, 34(03): 506 -512 .
[6] Qui Chongli. STUDIES ON THE INCOMPATIBILITY OF HYBRIDIZATION BETWEEN TRITICUM AESTIVUM L.AND HEXAPLOID TRITICALE Ⅰ.THE DEVELOPMENT OF HYBRID EMBRYO[J]. Acta Agron Sin, 1986, (01): 49 -56 .
[7] Huang Ce;Wang Tian-duo. COMPUTER SIMULATION OF BIOMASS PRODUCTION IN RICE COMMUNITY[J]. Acta Agron Sin, 1986, (01): 1 -8 .
[8] CHEN Ji-Bao;JING Rui-Lian;MAO Xin-Guo;CHANG Xiao-Ping;WANG Shu-Min. A Response of PvP5CS2 Gene to Abiotic Stresses in Common Bean[J]. Acta Agron Sin, 2008, 34(07): 1121 -1127 .
[9] LIU Wu-Ge;WANG Feng;JIN Su-Juan;ZHU Xiao-Yuan;LI Jin-Hua;LIU Zhen-Rong;LIAO Yi-Long;ZHU Man-Shan;HUANG Hui-Jun; FU Fu-Hong;LIU Yi-Bai. Improvement of Rice Blast Resistance in TGMS Line by Pyramiding of Pi-1 and Pi-2 through Molecular Marker-Assisted Selection[J]. Acta Agron Sin, 2008, 34(07): 1128 -1136 .
[10] ZHANG Wen-Jing;HU Hong-Biao;CHEN Bing-Lin;WANG You-Hua;ZHOU Zhi-Guo. Difference of Physiological Characteristics of Cotton Bolls in Development of Fiber Thickening and Its Relationship with Fiber Strength[J]. Acta Agron Sin, 2008, 34(05): 859 -869 .