Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2024, Vol. 50 ›› Issue (9): 2310-2322.doi: 10.3724/SP.J.1006.2024.32049

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Study on the quality differences of seeds with different pre-harvest sprouting levels and the grading of pre-harvest sprouting in hybrid rice

JIA Shu-Han1,3**(), HE Can1,2**, CHEN Min1, LIU Jia-Xin1,3, HU Wei-Min1,3, HU Jin1,3, GUAN Ya-Jing1,3,*()   

  1. 1Seed Science Center, Advanced Seed Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, Zhejiang, China
    2Communist Party of China Fumin County Committee Organization Department, Kunming 650400, Yunnan, China
    3Hainan Institute of Zhejiang University, Sanya 572025, Hainan, China
  • Received:2023-11-18 Accepted:2024-05-21 Online:2024-09-12 Published:2024-06-05
  • Contact: *E-mail: vcguan@zju.edu.cn
  • About author:First author contact:**Contributed equally to this work
  • Supported by:
    Hainan Provincial Natural Science Foundation(322CXTD522);Sanya Yazhouwan Science and Technology City Doctoral Research and Innovation Fund(HSPHDSRF-2023-04-017);Zhejiang Province “San Nong Jiu Fang” Science and Technology Cooperation Plan(2023SNJF04302);Shanghai Science and Technology Development Project(2022-02-08-00-12-F01127);Collaborative Innovation Center for Modern Crop Production co-sponsored by Province and Ministry(CIC-MCP)

Abstract:

Investigating seed quality with different pre-harvest sprouting (PHS) grades is of great importance for scientifically classifying PHS levels and optimizing the calculation method for PHS parameters. In this study, we utilized two indica hybrid rice cultivars, namely Qianyou 0508 (QY0508) and Y Liangyou 689 (YLY689), to assess the germination quality of rice seeds with varying PHS grades. Additionally, we examined the contents of soluble sugar, soluble protein, and other physiological indicators. To explore the effects of different drying treatments on the quality of PHS seeds in practical production and assess the stress tolerance of different PHS seeds during germination, we employed two drying methods: air drying and 38℃ oven drying for fresh PHS seeds. Subsequently, germination tests were conducted under two adverse conditions, namely low temperature and water flooding. Furthermore, as adverse climatic conditions during the optimal harvest period (from the end of wax ripening to the beginning of full ripening) may lead to PHS, we also investigated the quality of PHS seeds at different developmental stages. By evaluating the quality of PHS seeds, we proposed a new grading method for rice PHS seeds. This method includes the following grades: grade 0 for intact, full, and non-germinated seeds; grade 1 for seeds with protruding embryonic roots but uncracked lemma shells; grade 2 for seeds with visible embryonic roots less than 2 mm in length; and grade 3 for seeds with visible embryonic roots greater than 2 mm in length. Compared to grade 0 seeds, the germination rate of grade 1-3 PHS seeds significantly decreased, while the abnormal seedling rate showed a significant increase. This effect was more pronounced under low temperature and water flooding stresses. Moreover, 38℃ oven drying had a smaller impact on seed quality compared to air drying. Additionally, seeds with high maturity (35 days after pollination) exhibited a smaller impact on seed quality after sprouting compared to seeds with low maturity (25 days after pollination). Through the comprehensive evaluation of seeds with different PHS grades, our study proposes a new grading method for PHS seeds, which holds significant value in accurately understanding PHS seeds and evaluating rice PHS levels in the field.

Key words: rice (Oryza sativa L.), pre-harvest sprouting (PHS) grading, PHS rate, seed quality

Fig. 1

Morphology of fresh pre-harvest sprouting rice seeds with grades 1 and 2 a: grade 1 seeds; b: grade 2 seeds."

Fig. 2

Morphology of dried rice seeds of different PHS grades after removing the lemma a: QY0508, Qianyou 0508; b: YLY689, Y Liangyou 689; a: grade 0 seeds; b: grade 1 seeds; c: grade 2 seeds; d: grade 3 seeds; PHS: pre-harvest sprouting."

Fig. 3

Changes of MDA content, antioxidant enzymes activities, and soluble substance content in fresh rice seeds of QY0508 and YLY689 with different PHS grades A: malondialdehyde (MDA) content; B: peroxidase (POD) activity; C: catalase (CAT) activity; D: ascorbate peroxidase (APX) activity; E: superoxide dismutase (SOD) activity; F: soluble protein content; G: soluble sugar content. QY0508: Qianyou 0508; YLY689: Y Liangyou 689; PHS: pre-harvest sprouting; the lowercase letters above the error bars of the same color bar indicate significant differences (LSD, α=0.05) among the same variety seeds with different PHS grades (0-3)."

Fig. 4

Contents of GA3 and ABA in hybrid rice cv. QY0508 and YLY689 seeds with different PHS grades A: gibberellin (GA3) content; B: abscisic acid (ABA) content; C: the rate of GA3 to ABA content; PHS: pre-harvest sprouting."

Table 1

Germination of hybrid rice seeds with different PHS grades after drying treatments"

品种
Cultivar
干燥方式
Drying method
穗萌级别
Grade of PHS seeds
发芽势Germination potential (%) 发芽率Germination rate (%) 不正常幼苗率
Abnormal seedling rate (%)
发芽指数
Germination index
根长
Root length (cm)
苗高
Shoot height
(cm)
幼苗干重
Dry weight
(g per 10 seedlings)
QY
0508
晾干
Air drying
0 92.00 a 96.00 a 0 c 11.77 a 6.33 a 7.53 a 0.0870 a
1 46.67 b 49.33 b 64.70 b 6.03 b 2.40 b 3.40 b 0.0373 b
2 9.33 c 9.33 c 100.00 a 1.22 c
3 0 d 0 d
烘干
Oven drying
0 88.67 a 97.33 a 0 c 12.11 a 7.43 a 7.30 a 0.0892 a
1 82.00 b 88.67 b 38.33 b 10.00 b 5.47 b 4.60 b 0.0749 b
2 76.67 c 80.00 c 55.00 a 8.94 c 4.33 c 4.17 c 0.0601 c
3 42.00 d 42.67 d 34.27 b 5.12 d 2.73 d 2.53 d 0.0312 d
YLY
689
晾干
Air drying
0 97.33 a 100.00 a 0 c 13.68 a 6.33 a 7.27 a 0.0913 a
1 41.33 b 49.33 b 51.22 a 5.87 b 3.17 b 2.53 b 0.0337 b
2 22.67 c 22.67 c 41.11 b 2.82 c
3 11.33 d 12.00 d 55.71 a 1.31 d
烘干
Oven drying
0 96.67 a 100.00 a 0 c 13.65 a 5.77 a 7.17 a 0.0913 a
1 94.00 a 95.33 b 23.76 b 12.48 b 5.13 b 3.77 b 0.0472 b
2 56.00 b 94.67 b 40.84 a 9.66 c 4.60 c 3.47 c 0.0423 c
3 14.67 c 54.67 c 21.98 b 4.88 d

Fig. 5

Germination of dried seeds with different PHS grades of hybrid rice cv. QY0508 and YLY689 under low temperature and flooding stresses QY0508: Qianyou 0508; YLY689: Y Liangyou 689; A: germination potential (GP), germination rate (GR) and abnormal seedling rate (ASR) of seeds with different PHS grades under low temperature stress; B: germination potential (GP), germination rate (GR), and abnormal seedling rate (ASR) of seeds with different PHS grades under flooding stress; C: germination index of seeds with different PHS grades under low temperature stress; D: germination index of seeds with different PHS grades under flooding stress; PHS: pre-harvest sprouting."

Table 2

Effect of pre-harvest sprouting period on the germination and seedling growth of PHS seeds in rice"

品种
Cultivar
授粉后
天数
DAP (d)
穗萌级别
Grade of PHS seeds
发芽势Germination potential (%) 发芽率Germination rate (%) 不正常幼苗率
Abnormal seedling rate (%)
发芽指数
Germination index
根长
Root length (cm)
苗高
Shoot height
(cm)
幼苗干重
Dry weight
(g per 10 seedlings)
QY
0508
25 0 88.00 a 95.33 a 0 c 13.49 a 4.21 7.93 0.0963
1 10.67 b 10.67 b 74.44 b 2.19 b
2 2.00 c 2.00 c 100.00 a 0.49 c
3 0 c 0 c
35 0 94.67 a 95.33 a 0 c 16.05 a 5.62 a 9.87 a 0.1132 a
1 80.00 b 84.67 b 5.50 b 13.87 b 5.03 b 8.77 b 0.1002 b
2 51.33 c 59.33 c 11.24 a 9.37 c 4.60 c 3.47 c 0.0423 c
3 40.00 d 42.67 d 6.15 b 6.45 d
YLY
689
25 0 92.67 a 95.33 a 0 c 12.58 a 4.32 8.81 0.1141
1 6.00 b 6.00 b 88.89 b 1.11 b
2 4.67 b 4.67 b 88.89 b 0.83 b
3 2.00 c 2.00 c 100.00 a 0.33 c
35 0 95.33 a 97.33 a 0 d 14.80 a 4.93 a 9.69 a 0.1282 a
1 92.67 a 94.67 b 1.40 c 13.97 a 4.62 a 9.23 a 0.1201 a
2 44.00 b 67.33 c 6.92 b 9.42 b 4.01 b 7.71 b 0.0823 b
3 40.00 c 48.67 d 8.22 a 6.89 c 3.21 c 4.63 c 0.0511 c

Fig. 6

Schematic diagram of rice seeds with different PHS grades Grade 0: the seeds are intact, full and non-germinated; Grade 1: the seeds with protruding embryonic roots but uncracked lemma; Grade 2: the seeds with visible embryonic roots length < 2 mm; Grade 3: the seeds with visible embryonic roots length ≥ 2 mm. The determination of embryonic root length refers to ISTA[14]."

Table 3

Effects of four kinds of inhibition agents on field PHS of hybrid rice cv. QY0508 and YLY689"

品种
Cultivar
穗萌分级方法
Grading method of PHS seeds
处理
Treatment
0级率
Grade 0 rate
(%)
1级率
Grade 1 rate
(%)
2级率
Grade 2 rate
(%)
3级率
Grade 3 rate
(%)
穗萌率
PHS rate
(%)
穗萌指数
PHS index
QY0508 PHSG-H2003 CK 60.87 c 14.17 a 21.04 a 3.92 ab 24.96 a 0.95 a
A 71.94 ab 9.36 b 15.03 ab 3.67 ab 18.70 b 0.73 b
B 76.05 a 8.22 b 11.49 b 4.25 a 15.74 b 0.64 b
C 72.01 ab 10.14 b 16.18 ab 1.67 b 17.85 b 0.67 b
D 67.94 b 12.67 a 18.53 a 0.86 b 19.39 b 0.72 b
PHSG-G2023 CK 37.35 d 18.02 a 27.40 a 17.23 a 62.65 a 1.86 a
A 61.32 b 10.62 ab 18.72 b 9.36 b 38.68 b 1.14 b
B 64.08 ab 9.38 b 16.82 b 9.72 b 35.92 bc 1.08 b
C 66.24 a 9.22 b 18.95 b 5.59 b 33.76 c 0.94 b
D 60.17 b 13.40 ab 23.09 ab 3.34 b 39.83 b 0.99 b
YLY689 PHSG-H2003 CK 46.39 c 16.91 a 29.45 a 7.25 a 36.71 a 1.41 a
A 69.77 b 9.49 ab 16.76 b 3.98 b 20.75 b 0.80 b
B 80.16 a 6.44 c 10.56 d 2.83 b 13.39 c 0.52 c
C 78.05 a 8.53 b 12.27 cd 1.16 b 13.43 c 0.51 c
D 71.79 b 11.92 ab 15.06 bc 1.22 b 16.28 bc 0.63 bc
YLY689 PHSG-G2023 CK 34.72 c 11.67 a 33.83 a 19.78 a 65.28 a 2.12 a
A 61.60 b 8.17 b 18.97 bc 11.26 b 38.40 b 1.21 bc
B 72.38 a 7.78 b 12.89 c 6.95 c 27.62 c 0.81 c
C 62.85 b 5.29 b 15.09 c 16.77 ab 37.15 b 1.34 b
D 64.75 ab 7.05 b 23.85 b 4.35 c 35.25 bc 1.00 bc
[1] Li C, Ni P, Francki M, Hunter A, Zhang Y, Schibeci D, Li H, Tarr A, Wang J, Cakir M, Yu J, Bellgard M, Lance R, Appels R. Genes controlling seed dormancy and pre-harvest sprouting in a rice- wheat-barley comparison. Funct Integr Genomics, 2004, 4: 84-93.
[2] Fang J, Chu C. Abscisic acid and the pre-harvest sprouting in cereals. Plant Signal Behav, 2008, 3: 1046-1048.
doi: 10.4161/psb.3.12.6606 pmid: 19513237
[3] Finkelstein R, Reeves W, Ariizumi T, Steber C. Molecular aspects of seed dormancy. Annu Rev Plant Biol, 2008, 59: 387-415.
doi: 10.1146/annurev.arplant.59.032607.092740 pmid: 18257711
[4] 陈兵先, 刘军. 水稻穗萌及其调控的研究进展. 种子, 2017, 36(2): 49-55.
Chen B X, Liu J. Research progress of rice vivipary and its regulation. Seed, 2017, 36(2): 49-55 (in Chinese).
[5] Gu X Y, Zhang J F, Ye H, Zhang L H, Feng J H. Genotyping of endosperms to determine seed dormancy genes regulating germination through embryonic, endospermic, or maternal tissues in rice. G3: Genes Genom Genet, 2015, 5: 183-193.
[6] Shu K, Liu X D, Xie Q, He Z H. Two faces of one seed: hormonal regulation of dormancy and germination. Mol Plant, 2016, 9: 34-45.
doi: S1674-2052(15)00356-1 pmid: 26343970
[7] Nee G, Xiang Y, Soppe W J J. The release of dormancy, a wake-up call for seeds to germinate. Curr Opin Plant Biol, 2017, 35: 8-14.
doi: S1369-5266(16)30133-9 pmid: 27710774
[8] Hu Q J, Lin C, Guan Y J, Sheteiwy M S, Hu W M, Hu J. Inhibitory effect of eugenol on seed germination and pre-harvest sprouting of hybrid rice (Oryza sativa L.). Sci Rep, 2017, 7: 5295.
[9] Steinbach H S, Benech-Arnold R L, Sanchez R A. Hormonal regulation of dormancy in developing sorghum seeds. Plant Physiol, 1997, 113: 149-154.
pmid: 12223597
[10] 周述波, 贺立红, 贺立静, 林伟. 杂交水稻亲本种子与穗萌芽时的生理特性比较. 湖北农业科学, 2017, 56: 1023-1025.
Zhou S B, He L H, He L J, Lin W. Comparison of physiological characteristics between seed germination and preharvest sprouting of hybrid rice parents’ lines. Hubei Agric Sci, 2017, 56: 1023-1025 (in Chinese with English abstract).
[11] 薛全义, 都基坤, 邓丽, 王再鹏. 晒种对隔年玉米种子活力的影响研究. 辽宁农业职业技术学院学报, 2006, 8(1): 4-5.
Xue Q Y, Du J K, Deng L, Wang Z P. Separates the year corn seed vigor experimental study. J Liaoning Agric Tech Univ, 2006, 8(1): 4-5 (in Chinese with English abstract).
[12] 马丽. 种子干燥技术研究进展. 中国种业, 2008, (12): 14-16.
Ma L. Research progress of seed drying technology. China Seed, 2008, (12): 14-16 (in Chinese).
[13] 胡伟民, 马华升, 樊龙江, 阮松林. 杂交水稻制种不育系穗上发芽特性. 作物学报, 2003, 29: 441-446.
Hu W M, Ma H S, Fan L J, Ruan S L. Characteristics of pre-harvest sprouting in sterile lines in hybrid rice seeds production. Acta Agron Sin, 2003, 29: 441-446 (in Chinese with English abstract).
[14] International Seed Testing Association (ISTA). International Rues for Seed Testing, Chapter 15: Seed vigour testing, 2023. pp 1-28.
[15] Abbas S, Basit F, Tanwir K, Zhu X B, Hu J, Guan Y J, Hu W M, Sheteiwy M S, Yang H S, El-Keblawy A, El-Tarabily K A, Abuqamar S F, Lou J F. Exogenously applied sodium nitroprusside alleviates nickel toxicity in maize by regulating antioxidant activities and defense-related gene expression. Physiol Plant, 2023, 175: e13985.
[16] Guan Y J, Hu J, Wang X J, Shao C X. Seed priming with chitosan improves maize germination and seedling growth in relation to physiological changes under low temperature stress. J Zhejiang Univ Sci, 2009, 10: 427-433.
[17] Basit F, Tao J, An J Y, Song X Y, Sheteiwy M S, Holford P, Hu J, Josko I, Guan Y J. Nitric oxide and brassinosteroids enhance chromium stress tolerance in Glycine max L. (Merr.) by modulating antioxidative defense and glyoxalase systems. Environ Sci Pollut Res, 2023, 30: 51638-51653.
[18] Basit F, Bhat J A, Alyemeni M N, Shah T, Ahmad P. Nitric oxide mitigates vanadium toxicity in soybean (Glycine max L.) by modulating reactive oxygen species (ROS) and antioxidant system. J Hazard Mater, 2023, 451: 131085.
[19] 尹燕枰. 种子学实验技术. 北京: 中国农业出版社, 2008. pp 97-99.
Yin Y P. Seed Experimental Technique. Beijing: China Agriculture Press, 2008. pp 97-99 (in Chinese).
[20] 董倩倩, 龚桂芝, 彭祝春, 李一兵, 侯艳红, 洪棋斌. 柑橘采前落果与果实不同部位内源激素含量关系分析. 植物生理学报, 2018, 54: 1569-1575.
Dong Q Q, Gong G Z, Peng Z C, Li Y B, Hou Y H, Hong Q B. Analysis on the relationship between physiological fruit drop and content of four endogenous hormones in different parts of fruit in citrus. Plant Physiol J, 2018, 54: 1569-1575 (in Chinese with English abstract).
[21] 黄玉韬, 曹栋栋, 邹文雄, 吴华平, 吴玭, 吴伟. 水稻种子机械干燥存在的问题及对策—以浙江省种子企业为例. 中国稻米, 2020, 26(3): 91-95.
doi: 10.3969/j.issn.1006-8082.2020.03.023
Huang Y T, Cao D D, Zou W X, Wu H P, Wu P, Wu W. Study on issue and solution of rice seed mechanical drying in Zhejiang province. China Rice, 2020, 26(3): 91-95 (in Chinese with English abstract).
doi: 10.3969/j.issn.1006-8082.2020.03.023
[22] 胡晋. 种子学(第2版). 北京: 中国农业出版社, 2014. pp 346-359.
Hu J. Seed Science, 2nd edn. Beijing: China Agriculture Press, 2014. pp 346-359 (in Chinese).
[23] Luo Y, Lin C, Fu Y Y, Huang Y T, He F, Guan Y J, Hu J. Single counts of radicle emergence can be used as a fast method to test seed vigour of indica rice. Seed Sci Technol, 2017, 45: 222-229.
[24] 胡晋, 关亚静. 种子检验学(第2版). 北京: 科学出版社, 2022. pp 80-88.
Hu J, Guan Y J. Seed Testing Science, 2nd edn. Beijing: Science Press, 2022. pp 80-88 (in Chinese).
[25] 林程. 锌铁螯合物引发对杂交水稻种子活力和低温、淹水及其复合逆境抗性调控的研究. 浙江大学博士学位论文, 浙江杭州, 2021.
Lin C. Modulation Study of Fe-Zn-NA Chelates Priming on Seed Vigor and Tolerance of Low Temperature, Waterlogging and Their Compound Stress in Hybrid Rice Seeds. PhD Dissertation of Zhejiang University, Hangzhou, Zhejiang, China, 2020 (in Chinese with English abstract).
[26] Tai L, Wang H J, Xu X J, Sun W H, Ju L, Liu W T, Li W Q, Sun J Q, Chen K M. Pre-harvest sprouting in cereals: genetic and biochemical mechanisms. J Exp Bot, 2021, 72: 2857-2876.
doi: 10.1093/jxb/erab024 pmid: 33471899
[27] 曾芳, 高娅, 潘鑫, 邬晓勇, 孙雁霞. 调控穗发芽的植物内源激素研究进展. 江苏农业学报, 2023, 39: 848-858.
Zeng F, Gao Y, Pan X, Wu X Y, Sun Y X. Research progress of plant endogenous hormones regulating pre-harvest sprouting. Jiangsu J Agirc Sci, 2023, 39: 848-858 (in Chinese with English abstract).
[28] 李霞, 宋一鸣, 程凤娟, 戴杏, 王若仲, 唐启源. 杂交水稻制种过程中谷粒内源激素含量的动态变化. 中国农学通报, 2016, 32(15): 102-106.
doi: 10.11924/j.issn.1000-6850.casb16010156
Li X, Song Y M, Cheng F J, Dai X, Wang R Z, Tang Q Y. Changes of endogenous hormones contents during hybrid rice seed production. Chin Agric Sci Bull, 2016, 32(15): 102-106 (in Chinese with English abstract).
doi: 10.11924/j.issn.1000-6850.casb16010156
[29] Kaneko M, Itoh H, Ueguchi-Tanaka M, Ashikari M, Matsuoka M. The α-amylase induction in endosperm during rice seed germination is caused by gibberellin synthesized in epithelium. Plant Physiol, 2002, 128: 1264-1270.
[30] 倪万潮, 束红梅, 郭书巧, 蒋璐, 何晓兰, 崔晓霞, 巩元勇. 不同水稻品种种子萌发生理特性差异研究. 中国农学通报, 2020, 36(2): 1-5.
doi: 10.11924/j.issn.1000-6850.casb18080094
Ni W C, Shu H M, Guo S Q, Jiang L, He X L, Cui X X, Gong Y Y. Seed germination of rice cultivars: differences in physiological characteristics. Chin Agric Sci Bull, 2020, 36(2): 1-5 (in Chinese with English abstract).
doi: 10.11924/j.issn.1000-6850.casb18080094
[31] Crowe J H, Crowe L M. Membrane integrity in anhydrobiotic organisms:toward a mechanism for stabilizing dry cells. Berlin Springer Internet, 1992, 7: 87-103.
[32] Xin X, Tian Q, Yin G K, Chen X L, Zhang J M, Ng S, Lu X X. Reduced mitochondrial and ascorbate-glutathione activity after artificial ageing in soybean seed. J Plant Physiol, 2014, 171: 140-147.
[33] Aghdam M S, Mohammadkhani N. Enhancement of chilling stress tolerance of tomato fruit by postharvest brassinolide treatment. Food Bioproc Technol, 2014, 7: 909-914.
[34] 李江, 吴黄铭, 陈惠萍. 外源CO和NO对水稻种子萌发过程中干旱胁迫损伤的缓解效应. 西北植物学报, 2011, 31: 731-738.
Li J, Wu H M, Chen H P. Exogenous carbon monoxide and nitric oxide alleviate the oxidative damage in rice seed germination under drought stress. Acta Bot Boreali-Occident Sin, 2011, 31: 731-738 (in Chinese with English abstract).
[35] Ritonga F N, Chen S. Physiological molecular mechanism involved in cold stress tolerance in plants. Plants (Basel), 2020, 9: 560.
[36] 颜启传. 种子学. 北京: 中国农业出版社, 2001. pp 234-236.
Yan Q C. Seed Science. Beijing: China Agriculture Press, 2001. pp 234-236 (in Chinese).
[37] 胡琦娟. 杂交水稻穗萌抑制剂筛选及其抑制机理研究. 浙江大学博士学位论文, 浙江杭州, 2016.
Hu Q J. Selection of Exogenous Inhibitors for Pre-harvest Sprouting and Their Inhibitory Mechanism Research in Hybrid Rice. PhD Dissertation of Zhejiang University, Hangzhou, Zhejiang, China, 2016 (in Chinese with English abstract).
[38] 陈新红, 张安存, 韩正光, 吕宏飞, 叶玉秀, 周青. 烘干温度与时间对不同收获期下水稻种子含水量和活力的影响及相关分析. 西南农业学报, 2014, 27: 2331-2338.
Chen X H, Zhang A C, Han Z G, Lyu H F, Ye Y X, Zhou Q. Effects of drying temperature and drying time on seed moisture content and seed vigor and its correlation analysis rice seeds at different harvest period in rice. Southwest China J Agric Sci, 2014, 27: 2331-2338 (in Chinese with English abstract).
[1] WAN Ying-Chun, BAN Yi-Jie, JIANG Yu-Dong, WANG Ya-Xin, LIU Jing-Jing, LIU Xiao-Qing, CHENG Yu-Lin, WANG Nan, FENG Ping. Phenotypic identification and fine mapping of male sterile mutant tpa1 in rice [J]. Acta Agronomica Sinica, 2024, 50(5): 1104-1114.
[2] JIA Lu-Qi, SUN You, TIAN Ran, ZHANG Xue-Fei, DAI Yong-Dong, CUI Zhi-Bo, LI Yang-Yang, FENG Xin-Yu, SANG Xian-Chun, and WANG Xiao-Wen. Identification of the rgs1 mutant with rapid germination of seed and isolation of the regulated gene in rice [J]. Acta Agronomica Sinica, 2023, 49(8): 2288-2295.
[3] DING Jie-Rong, MA Ya-Mei, PAN Fa-Zhi, JIANG Li-Qun, HUANG Wen-Jie, SUN Bing-Rui, ZHANG Jing, LYU Shu-Wei, MAO Xing-Xue, YU Hang, LI Chen, LIU Qing. Ubiquitin receptor protein OsDSK2b plays a negative role in rice leaf blast resistance and osmotic stress tolerance [J]. Acta Agronomica Sinica, 2023, 49(6): 1466-1479.
[4] WEI Gang, CHEN Dan-Yang, REN De-Yong, YANG Hong-Xia, WU Jing-Wen, FENG Ping, WANG Nan. Identification and gene mapping of slender stem mutant sr10 in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2022, 48(8): 2125-2133.
[5] TIAN Tian, CHEN Li-Juan, HE Hua-Qin. Identification of rice blast resistance candidate genes based on integrating Meta-QTL and RNA-seq analysis [J]. Acta Agronomica Sinica, 2022, 48(6): 1372-1388.
[6] ZHENG Chong-Ke, ZHOU Guan-Hua, NIU Shu-Lin, HE Ya-Nan, SUN wei, XIE Xian-Zhi. Phenotypic characterization and gene mapping of an early senescence leaf H5(esl-H5) mutant in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2022, 48(6): 1389-1400.
[7] WANG Yan, CHEN Zhi-Xiong, JIANG Da-Gang, ZHANG Can-Kui, ZHA Man-Rong. Effects of enhancing leaf nitrogen output on tiller growth and carbon metabolism in rice [J]. Acta Agronomica Sinica, 2022, 48(3): 739-746.
[8] ZHENG Xiang-Hua, YE Jun-Hua, CHENG Chao-Ping, WEI Xing-Hua, YE Xin-Fu, YANG Yao-Long. Xian-geng identification by SNP markers in Oryza sativa L. [J]. Acta Agronomica Sinica, 2022, 48(2): 342-352.
[9] YANG Ming, LI Dan-Ting, FAN De-Jia, TAN Song-Juan, CHENG Xia-Nian, LIU Yu-Qiang, WAN Jian-Min. Mapping of QTLs for resistance to white-backed planthopper in Guangxi wild rice Y11 [J]. Acta Agronomica Sinica, 2022, 48(11): 2715-2723.
[10] JIANG Jian-Hua, ZHANG Wu-Han, DANG Xiao-Jing, RONG Hui, YE Qin, HU Chang-Min, ZHANG Ying, HE Qiang, WANG De-Zheng. Genetic analysis of stigma traits with genic male sterile line by mixture model of major gene plus polygene in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2021, 47(7): 1215-1227.
[11] HAN Zhan-Yu,GUAN Xian-Yue,ZHAO Qian,WU Chun-Yan,HUANG Fu-Deng,PAN Gang,CHENG Fang-Min. Individual and combined effects of air temperature at filling stage and nitrogen application on storage protein accumulation and its different components in rice grains [J]. Acta Agronomica Sinica, 2020, 46(7): 1087-1098.
[12] Ya-Ping CHEN,Rong MIAO,Xi LIU,Ben-Jia CHEN,Jie LAN,Teng-Fei MA,Yi-Hua WANG,Shi-Jia LIU,Ling JIANG. Identification and mapping of round seed related gene in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2019, 45(1): 1-9.
[13] Sai-Sai XIA,Yu CUI,Feng-Fei LI,Jia TAN,Yuan-Hua XIE,Xian-Chun SANG,Ying-Hua LING. Phenotypic characterizing and gene mapping of a lesion mimic and premature senescence 1 (lmps1) mutant in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2019, 45(1): 46-54.
[14] Ying-Bin ZOU,Min HUANG. Opportunities and Challenges for Crop Production in China during the Transition Period [J]. Acta Agronomica Sinica, 2018, 44(6): 791-795.
[15] Jun WANG,Jie-Yu ZHAO,Yang XU,Fang-Jun FAN,Jin-Yan ZHU,Wen-Qi LI,Fang-Quan WANG,Yun-Yan FEI,Wei-Gong ZHONG,Jie YANG. Development and Application of Functional Markers for Rice Blast Resistance Gene Bsr-d1 in Rice [J]. Acta Agronomica Sinica, 2018, 44(11): 1612-1620.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!