Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2024, Vol. 50 ›› Issue (9): 2323-2334.doi: 10.3724/SP.J.1006.2024.43002

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Effects of organic material inputs on soil physicochemical properties and summer maize yield formation in coastal saline-alkali land

ZHANG Gui-Qin1(), WANG Hong-Zhang1, GUO Xin-Song2, ZHU Fu-Jun2, GAO Han2, ZHANG Ji-Wang1, ZHAO Bin1, REN Bai-Zhao1, LIU Peng1, REN Hao1,*()   

  1. 1Huang-huai-hai Regional Maize Technology Innovation Center / College of Agriculture, Shandong Agricultural University, Tai’an 271018, Shandong, China
    2Shandong Agricultural University Fertilizer Technology Co., Ltd, Feicheng 271600, Shandong, China
  • Received:2024-01-09 Accepted:2024-05-21 Online:2024-09-12 Published:2024-06-07
  • Contact: *E-mail: renhaosadu@126.com
  • Supported by:
    Key Research and Development Project of Shandong Province(LJNY202103);Shandong Province Key Agricultural Project for Application Technology Innovation(SDAIT-02-08);Major Scientific and Technological Innovation Project in Shandong Province(2021CXGC010804-05);Shandong Provincial Natural Science Foundation(ZR2022QC135)

Abstract:

This study investigates the regulatory effects of different organic material inputs on soil physicochemical properties, as well as maize growth and development, in coastal saline-alkali land. The objective is to provide a theoretical basis for summer maize production in such environments. The experiment was conducted during the summer maize growing seasons of 2021-2022 in coastal saline-alkali farmland located in Wudi county, Binzhou city, Shandong province. The organic materials used included humic acid (3000 kg hm-2, HA), biochar (15,000 kg hm-2, BC), and bio-organic fertilizer (15,000 kg hm-2, BO), while the control (CK) had no organic materials added. The study examined changes in soil bulk density, total porosity, field capacity, pH value, electrical conductivity, and total organic carbon content in the 0-40 cm soil layer. Additionally, the effects of different organic material inputs on aboveground dry matter accumulation and maize yield formation were assessed. The results demonstrated that the application of humic acid, biochar, and bio-organic fertilizer can improve the physicochemical properties of saline-alkali soil. All three organic material treatments significantly reduced the bulk density of the surface soil, increased total porosity and field capacity, and reduced the pH value of the 0-10 cm soil layer by 0.17, 0.08, and 0.20, respectively. After two years of continuous application, humic acid significantly decreased soil electrical conductivity in the 0-40 cm soil layer by an average of 32.74%. Furthermore, all three organic materials significantly increased the total organic carbon content in the 0-20 cm soil layer, with the biochar treatment exhibiting a significant increase of 57.99%. Both humic acid and bio-organic fertilizer treatments significantly increased aboveground biomass and yield of summer maize. After two consecutive years of application, the humic acid treatment showed a significant yield increase of 11.01%, indicating superior performance. In conclusion, comprehensive analysis showed that the application of humic acid can improve soil physical structure, reduce the pH of the 0-10 cm soil layer, increase organic carbon content, decrease soil electrical conductivity, promote aboveground biomass accumulation in summer maize, and enhance grain yield under the conditions of this study. Moreover, humic acid application demonstrated increased net yield compared to the control after two consecutive years. Therefore, humic acid can be employed as an organic material to improve soil physical and chemical properties in coastal saline-alkali land, while promoting the growth and development of summer maize. Although bio-organic fertilizer also enhances soil physical and chemical properties, further localized experiments are necessary to verify its long-term economic effects.

Key words: coastal saline-alkali land, organic material, soil physical and chemical properties, yield

Fig. 1

Changes of rainfall and temperature during the summer maize season at the experimental site"

Fig. 2

Effects of different organic materials inputs on pH value in a saline-alkali soil CK, HA, BC, and BO represent no organic materials, humic acid (3000 kg hm-2), biochar (15,000 kg hm-2), and bio-organic fertilizer (15,000 kg hm-2), respectively. Error bars are standard error. Different lowercase letters indicated significant difference between different treatments within the same year and the same soil layer (P < 0.05)."

Fig. 4

Effects of different organic materials inputs on total organic carbon content in a saline-alkali soil CK, HA, BC, and BO represent no organic materials, humic acid (3000 kg hm-2), biochar (15,000 kg hm-2), and bio-organic fertilizer (15,000 kg hm-2), respectively. Error bars are standard error. Different lowercase letters indicated significant difference between different treatments within the same year and the same soil layer (P < 0.05)."

Fig. 5

Effects of different organic materials inputs on biomass of summer maize in a saline-alkali soil CK, HA, BC, and BO represent no organic materials, humic acid (3000 kg hm-2), biochar (15,000 kg hm-2), and bio-organic fertilizer (15,000 kg hm-2), respectively. Error bars are standard error."

Fig. 6

Correlation analysis of aboveground biomass, yield, and yield component factors with soil physicochemical properties ** represents extremely significant difference at the 0.01 probability level; * represents significant difference at the 0.05 probability level."

Table 1

Effects of different organic materials inputs on bulk density, total porosity, and field capacity in a saline-alkali soil"

土层
Soil layer
(cm)
处理
Treatment
2021 2022
容重
Bulk density
(g cm-3)
总孔隙度
Total porosity
(%)
田间持水量
Field capacity
(%)
容重
Bulk density
(g cm-3)
总孔隙度
Total porosity (%)
田间持水量
Field capacity
(%)
0-10 CK 1.43±0.01 a 40.25±1.07 b 25.78±0.54 a 1.17±0.01 a 48.75±0.01 b 36.08±0.36 b
HA 1.41±0.01 a 42.70±0.64 a 26.78±0.57 a 1.11±0.03 bc 49.77±0.12 a 38.49±1.02 a
BC 1.41±0.01 a 42.57±0.33 a 25.40±1.35 a 1.08±0.01 c 49.85±0.51 a 38.09±0.37 a
BO 1.42±0.01 a 42.62±0.32 a 27.12±0.40 a 1.14±0.01 ab 49.38±0.56 ab 37.71±0.69 a
10-20 CK 1.57±0.01 a 33.84±0.78 b 20.22±0.63 b 1.56±0.01 a 39.39±0.40 c 24.49±0.49 c
HA 1.50±0.01 b 37.19±0.26 a 25.09±0.19 a 1.33±0.02 c 42.07±0.62 b 30.69±2.80 b
BC 1.49±0.02 b 39.44±0.06 a 25.39±0.37 a 1.28±0.01 d 45.30±0.19 a 34.55±0.02 a
BO 1.45±0.01 c 38.32±0.31 a 24.81±0.51 a 1.44±0.02 b 41.55±0.92 b 27.81±0.80 b
20-30 CK 1.56±0.01 a 29.27±1.65 bc 16.95±0.40 c 1.48±0.03 a 40.30±0.34 a 26.02±0.06 b
HA 1.52±0.01 b 27.77±0.64 c 17.91±0.36 bc 1.50±0.01 a 40.49±0.29 a 25.94±0.42 b
BC 1.55±0.01 a 31.71±1.10 b 20.04±0.61 b 1.35±0.06 b 42.26±0.88 a 30.03±1.88 a
BO 1.47±0.01 c 36.43±2.05 a 24.29±1.66 a 1.45±0.01 a 42.11±0.18 a 27.97±0.31 ab
30-40 CK 1.44±0.01 c 33.01±0.46 b 23.66±1.43 a 1.39±0.02 a 43.96±0.63 a 30.26±0.73 ab
HA 1.56±0.01 a 26.27±0.70 c 16.51±0.45 c 1.38±0.01 a 41.89±0.24 b 29.31±0.16 b
BC 1.47±0.01 b 36.18±1.41 a 20.93±0.79 b 1.37±0.01 a 42.76±0.25 b 31.61±0.21 a
BO 1.47±0.01 b 34.48±0.21 ab 21.92±1.17 ab 1.32±0.05 a 42.61±0.01 b 29.00±0.74 b

Fig. 3

Effects of different organic materials inputs on electrical conductivity in a saline-alkali soil CK, HA, BC, and BO represent no organic materials, humic acid (3000 kg hm-2), biochar (15,000 kg hm-2), and bio-organic fertilizer (15,000 kg hm-2), respectively. Error bars are standard error. Different lowercase letters indicated significant difference between different treatments within the same year and the same soil layer (P < 0.05)."

Table 2

Effects of different organic materials inputs on yield and yield components of summer maize in a saline-alkali soil"

年份
Year
处理
Treatment
公顷穗数
Actual ears (ear hm-2)
穗粒数
Grains per ear
千粒重
1000-grain weight (g)
产量
Yield (kg hm-2)
2021 CK 60,558.58±1170.72 a 511.18±3.43 a 255.36±0.97 b 7903.65±193.57 c
HA 62,225.33±1644.46 a 495.91±5.71 ab 257.05±2.00 b 8217.70±96.26 b
BC 61,114.17±1575.40 a 487.89±10.27 b 256.05±3.43 b 7732.01±215.66 c
BO 62,780.92±962.30 a 504.83±7.37 ab 286.31±4.49 a 9015.42±73.83 a
2022 CK 56,113.92±962.30 a 556.98±2.67 b 321.67±5.84 bc 10,051.57±109.61 c
HA 57,225.08±962.30 a 582.98±4.09 a 334.52±5.57 a 11,157.90±111.07 a
BC 56,669.50±0.00 a 577.87±10.81 ab 315.26±4.83 c 10,324.06±251.87 bc
BO 57,225.08±962.30 a 582.98±17.89 a 331.18±3.65 ab 11,050.37±473.17 ab

Table 3

Input and output of maize under different organic materials inputs"

年份
Year
处理
Treatment
生产成本 Production cost (Yuan hm-2) 产值
Output value (Yuan hm-2)
纯收益
Net income (Yuan hm-2)
较CK增加纯收益
Increase net income compared with CK (Yuan hm-2)
种子
Seed
农药
Pesticide
肥料
Fertilizer
机械
Machine
合计
Summation
2021 CK 750 320 2250 1500 4820 21,735.03 16,915.03
HA 750 320 3750 1500 6320 22,598.67 16,278.67 -636.36
BC 750 320 74,250 1500 76,820 21,263.03 -55,557.97 -72,472.00
BO 750 320 12,750 1500 15,320 24,792.45 9472.41 -7442.62
2022 CK 750 400 2250 1300 4700 25,813.87 21,113.87
HA 750 400 3750 1300 6200 29,109.97 22,909.97 1796.10
BC 750 400 74,250 1300 76,700 26,864.55 -49,835.45 -70,949.32
BO 750 400 12,750 1300 15,200 27,482.41 12,282.41 -8831.46
[1] 李金彪, 陈金林, 刘广明, 杨劲松. 滨海盐碱地绿化理论技术研究进展. 土壤通报, 2014, 45: 246-251.
Li J B, Chen J L, Liu G M, Yang J S. Progress of greening theory and technology for coastal saline land. Chin J Soil Sci, 2014, 45: 246-251 (in Chinese with English abstract).
[2] 杨劲松, 姚荣江, 王相平, 谢文萍, 张新, 朱伟, 张璐, 孙瑞娟. 中国盐渍土研究: 历程、现状与展望. 土壤学报, 2022, 59: 10-27.
Yang J S, Yao R J, Wang X P, Xie W P, Zhang X, Zhu W, Zhang L, Sun R J. Research on salt-affected soils in China: history, status quo and prospect. Acta Pedol Sin, 2022, 59: 10-27 (in Chinese with English abstract).
[3] 刘淼, 王志春, 杨福, 李景鹏, 梁正伟. 生物炭在盐碱地改良中的应用进展. 水土保持学报, 2021, 35(3): 1-8.
Liu M, Wang Z C, Yang F, Li J P, Liang Z W. Application progress of biochar in amelioration of saline-alkaline soil. J Soil Water Conserv, 2021, 35(3): 1-8 (in Chinese with English abstract).
[4] 杨易, 黄立华, 肖扬, 黄金鑫, 刘伯顺, 杨靖民. 苏打盐碱化稻田土壤氮素矿化和硝化特征及其影响因子. 植物营养与肥料学报, 2022, 28: 1816-1827.
Yang Y, Huang L H, Xiao Y, Huang J X, Liu B S, Yang J M. Characteristics and influencing factors of soil nitrogen mineralization and nitrification in saline-sodic paddy fields. J Plant Nutr Fert, 2022, 28: 1816-1827 (in Chinese with English abstract).
[5] He K, He G, Wang C P, Zhang H P, Xu Y, Wang S M, Kong Y Z, Zhou G K, Hu R B. Biochar amendment ameliorates soil properties and promotes Miscanthus growth in a coastal saline-alkali soil. Appl Soil Ecol, 2020, 155: 103674.
[6] Li J G, Pu L J, Han M F, Zhu M, Zhang R S, Xiang Y Z. Soil salinization research in China: advances and prospects. J Geog Sci, 2014, 24: 943-960.
[7] 崔倩, 夏江宝, 刘京涛, 杨红军, 彭玲. 生物炭和EM菌对黄河三角洲盐碱地田菁生长和光合特性的影响. 应用生态学报, 2020, 31: 3101-3110.
doi: 10.13287/j.1001-9332.202009.006
Cui Q, Xia J B, Liu J T, Yang H J, Peng L. Effects of biochar and EM application on growth and photosynthetic characteristics of Sesbania cannabina in saline-alkali soil of the Yellow River Delta, China. Chin J Appl Ecol, 2020, 31: 3101-3110 (in Chinese with English abstract).
[8] Pamela C, Louise N, Joseph W K. Agricultural uses of plant biostimulants. Plant Soil, 2014, 383: 3-41.
[9] Hu Y W, Li Q K, Song C J, Jin X. Effect of humic acid combined with fertilizer on the improvement of saline-alkali land and cotton growth. Appl Ecol Environ Res, 2021, 19: 1279-1294.
[10] 高亮, 潘修强, 孟宪东, 赵岩, 刘丽丽. 活化腐植酸改良苏打盐碱地及对水稻生长发育的影响. 腐植酸, 2023, (2): 34-37.
Gao L, Pan X Q, Meng X D, Zhao Y, Liu L L. Improvement of soda saline alkali land with activated humic acid and effects on the growth and development of rice. Humic Acid, 2023, (2): 34-37 (in Chinese with English abstract).
[11] Motojima H, Yamada P, Irie M, Ozaki M, Shigemori H, Isoda H. Amelioration effect of humic acid extracted from solubilized excess sludge on saline-alkali soil. J Mater Cycles Waste Manag, 2012, 14: 169-180.
[12] Liang J P, Li Y, Si B C, Wang Y Z, Chen X G, Wang X F, Chen H R, Wang H R, Zhang F C, Bai Y G, Biswas A. Optimizing biochar application to improve soil physical and hydraulic properties in saline-alkali soils. Sci Total Environ, 2021, 771: 144802.
[13] 李毅, 梁嘉平, 王小芳, 杨哲, 樊向阳. 改善土壤理化性质和作物出苗率的最佳生物炭施用量. 土壤学报, 网络首发[2023-08-31], https://link.cnki.net/urlid/32.1119.P.20230831.1257.002.
Li Y, Liang J P, Wang X F, Yang Z, Fan X Y. The most appropriate biochar application rate for improving soil physicochemical properties and crop germination rates. Acta Pedol Sin, Published online [2023-08-31], https://link.cnki.net/urlid/32.1119.P.20230831.1257.002.
[14] Lian F, Liu X W, Gao M L, Li H Z, Qiu W W, Song Z G. Effects of Fe-Mn-Ce oxide-modified biochar on as accumulation, morphology, and quality of rice (Oryza sativa L.). Environ Sci Pollut Res, 2020, 27: 18196-18207.
[15] 徐敏, 伍钧, 张小洪, 杨刚. 生物炭施用的固碳减排潜力及农田效应. 生态学报, 2018, 38: 393-404.
Xu M, Wu J, Zhang X H, Yang G. Impact of biochar application on carbon sequestration, soil fertility and crop productivity. Acta Ecol Sin, 2018, 38: 393-404 (in Chinese with English abstract).
[16] 邵孝候, 张宇杰, 常婷婷, 叶欢, 张展羽. 生物有机肥对盐渍土壤水盐动态及番茄产量的影响. 河海大学学报(自然科学版), 2018, 46: 153-160.
Shao X H, Zhang Y J, Chang T T, Ye H, Zhang Z Y. Effects of different fertilizer treatments on soil water, salt and crop yield formation in saline soils. J Hohai Univ (Nat Sci Edn), 2018, 46: 153-160 (in Chinese with English abstract).
[17] Lu P, Bainard L D, Ma B, Liu J G. Bio-fertilizer and rotten straw amendments alter the rhizosphere bacterial community and increase oat productivity in a saline-alkaline environment. Sci Rep, 2020, 10: 19896.
doi: 10.1038/s41598-020-76978-3 pmid: 33199781
[18] Peng Y Y, Zhang H, Lian J S, Zhang W, Li G H, Zhang J F. Combined application of organic fertilizer with microbial inoculum improved aggregate formation and salt leaching in a secondary salinized soil. Plants (Basel), 2023, 12: 2945.
[19] 田家明, 张冠初, 罗庄田, 袁光, 梁新波, 李泽伦, 石书兵, 姜常松, 张智猛. 生物有机肥对盐碱土花生农艺性状及荚果发育的影响. 花生学报, 2020, 49(1): 66-71.
Tian J M, Zhang G C, Luo Z T, Yuan G, Liang X B, Li Z L, Shi S B, Jiang C S, Zhang Z M. Effect of bio-organic fertilizer on agronomic traits and pod development of peanut in saline-alkali soil. J Peanut Sci, 2020, 49(1): 66-71 (in Chinese with English abstract).
[20] Naher U A, Biswas J C, Maniruzzaman M, Khan F H, Sarkar M I U, Jahan A, Hera M H R, Hossain M B, Islam A, Islam M R, Kabir M S. Bio-organic fertilizer: a green technology to reduce synthetic N and P fertilizer for rice production. Front Plant Sci, 2021, 12: 602052.
[21] 简尊吉, 雷蕾, 倪妍妍, 朱建华, 曾立雄, 肖文发. 砾石对马尾松人工林土壤有机碳密度评估的影响. 应用生态学报, 2023, 34: 2073-2081.
doi: 10.13287/j.1001-9332.202308.010
Jian Z J, Lei L, Ni Y Y, Zhu J H, Zeng L X, Xiao W F. Effects of gravel on the evaluation of soil organic carbon density in Pinus massoniana plantations. Chin J Appl Ecol, 2023, 34: 2073-2081 (in Chinese with English abstract).
[22] 鲍士旦. 土壤农化分析(第3版). 北京: 中国农业出版社, 2000. pp 25-38.
Bao S D. Soil Agricultural Chemistry Analysis, 3rd edn. Beijing: China Agriculture Press, 2000. pp 25-38 (in Chinese).
[23] Spohn M, Giani L. Impacts of land use change on soil aggregation and aggregate stabilizing compounds as dependent on time. Soil Biol Biochem, 2011, 43: 1081-1088.
[24] 史东梅, 吕刚, 蒋光毅, 卢喜平. 马尾松林地土壤物理性质变化及抗蚀性研究. 水土保持学报, 2005, 19: 35-39.
Shi D M, Lyu G, Jiang G Y, Lu X P. Study on anti-erodibility and change of soil physical property in Pinus massoniana woodland. J Soil Water Conserv, 2005, 19: 35-39 (in Chinese with English abstract).
[25] 杨建君, 盖浩, 张梦璇, 蔡育蓉, 王力艳, 王立刚. 深松结合秸秆还田对黑土孔隙结构的影响. 中国农业科学, 2023, 56: 892-906.
doi: 10.3864/j.issn.0578-1752.2023.05.007
Yang J J, Gai H, Zhang M X, Cai Y R, Wang L Y, Wang L G. Effect of subsoiling combined with straw returning measure on pore structure of black soil. Sci Agric Sin, 2023, 56: 892-906 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2023.05.007
[26] 杨毅, 何志强, 林佳慧, 李洋, 陈飞, 吕长文, 唐道彬, 周全卢, 王季春. 椰糠施用量对土壤理化性状和甘薯产量的影响. 作物学报, 2023, 49: 2517-2527.
doi: 10.3724/SP.J.1006.2023.24212
Yang Y, He Z Q, Lin J H, Li Y, Chen F, Lyu C W, Tang D B, Zhou Q L, Wang J C. Effects of coconut bran application rate on soil physicochemical properties and sweet-potato yield. Acta Agron Sin, 2023, 49: 2517-2527 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2023.24212
[27] 王璐, 朱占玲, 刘照霞, 马玉婷, 孙福, 葛顺峰, 姜远茂. 多种有机物料混施对苹果幼苗生长、氮素利用及土壤特性的影响. 水土保持学报, 2021, 35: 362-368.
Wang L, Zhu Z L, Liu Z X, Ma Y T, Sun F, Ge S F, Jiang Y M. Effects of mixtures of different organic materials on apple seedling growth, nitrogen utilization and soil properties. J Soil Water Conserv, 2021, 35: 362-368 (in Chinese with English abstract).
[28] Kaje V V, Sharma D K, Shivay Y S. Long-term impact of organic and conventional farming on soil physical properties under rice (Oryza sativa)-wheat (Triticum aestivum) cropping system in north-western Indo-Gangetic plains. Indian J Agric Sci, 2018, 88: 107-113.
[29] 张伟明, 管学超, 黄玉威, 孙大荃, 孟军, 陈温福. 生物炭与化学肥料互作的大豆生物学效应. 作物学报, 2015, 41: 109-122.
doi: 10.3724/SP.J.1006.2015.00109
Zhang W M, Guan X C, Huang Y W, Sun D Q, Meng J, Chen W F. Biological effects of biochar and fertilizer interaction in soybean plant. Acta Agron Sin, 2015, 41: 109-122 (in Chinese with English abstract).
[30] 刘东兴. 改良物质对盐碱土的改良作用及对植被生长发育的影响.东北林业大学硕士学位论文, 黑龙江哈尔滨, 2009.
Liu D X. Effected of Soil Ameliorant on Growth Characteristics of Plants and Salinized Soil. MS Thesis of Northeast Forestry University, Harbin, Heilongjiang, China, 2009 (in Chinese with English abstract).
[31] 邱吟霜, 王西娜, 李培富, 侯贤清, 王艳丽, 吴鹏年, 霍文斌. 不同种类有机肥及用量对当季旱地土壤肥力和玉米产量的影响. 中国土壤与肥料, 2019, (6): 182-189.
Qiu Y S, Wang X N, Li P F, Hou X Q, Wang Y L, Wu P N, Huo W B. Different kinds of organic fertilizers and amounts on dryland soil fertility and corn yield in the current season. Soil Fert Sci China, 2019, (6): 182-189 (in Chinese with English abstract).
[32] Zhou Z X, Li Z Y, Zhang Z Q, You L R, Xu L F, Huang H Y, Wang X P, Gao Y, Cui X J. Treatment of the saline-alkali soil with acidic corn stalk biochar and its effect on the sorghum yield in western Songnen Plain. Sci Total Environ, 2021, 797: 149190.
[33] 王舒华, 陈爽, 王悦, 李圆宾, 徐璐瑶, 王强, 李莹飞, 薛鹏飞, 焦加国, 李辉信, 胡锋. 不同有机物料对盐碱土的淋洗效果研究. 水土保持学报, 2021, 35: 376-383.
Wang S H, Chen S, Wang Y, Li Y B, Xu L Y, Wang Q, Li Y F, Xue P F, Jiao J G, Li H X, Hu F. Study on leaching effect of different organic materials on saline-alkali soil. J Soil Water Conserv, 2021, 35: 376-383 (in Chinese with English abstract).
[34] Song J S, Zhang H Y, Chang F D, Yu R, Zhang X Q, Wang X Q, Wang W N, Liu J M, Zhou J, Li Y Y. Humic acid plus manure increases the soil carbon pool by inhibiting salinity and alleviating the microbial resource limitation in saline soils. Catena (Amst), 2023, 233: 107527.
[35] 王倩姿, 王玉, 孙志梅, 刘佳, 牛劭斌, 薛澄, 马文奇. 腐植酸类物质的施用对盐碱地的改良效果. 应用生态学报, 2019, 30: 1227-1234.
doi: 10.13287/j.1001-9332.201904.001
Wang Q Z, Wang Y, Sun Z M, Liu J, Niu S B, Xue C, Ma W Q. Amelioration effect of humic acid on saline-alkali soil. Chin J Appl Ecol, 2019, 30: 1227-1234 (in Chinese with English abstract).
doi: 10.13287/j.1001-9332.201904.001
[36] 屈忠义, 孙慧慧, 杨博, 高晓瑜, 王利明, 王丽萍. 不同改良剂对盐碱地土壤微生物与加工番茄产量的影响. 农业机械学报, 2021, 52: 311-318.
Qu Z Y, Sun H H, Yang B, Gao X Y, Wang L M, Wang L P. Effects of different amendments on soil microorganisms and yield of processing tomato in saline alkali soil. Trans CSAM, 2021, 52: 311-318 (in Chinese with English abstract).
[37] Liu M L, Wang C, Liu X L, Lu Y C, Wang Y F. Saline-alkali soil applied with vermicompost and humic acid fertilizer improved macroaggregate microstructure to enhance salt leaching and inhibit nitrogen losses. Appl Soil Ecol, 2020, 156: 103705.
[38] Liang X Q, Ji Y J, He M M, Su M M, Liu C L, Tian G M. Simple N balance assessment for optimizing the biochar amendment level in paddy soils. Commun Soil Sci Plant Anal, 2014, 45: 1247-1258.
[39] 张伟明, 修立群, 吴迪, 孙媛媛, 顾闻琦, 张鈜贵, 孟军, 陈温福. 生物炭的结构及其理化特性研究回顾与展望. 作物学报, 2021, 47: 1-18.
doi: 10.3724/SP.J.1006.2021.02021
Zhang W M, Xiu L Q, Wu D, Sun Y Y, Gu W Q, Zhang H G, Meng J, Chen W F. Review of biochar structure and physicochemical properties. Acta Agron Sin, 2021, 47: 1-18 (in Chinese with English abstract).
[40] Gu Y Y, Zhang H Y, Liang X Y, Fu R, Li M, Chen C J. Effect of different biochar particle sizes together with bio-organic fertilizer on rhizosphere soil microecological environment on saline-alkali land. Front Environ Sci, 2022, 10: 949190.
[41] Mukherjee A, Lal R. The biochar dilemma. Soil Res, 2014, 52: 217-230.
[42] Chen M M, Zhang S R, Liu L L, Liu J G, Ding X D. Organic fertilization increased soil organic carbon stability and sequestration by improving aggregate stability and iron oxide transformation in saline-alkaline soil. Plant Soil, 2022, 474: 233-249.
[43] 曲成闯, 陈效民, 张志龙, 闾婧妍, 嵇晨, 张俊. 生物有机肥提高设施土壤生产力减缓黄瓜连作障碍的机制. 植物营养与肥料学报, 2019, 25: 814-823.
Qu C C, Chen X M, Zhang Z L, Lyu J Y, Ji C, Zhang J. Mechanism of bio-organic fertilizer on improving soil productivity for continuous cucumber in greenhouse. J Plant Nutr Fert, 2019, 25: 814-823 (in Chinese with English abstract).
[44] 孟婷婷, 杨亮彦, 孔辉, 刘金宝. 生物有机肥施用量对土壤有机碳组分及酶活性的影响. 北方园艺, 2022, (17): 86-91.
Meng T T, Yang L Y, Kong H, Liu J B. Effects of application amount of bio-organic fertilizer on soil organic carbon components and enzyme activities. North Hortic, 2022, (17): 86-91 (in Chinese with English abstract).
[45] 沈其荣. 中国有机(类)肥料. 北京: 中国农业出版社, 2021.
Shen Q R. Organic-based Fertilizers in China. Beijing: China Agriculture Press, 2021 (in Chinese).
[46] 刘艳, 唐亚福, 杨越超, 姜远茂, 程冬冬. 大颗粒活化腐植酸肥对苹果土壤团聚体和有机碳的影响. 应用生态学报, 2022, 33: 1021-1026.
doi: 10.13287/j.1001-9332.202204.012
Liu Y, Tang Y F, Yang Y C, Jiang Y M, Cheng D D. Effects of large-grained activated humic acid fertilizer on soil aggregates and organic carbon in apple orchard soil. Chin J Appl Ecol, 2022, 33: 1021-1026 (in Chinese with English abstract).
doi: 10.13287/j.1001-9332.202204.012
[47] 李春越, 常顺, 钟凡心, 薛英龙, 苗雨, 王益, 党廷辉. 种植模式和施肥对黄土旱塬农田土壤团聚体及其碳分布的影响. 应用生态学报, 2021, 32: 191-200.
doi: 10.13287/j.1001-9332.202101.027
Li C Y, Chang S, Zhong F X, Xue Y L, Miao Y, Wang Y, Dang T H. Effects of fertilization and planting patterns on soil aggregate and carbon distribution in farmland of the Loess Plateau, northwest China. Chin J Appl Ecol, 2021, 32: 191-200 (in Chinese with English abstract).
[48] 张斯梅, 段增强, 顾克军, 张传辉, 张恒敢. 稻秸还田下减量化施氮对小麦产量、养分吸收及土壤理化性质的影响. 土壤, 2023, 55: 537-543.
Zhang S M, Duan Z Q, Gu K J, Zhang C H, Zhang H G. Effects of reduced nitrogen fertilization on wheat yield, nutrient uptake and soil physicochemical properties under rice straw returning. Soil, 2023, 55: 537-543 (in Chinese with English abstract).
[49] 赵隽, 董树亭, 刘鹏, 张吉旺, 赵斌. 有机无机肥长期定位配施对冬小麦群体光合特性及籽粒产量的影响. 应用生态学报, 2015, 26: 2362-2370.
pmid: 26685599
Zhao J, Dong S T, Liu P, Zhang J W, Zhao B. Effects of long-term mixed application of organic and inorganic fertilizers on canopy apparent photosynthesis and yield of winter wheat. Chin J Appl Ecol, 2015, 26: 2362-2370 (in Chinese with English abstract).
pmid: 26685599
[50] 卢合全, 唐薇, 罗振, 孔祥强, 李振怀, 徐士振, 辛承松. 商品有机肥替代部分化肥对连作棉田土壤养分、棉花生长发育及产量的影响. 作物学报, 2021, 47: 2511-2521.
doi: 10.3724/SP.J.1006.2021.04279
Lu H Q, Tang W, Luo Z, Kong X Q, Li Z H, Xu S Z, Xin C S. Effects of commercial organic fertilizer substituting chemical fertilizer partially on soil nutrients, plant development, and yield in cotton. Acta Agron Sin, 2021, 47: 2511-2521 (in Chinese with English abstract).
[51] Zhang L H, Zhao H X, Xu C, Yan W P, Sun N, Tan G B, Yu J, Meng X M, Li F, Bian S F. Effects of straw returning on soil moisture and maize yield in semi-humid area. Cereal Res Commun, 2022, 50: 539-548.
[52] Chen J, Wu J H, Si H P, Lin K Y, Li H X, Li Y. Application of bio-organic fertilizer inoculated with IAA-producing rhizobacterium on growth of peanut plants in red soil. Oxid Met, 2016, 39: 1917-1927.
[53] 张帆, 杨茜. 大麦-双季稻轮作体系有机物料与化肥配施对大麦资源利用效率及产量的影响. 作物学报, 2021, 47: 2522-2531.
doi: 10.3724/SP.J.1006.2021.01101
Zhang F, Yang X. Effects of combined application of organic materials and chemical fertilizers in barley-double cropping rice rotation system on barley resource utilization efficiency and yield. Acta Agron Sin, 2021, 47: 2522-2531 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2021.01101
[54] Shan Y Y, Li G, Bai Y G, Liu H B, Zhang J H, Wei K, Wang Q J, Cao L. Effects of of gypsum combined with different amounts of biochemical humic acid on soil improvement and cotton (Gossypium hirsutum L.) yield on saline-alkali land. Appl Ecol Environ Res, 2022, 20: 841-854.
[55] 李博洋, 叶茵, 楚睿雯, 井苗, 张岁岐, 严加坤. 施加生物炭对谷子干物质积累、转运、分配和土壤理化性质的影响. 作物学报, 2024, 50: 695-708.
doi: 10.3724/SP.J.1006.2024.34097
Li B Y, Ye Y, Chu R W, Jing M, Zhang S Q, Yan J K. Effects of biochar application on dry matter accumulation, transport, and distribution of foxtail millet and soil physicochemical properties. Acta Agron Sin, 2024, 50: 695-708 (in Chinese with English abstract).
[56] Norby R, Cotrufo M F. Global change: a question of litter quality. Nature, 1998, 396: 17-18.
[57] 陈晓东, 吴景贵, 范围, 朱文悦, 李晓航. 有机物料对原生盐碱土微团聚体特征及稳定性的影响. 水土保持学报, 2020, 34: 201-207.
Chen X D, Wu J G, Fan W, Zhu W Y, Li X H. Effect of organic materials on the characteristics and stability of micro-aggregates in the native saline-alkali soil. J Soil Water Conserv, 2020, 34: 201-207 (in Chinese with English abstract).
[58] 张小栋, 刘绍雄, 孙宇, 胡爱双, 李凯超, 陈亚恒. 滨海盐碱地不同改良年限土壤理化性质的变化特征. 水土保持研究, 2022, 29: 113-118.
Zhang X D, Liu S X, Sun Y, Hu A S, Li K C, Chen Y H. Variation characteristics of soil physicochemical properties of coastal saline-alkali lands with different improvement years. Res Soil Water Conserv, 2022, 29: 113-118 (in Chinese with English abstract).
[1] ZHANG Zhen, HE Jian-Ning, SHI Yu, YU Zhen-Wen, ZHANG Yong-Li. Effects of row spacing and planting patterns on photosynthetic characteristics and yield of wheat [J]. Acta Agronomica Sinica, 2024, 50(9): 2396-2407.
[2] XU Yi-Fan, XU Cai-Long, LI Rui-Dong, WU Zong-Sheng, HUA Jian-Xin, YANG Lin, SONG Wen-Wen, WU Cun-Xiang. Deep side fertilization improved soybean yield by optimizing leaf function and nitrogen accumulation [J]. Acta Agronomica Sinica, 2024, 50(9): 2335-2346.
[3] YANG Yu-Chen, JIN Ya-Rong, LUO Jin-Chan, ZHU Xin, LI Wei-Hang, JIA Ji-Yuan, WANG Xiao-Shan, HUANG De-Jun, HUANG Lin-Kai. Identification and expression analysis of the WD40 gene family in pearl millet [J]. Acta Agronomica Sinica, 2024, 50(9): 2219-2236.
[4] LIU Zhi-Peng, GOU Zhi-Wen, CHAI Qiang, YIN Wen, FAN Zhi-Long, HU Fa-Long, FAN Hong, WANG Qi-Ming. Effect of green manure on wheat and maize yields in diversified cropping patterns in an arid irrigated agricultural area [J]. Acta Agronomica Sinica, 2024, 50(9): 2415-2424.
[5] SUN Zhao-Hua, REN Hao, WANG Hong-Zhang, WANG Zi-Qiang, YAO Hai-Yan, XIN Ai-Mei, ZHAO Bin, ZHANG Ji-Wang, REN Bai-Zhao, LIU Peng. Effects of foliar silicon sprays on leaf photosynthetic performance and grain yield of summer maize in coastal saline-alkali soil [J]. Acta Agronomica Sinica, 2024, 50(9): 2383-2395.
[6] PENG Jie, XIE Xiao-Qi, ZHANG Zhao, YAO Xiao-Fen, QIU Shen, CHEN Dan-Dan, GU Xiao-Na, WANG Yu-Jie, WANG Chen-Chen, YANG Guo-Zheng. Relationship between cotton yield and canopy microenvironment under summer direct seeding [J]. Acta Agronomica Sinica, 2024, 50(9): 2371-2382.
[7] LIU Chen, WANG Kun-Kun, LIAO Shi-Peng, YANG Jia-Qun, CONG Ri-Huan, REN Tao, LI Xiao-Kun, LU Jian-Wei. Effects of nitrogen fertilizer application levels on yield and nitrogen absorption and utilization of oilseed rape under maize-oilseed rape and rice-oilseed rape rotation fields [J]. Acta Agronomica Sinica, 2024, 50(8): 2067-2077.
[8] LOU Hong-Xiang, HUANG Xiao-Yu, JIANG Meng, NING Ning, BIAN Meng-Lei, ZHANG Lei, LUO Dong-Xu, QIN Meng-Qian, KUAI Jie, WANG Bo, WANG Jing, ZHAO Jie, XU Zheng-Hua, ZHOU Guang-Sheng. Optimal allocation of sowing date and sowing rate of late-sowing rapeseed in the Yangtze River Basin [J]. Acta Agronomica Sinica, 2024, 50(8): 2091-2105.
[9] YANG Qi-Rui, LI Lan-Tao, ZHANG Duo, WANG Ya-Xian, SHENG Kai, WANG Yi-Lun. Effect of phosphorus application on yield, quality, light temperature physiological characteristics, and root morphology in summer peanut [J]. Acta Agronomica Sinica, 2024, 50(7): 1841-1854.
[10] CAO Zi-Qi, ZHAO Xiao-Qing, ZHANG Xiang-Qian, WANG Jian-Guo, LI Juan, HAN Yun-Fei, LIU Dan, GAO Yan-Hua, LU Zhan-Yuan, REN Yong-Feng. Effects of nitrogen application levels on the accumulation, distribution of nitrogen, phosphorus and potassium, and the corresponding yield of Cyperus esculentus in sandy soil [J]. Acta Agronomica Sinica, 2024, 50(7): 1805-1817.
[11] HAN Xiao-Chen, ZHANG Gui-Qin, WANG Ya-Hui, REN Hao, WANG Hong-Zhang, LIU Guo-Li, LIN Dian-Xu, WANG Zi-Qiang, ZHANG Ji-Wang, ZHAO Bin, REN Bao-Zhao, LIU Peng. Effects of soil conditioners on soil salinity content and maize yield in coastal saline-alkali land [J]. Acta Agronomica Sinica, 2024, 50(7): 1776-1786.
[12] LI Chang-Xi, DONG Zhan-Peng, GUAN Yong-Hu, LIU Jin-Wei, LI Hang, MEI Yong-Jun. Genetic contribution and decision coefficient analysis of agronomic characters and lint yield traits of upland cotton in southern Xinjiang [J]. Acta Agronomica Sinica, 2024, 50(6): 1486-1502.
[13] WANG Fei-Er, GUO Yao, LI Pan, WEI Jin-Gui, FAN Zhi-Long, HU Fa-Long, FAN Hong, HE Wei, YIN Wen, CHEN Gui-Ping. Compensation mechanism of increased maize density on yield with water and nitrogen reduction supply in oasis irrigation areas [J]. Acta Agronomica Sinica, 2024, 50(6): 1616-1627.
[14] ZHANG Zhi-Yuan, ZHOU Jie-Guang, LIU Jia-Jun, WANG Su-Rong, WANG Tong-Zhu, ZHAO Cong-Hao, YOU Jia-Ning, DING Pu-Yang, TANG Hua-Ping, LIU Yan-Lin, JIANG Qian-Tao, CHEN Guo-Yue, WEI Yu-Ming, MA Jian. Identification and verification of low-tillering QTL based on a new model of genetic analysis in wheat [J]. Acta Agronomica Sinica, 2024, 50(6): 1373-1383.
[15] WANG Long, LI Jing, QIAN Chen, LIN Guo-Bing, LI Yi-Yang, YANG Guang, ZUO Qing-Song. Effects of salt stress on yield, quality, and physiology in rapeseed [J]. Acta Agronomica Sinica, 2024, 50(6): 1597-1607.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!