Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2024, Vol. 50 ›› Issue (9): 2383-2395.doi: 10.3724/SP.J.1006.2024.43001

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Effects of foliar silicon sprays on leaf photosynthetic performance and grain yield of summer maize in coastal saline-alkali soil

SUN Zhao-Hua1(), REN Hao1, WANG Hong-Zhang1, WANG Zi-Qiang2, YAO Hai-Yan3, XIN Ai-Mei4, ZHAO Bin1, ZHANG Ji-Wang1, REN Bai-Zhao1, LIU Peng1,*()   

  1. 1Huang-Huai-Hai Regional Maize Technology Innovation Center / College of Agriculture, Shandong Agricultural University, Tai’an 271018, Shandong, China
    2Academy of Agricultural Sciences of Binzhou, Binzhou 256603, Shandong, China
    3Agriculture and rural Bureau of Wudi County, Wudi 251900, Shandong, China
    4Rural Economic Management Service Center of Feicheng, Feicheng 271600, Shandong, China
  • Received:2024-01-04 Accepted:2024-05-21 Online:2024-09-12 Published:2024-06-05
  • Contact: *E-mail: liup@sdau.edu.cn
  • Supported by:
    Key Research and Development Project of Shandong Province(LJNY202103);Shandong Province Key Agricultural Project for Application Technology Innovation(SDAIT-02-08);Major Scientific and Technological Innovation Project in Shandong Province(2021CXGC010804-05)

Abstract:

Silicon is a beneficial element for crop growth and can effectively alleviate salt stress in crops. This study aims to explore the alleviating effect of foliar spraying of silicon on salt stress in coastal saline-alkali summer maize in China, providing a theoretical basis for enhancing stress resistance and increasing yield in coastal saline-alkali summer maize. Denghai 605, planted in the field test, was selected as the test material. A silicon preparation (8 g L-1 SiO2) was sprayed at the V9, V12, and VT stages, while the control group was sprayed with the same amount of water. The effects of foliar spraying with silicon preparation at different stages on leaf photosynthetic performance and grain yield of summer maize in coastal saline-alkali soil were investigated. The results demonstrated that foliar spraying of silicon preparations at different stages significantly increased the activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) in saline-alkali summer maize leaves compared to the control group. It also reduced the content of malondialdehyde (MDA), alleviating the damage to photosynthetic organs and the degradation of photosynthetic pigments. The leaf area index at the R6 stage increased by 6.28%, 7.16%, and 6.66% in the V9, V12, and VT stages, respectively, while the chlorophyll content at the R3 stage increased by 6.62%, 7.52%, and 7.47% in 2023. Silicon spraying increased the net photosynthetic rate (Pn), transpiration rate (Tr), stomatal conductance (Gs), and intercellular CO2 concentration (Ci) of leaves. Foliar spraying of silicon preparation at the V9, V12, and VT stages increased the Pn of the R3 stage by 11.64%, 11.73%, and 16.39%, respectively. The biomass at the R6 stage increased by 8.46%, 8.88%, and 9.67%, respectively, and there was a significant increase in the number of grains per spike and 1000-grain weight. Ultimately, the grain yield increased by 7.24%, 10.47%, 12.94%, 6.23%, 7.99%, and 11.25% in 2022 and 2023, respectively. In summary, under the conditions of this experiment, foliar spraying of silicon preparations at the VT stage had the most significant effect on increasing yield in summer maize production in coastal light to moderate saline-alkali soil. This effect was mainly attributed to the alleviation of oxidative stress, improvement of photosynthetic performance, and promotion of biomass accumulation and transportation.

Key words: summer maize, coastal saline-alkali soil, silicon, photosynthetic performance, yield

Table 1

Effects of different concentrations of silicon preparation on leaf area index, SPAD value, and net photosynthetic rate of summer maize in coastal saline-alkali soil"

处理
Treatment
叶面积指数
Leaf area index
SPAD值
SPAD value
净光合速率
Net photosynthetic rate (Pn)
CK 0.98 e 42.17 b 25.77 c
S0.5 1.00 e 42.33 b 25.93 c
S1 1.07 d 43.60 ab 26.60 bc
S2 1.09 cd 44.13 ab 26.63 bc
S4 1.14 bc 45.13 a 28.17 ab
S8 1.21 a 45.07 a 28.93 a
S12 1.19 ab 44.10 ab 28.27 ab
S16 1.12 cd 42.87 b 25.43 c

Fig. 1

Effects of foliar silicon sprays on leaf area index of summer maize in coastal saline-alkali soil V9-W: spraying water in 9-leaf stage; V9-Si: spraying silicon preparation in 9-leaf stage; V12-W: spraying water in 12-leaf stage; V12-Si: spraying silicon preparation in 12-leaf stage; VT-W: spraying water in tasseling stage; VT-Si: spraying silicon preparation in tasseling stage. V9+7 d, V12+7 d, VT+7 d, R3 and R6 represent 7 days after treatment of the 9-leaf stage, 7 days after treatment of the 12-leaf stage, 7 days after treatment of the tasseling stage, milking stage, and maturity stage, respectively. S: silicon; P: spraying stage. *: P < 0.05; **: P < 0.01; NS: no significance."

Fig. 2

Effects of foliar silicon sprays on chlorophyll content of summer maize in coastal saline-alkali soil Treatments are the same as those given in Fig. 1. V9+7 d, V12+7 d, VT+7 d, and R3 represent 7 days after treatment of the 9-leaf stage, 7 days after treatment of the 12-leaf stage, 7 days after treatment of the tasseling stage, and milking stage, respectively. S: silicon; P: spraying stage. *: P < 0.05; **: P < 0.01; NS: no significance."

Fig. 3

Effects of foliar silicon sprays on gas exchange parameters of summer maize in coastal saline-alkali soil Treatments are the same as those given in Fig. 1. VT+7 d and R3 represent 7 days after treatment of the tasseling stage and milking stage, respectively. Different lowercase letters indicate significant differences among different treatments at P < 0.05."

Fig. 4

Effects of foliar silicon sprays on SOD, POD, CAT activity, and MDA content of summer maize in coastal saline-alkali soil Treatments are the same as those given in Fig. 1. VT+7 d and R3 represent 7 days after treatment of the tasseling stage and milking stage, respectively. Different lowercase letters indicate significant differences among different treatments at P < 0.05."

Fig. 5

Effects of foliar spraying of silicon on dry matter accumulation per plant of summer maize in coastal saline-alkali soil Treatments are the same as those given in Fig. 1. V9+7 d, V12+7 d, VT+7 d, R3, and R6 represent 7 days after treatment of the 9-leaf stage, 7 days after treatment of the 12-leaf stage, 7 days after treatment of the tasseling stage, milking stage and maturity stage, respectively. S: silicon; P: spraying stage. *: P < 0.05; **: P < 0.01; NS: no significance."

Table 2

Effects of foliar silicon sprays on yield and yield components of summer maize in coastal saline-alkali soil"

年份
Year
处理
Treatment
单位面积穗数
Ears (×104 ear hm-2)
穗粒数
Grains per ear
千粒重
1000-grain weight (g)
籽粒产量
Grain yield (t hm-2)
2022 V9-W 6.22 a 543.69 c 337.89 c 9.72 c
V9-Si 6.11 a 570.05 b 353.26 ab 10.46 b
V12-W 6.22 a 537.58 c 339.83 c 9.66 c
V12-Si 6.22 a 575.64 ab 353.93 a 10.77 ab
VT-W 6.33 a 544.23 c 337.39 c 9.88 c
VT-Si 6.33 a 583.42 a 350.81 b 11.02 a
2023 V9-W 6.56 a 508.06 c 311.29 b 8.81 c
V9-Si 6.52 a 528.47 b 318.95 a 9.34 b
V12-W 6.59 a 506.77 c 310.20 b 8.81 c
V12-Si 6.56 a 534.23 b 318.91 a 9.49 ab
VT-W 6.52 a 506.04 c 312.11 b 8.75 c
VT-Si 6.59 a 543.37 a 321.17 a 9.78 a
方差分析ANOVA
年份Year (Y) ** ** ** **
硅制剂Silicon (S) NS ** ** **
喷施时期Spraying stage (P) NS ** NS *
Y×S NS ** ** NS
Y×P NS NS NS NS
S×P NS ** NS *
Y×S×P NS NS ** NS

Fig. 6

Correlation between yield and indexes after foliar application of silicon Yield: grain yield: Ear: number of spikes per unit area; GPE: grains per ear; GW: 1000-grain weight; DMA: dry matter accumulation; Chl: chlorophyll content. Pn: photosynthetic rate; Tr: evaporation rate; Gs: stomatal conductance; Ci: intercellular carbon dioxide concentration; SOD: superoxide dismutase; POD: peroxidase; CAT: catalase; MDA: malondialdehyde. *: P < 0.05; **: P < 0.01."

[1] 刘绍熹, 刘帅. 我国玉米进出口市场势力的变化分析. 玉米科学, 2022, 30(2): 183-190.
Liu S X, Liu S. Analysis of the changes in the power of China’s maize import and export market. J Maize Sci, 2022, 30(2): 183-190 (in Chinese with English abstract).
[2] 陈印军, 易小燕, 方琳娜, 杨瑞珍. 中国耕地资源与粮食增产潜力分析. 中国农业科学, 2016, 49: 1117-1131.
doi: 10.3864/j.issn.0578-1752.2016.06.008
Chen Y J, Yi X Y, Fang L N, Yang R Z. Analysis of cultivated land and grain production potential in China. Sci Agric Sin, 2016, 49: 1117-1131 (in Chinese with English abstract).
[3] 王佺珍, 刘倩, 高娅妮, 柳旭. 植物对盐碱胁迫的响应机制研究进展. 生态学报, 2017, 37: 5565-5577.
Wang Q Z, Liu Q, Gao Y N, Liu X. Review on the mechanisms of the response to salinity-alkalinity stress in plants. Acta Ecol Sin, 2017, 37: 5565-5577 (in Chinese with English abstract).
[4] 王佳丽, 黄贤金, 钟太洋, 陈志刚. 盐碱地可持续利用研究综述. 地理学报, 2011, 66: 673-684.
Wang J L, Huang X J, Zhong T Y, Chen Z G. Review on sustainable utilization of salt-affected land. Acta Geograph Sin, 2011, 66: 673-684 (in Chinese with English abstract).
[5] 杨久涛, 孙红滨, 王桂峰, 汪丽, 邢晓飞, 杨武杰. 山东盐碱地农业综合开发利用现状与展望. 中国农业综合开发, 2023, (6): 7-12.
Yang J T, Sun H B, Wang G F, Wang L, Xing X F, Yang W J. Current situation and prospect of comprehensive agricultural development and utilization of saline-alkali land in Shandong. Agric Compr Dev China, 2023, (6): 7-12 (in Chinese).
[6] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响. 作物学报, 2022, 48: 1235-1247.
doi: 10.3724/SP.J.1006.2022.14064
Yan X Y, Guo W J, Qin D L, Wang S L, Nie J J, Zhao N, Qi J, Song X L, Mao L L, Sun X Z. Effects of cotton stubble return and subsoiling on dry matter accumulation, nutrient uptake, and yield of cotton in coastal saline-alkali soil. Acta Agron Sin, 2022, 48: 1235-1247 (in Chinese with English abstract).
[7] 李健, 王逸茹, 张凌霄, 孙明昊, 秦阳, 郑军. 玉米ZmCIPK24- 2基因在盐胁迫应答中的功能研究. 作物学报, 2020, 46: 1351-1358.
doi: 10.3724/SP.J.1006.2020.03008
Li J, Wang Y R, Zhang L X, Sun M H, Qin Y, Zheng J. Functional analysis of ZmCIPK24-2 gene from maize in response to salt stress. Acta Agron Sin, 2020, 46: 1351-1358 (in Chinese with English abstract).
[8] 陆安桥, 张峰举, 许兴, 王学琴, 姚姗. 盐胁迫对湖南稷子苗期生长及生理特性的影响. 草业学报, 2021, 30(5): 84-93.
doi: 10.11686/cyxb2020209
Lu A Q, Zhang F J, Xu X, Wang X Q, Yao S. Effects of salt stress on growth and physiological characteristics of Echinochloa frumentacea seedlings. Acta Pratac Sin, 2021, 30(5): 84-93 (in Chinese with English abstract).
[9] Nazdar L, Tehranifara A, Nezami A. Physiological and anatomical responses of calendula (Calendula officinalis L.) cultivars to heat-stress duration. J Hortic Sci Biotechnol, 2019, 94: 400-411.
[10] 辛承松, 董合忠, 唐薇, 张冬梅, 罗振, 李维江. 滨海盐渍土抗虫棉养分吸收和干物质积累特点. 作物学报, 2008, 11: 2033-2040.
Xin C S, Dong H Z, Tang W, Zhang D M, Luo Z, Li W J. Characteristics of nutrient assimilation and dry matter accumulation of Bt cotton (Gossypium hirsutum L.) in coastal saline soil. Acta Agron Sin, 2008, 11: 2033-2040 (in Chinese with English abstract).
[11] 张楠, 闫国超, 叶木军, 樊小平, 肖卓熙, 陈好, 彭苗, 梁永超. 野生型水稻及其低硅突变体中植硅体和植硅体碳的含量与分布特征. 植物营养与肥料学报, 2019, 25: 45-54.
Zhang N, Yan G C, Ye M J, Fan X P, Xiao Z X, Chen H, Peng M, Liang Y C. The contents and distributions of phytolith and phytolith-occluded carbon in different rice genotypes. J Plant Nutr Fert, 2019, 25: 45-54 (in Chinese with English abstract).
[12] 朱永兴, 夏雨晨, 刘乐承, 尹军良, 马东方. 外源硅对植物抗盐性影响的研究进展. 植物营养与肥料学报, 2019, 25: 498-509.
Zhu Y X, Xia Y C, Liu L C, Yin J L, Ma D F. Beneficial effects of silicon on salt tolerance in plants. J Plant Nutr Fert, 2019, 25: 498-509 (in Chinese with English abstract).
[13] Sharma J, Verma S, Sharma A. Importance of silicon in combating a variety of stresses in plants: a review. J Appl Nat Sci, 2022, 14: 607-630.
[14] 林翰志, 陈涛, 蒋少军, 周洋, 黄祖率, 肖贤明, 徐文彬, 晏波. 活性硅缓解植物重金属胁迫及其生物学机制研究进展. 生态科学, 2022, 41(5): 243-251.
Lin H Z, Chen T, Jiang S J, Zhou Y, Huang Z S, Xiao X M, Xu W B, Yan B. Research progress on biological mechanism of active silicon alleviating heavy metal stress in plants. Ecol Sci, 2022, 41(5): 243-251 (in Chinese with English abstract).
[15] Ma J F, Naoki Y. Silicon uptake and accumulation in higher plants. Trends Plant Sci, 2006, 11: 392-397.
doi: 10.1016/j.tplants.2006.06.007 pmid: 16839801
[16] Zia A, Hegazy H S, Hassan N S, Naguib D M, AbdelHaliem M E. Biochemical responses of wheat to silicon application under salinity. J Plant Nutr Soil Sci, 2021, 184: 255-262.
[17] 龚金龙, 张洪程, 龙厚元, 胡雅杰, 戴其根, 霍中洋, 许轲, 魏海燕, 高辉. 水稻中硅的营养功能及生理机制的研究进展. 植物生理学报, 2012, 48: 1-10.
Gong J L, Zhang H C, Long H Y, Hu Y J, Dai Q G, Huo Z Y, Xu K, Wei H Y, Gao H. Progress in research of nutrition functions and physiological mechanisms of silicon in rice. J Plant Physiol, 2012, 48: 1-10 (in Chinese with English abstract).
[18] Neera G, Purnima B. Silicon nutrition and mycorrhizal inoculations improve growth, nutrient status, K+/Na+ ratio and yield of Cicer arietinum L. genotypes under salinity stress. Plant Growth Regul, 2016, 78: 371-387.
[19] Naguib M D, Abdalla H. Metabolic status during germination of nano silica primed Zea mays seeds under salinity stress. J Crop Sci Biotechnol, 2019, 22: 415-423.
[20] Alzahrani Y, Alpaslan K, Hesham F A, Sebnem K, Mostafa M R. The defensive role of silicon in wheat against stress conditions induced by drought, salinity or cadmium. Ecotox Environ Safe, 2018, 154: 187-196.
doi: S0147-6513(18)30144-1 pmid: 29475124
[21] Liang Y, Urano D, Liao K L, Hedrick T L, Gao Y, Jones A M. A nondestructive method to estimate the chlorophyll content of Arabidopsis seedlings. Plant Methods, 2017, 13: 26.
doi: 10.1186/s13007-017-0174-6 pmid: 28416964
[22] 李合生. 植物生理生化实验原理和技术. 北京: 高等教育出版社, 2000. pp 164-167, 184, 258-260.
Li H S. Principles and Techniques of Plant Physiological and Biochemical Experiments. Beijing: Higher Education Press, 2000. pp 164-167, 184, 258-260 (in Chinese).
[23] 林植芳, 李双顺, 林桂珠, 孙谷畴, 郭俊彦. 水稻叶片的衰老与超氧物歧化酶活性及脂质过氧化作用的关系. 植物学报, 1984, 26: 605-615.
Lin Z F, Li S S, Lin G Z, Sun G H, Guo J Y. Relationship between senescence and superoxide dismutase activity and lipid peroxidation in rice leaves. Acta Bot Sin, 1984, 26: 605-615 (in Chinese).
[24] Pedro G C, Luigi D F, Alvina G, Mirza H, Munir O, Volkan A, María T L. Oxidative stress and antioxidant metabolism under adverse environmental conditions: a review. Bot Rev, 2020, 87: 1-46.
[25] Morton M J L, Awlia M, Altamimi N, Saade S, Pailles Y, Negrão S, Tester M. Salt stress under the scalpel-dissecting the genetics of salt tolerance. Plant J, 2019, 97: 148-163.
[26] 雷新慧, 万晨茜, 陶金才, 冷佳俊, 吴怡欣, 王家乐, 王鹏科, 杨清华, 冯佰利, 高金锋. 褪黑素与2,4-表油菜素内酯浸种对盐胁迫下荞麦发芽与幼苗生长的促进效应. 作物学报, 2022, 48: 1210-1221.
doi: 10.3724/SP.J.1006.2022.11040
Lei X H, Wan C Q, Tao J C, Leng J J, Wu Y X, Wang J L, Wang P K, Yang Q H, Feng B L, Gao J F. Effects of soaking seeds with MT and EBR on germination and seedling growth in buckwheat under salt stress. Acta Agron Sin, 2022, 48: 1210-1221 (in Chinese with English abstract).
[27] Ferchichi S, Hessini K, Dell A E, Amelia L D, Woodrow P, Ciarmiello L F, Fuggi A, Carillo P. Hordeum vulgare and hordeum maritimum respond to extended salinity stress displaying different temporal accumulation pattern of metabolites. Funct Plant Biol, 2018, 45: 1096-1109.
doi: 10.1071/FP18046 pmid: 32290971
[28] 李润枝, 靳晴, 李召虎, 王晔, 彭真, 段留生. 水杨酸提高甘草种子萌发和幼苗生长对盐胁迫耐性的效应. 作物学报, 2020, 46: 1810-1816.
doi: 10.3724/SP.J.1006.2020.04080
Li R Z, Jin Q, Li Z H, Wang Y, Peng Z, Duan L S. Salicylic acid improved salinity tolerance of Glycyrrhiza uralensis fisch during seed germination and seedling growth stages. Acta Agron Sin, 2020, 46: 1810-1816 (in Chinese with English abstract).
[29] Kumara K, Ampitiyawatta D A, Padmaperuma A. Alleviation of salt-induced adverse effects on gas exchange, photosynthetic pigments content and chloroplast ultrastructure in Gerbera jamesonii L. by exogenous salicylic acid application. Asian J Res Agric For, 2021, 7: 1-13.
[30] 周晓瑾, 黄海霞, 张君霞, 马步东, 陆刚, 齐建伟, 张婷, 朱珠. 盐胁迫对裸果木幼苗光合特性的影响. 草业学报, 2022, 32(2): 75-83.
Zhou X J, Huang H X, Zhang J X, Ma B D, Lu G, Qi J W, Zhang T, Zhu Z. Effects of salt stress on photosynthetic characteristics of Gymnocarpos przewalskii seedlings. Acta Pratac Sin, 2022, 32(2): 75-83 (in Chinese with English abstract).
[31] Shen Z H, Pu X Z, Wang S M, Dong X X, Cheng X J, Cheng M X. Silicon improves ion homeostasis and growth of liquorice under salt stress by reducing plant Na+ uptake. Sci Rep, 2022, 12: 5089.
[32] Sun Y K, Xu J Q, Miao X Y, Lin X S, Liu W Z, Ren H Y. Effects of exogenous silicon on maize seed germination and seedling growth. Sci Rep, 2021, 11: 1014.
doi: 10.1038/s41598-020-79723-y pmid: 33441695
[33] Ali A, Basra S M A, Iqbal J, Hussain S, Subhani M N, Sarwar M, Haji A. Silicon mediated biochemical changes in wheat under salinized and non salinzed solution cultures. Afr J Biotechnol, 2012, 11: 606-615.
[34] Yin L N, Wang S W, Li J Y, Kiyoshi T, Mariko O. Application of silicon improves salt tolerance through ameliorating osmotic and ionic stresses in the seedling of sorghum bicolor. Acta Physiol Plant, 2013, 35: 3099-3107.
[35] Rana M, Mark T. Mechanisms of salinity tolerance. Annu Rev Plant Biol, 2008, 59: 651-681.
doi: 10.1146/annurev.arplant.59.032607.092911 pmid: 18444910
[36] Liu P, Yin L N, Wang S W, Zhang M J, Deng X P, Zhang S Q, Kiyoshi T. Enhanced root hydraulic conductance by aquaporin regulation accounts for silicon alleviated salt-induced osmotic stress in Sorghum bicolor L. Environ Exp Bot, 2015, 111: 42-51.
[37] 张振博, 贾春兰, 任佰朝, 刘鹏, 赵斌, 张吉旺. 氮磷配施对夏玉米产量和叶片衰老特性的影响. 作物学报, 2023, 49: 1616-1629.
doi: 10.3724/SP.J.1006.2023.23045
Zhang Z B, Jia C L, Ren B Z, Liu P, Zhao B, Zhang J W. Effects of combined application of nitrogen and phosphorus on yield and leaf senescence physiological characteristics in summer maize. Acta Agron Sin, 2023, 49: 1616-1629 (in Chinese with English abstract).
[38] 李向岭, 赵明, 李从锋, 葛均筑, 侯海鹏, 李琦, 侯立白. 播期和密度对玉米干物质积累动态的影响及其模型的建立. 作物学报, 2010, 36: 2143-2153.
doi: 10.3724/SP.J.1006.2010.02143
Li X L, Zhao M, Li C F, Ge J Z, Hou H P, Li Q, Hou L B. Effect of sowing-date and planting density on dry matter accumulation dynamic and establishment of its simulated model in maize. Acta Agron Sin, 2010, 36: 2143-2153 (in Chinese with English abstract).
[39] 张乃丹, 宋付朋, 张喜琦, 左世福, 王文杰. 速缓效氮肥配施有机肥对滨海盐渍土供氮能力及小麦产量的影响. 水土保持学报, 2020, 34(6): 337-344.
Zhang N D, Song F P, Zhang X Q, Zuo S F, Wang W J. Effect of available and slow-released nitrogen fertilizer combined with organic fertilizer on soil nitrogen supply capacity and wheat yield in coastal saline soil. Res Soil Water Conserv, 2020, 34(6): 337-344 (in Chinese with English abstract).
[40] 王茂莹, 王慧桥, 司庆臣, 张倩, 朱营营, 董元杰. 不同浓度外源-氧化氮对盐胁迫下小麦幼苗生理特性的影响. 土壤通报, 2019, 50: 1426-1433.
Wang M Y, Wang H Q, Si Q C, Zhang Q, Zhu Y Y, Dong Y J. Effects of exogenous nitric-oxide at different concentrations on physiological characteristics of wheat seedlings under salt stress. Chin J Soil Sci, 2019, 50: 1426-1433 (in Chinese with English abstract).
[41] 韦海敏, 陶伟科, 周燕, 闫飞宇, 李伟玮, 丁艳锋, 刘正辉, 李刚华. 硅素穗肥优化滨海盐碱地水稻矿质元素吸收分配提高耐盐性. 作物学报, 2023, 49: 1339-1349.
doi: 10.3724/SP.J.1006.2023.22031
Wei H M, Tao W K, Zhou Y, Yan F Y, Li W W, Ding Y F, Liu Z H, Li G H. Panicle silicon fertilizer optimizes the absorption and distribution of mineral elements in rice (Oryza sativa L.) in coastal saline-alkali soil to improve salt tolerance. Acta Agron Sin, 2023, 49: 1339-1349 (in Chinese with English abstract).
[42] 王力, 孙影, 张洪程, 魏海燕, 朱大伟, 朱盈, 徐栋, 霍中洋. 不同时期施用锌硅肥对优良食味粳稻产量和品质的影响. 作物学报, 2017, 43: 885-898.
doi: 10.3724/SP.J.1006.2017.00885
Wang L, Sun Y, Zhang H C, Wei H Y, Zhu D W, Zhu Y, Xu D, Huo Z Y. Effect of Zn and Si fertilizers applied at different stages on yield and quality of japonica rice with good eating quality. Acta Agron Sin, 2017, 43: 885-898 (in Chinese with English abstract).
[43] Coskun D, Deshmukh R, Sonah H, Menzies J G, Reynolds O, Ma J F, Kronzucker H J, Bélanger R R. The controversies of silicon's role in plant biology. New Phytol, 2019, 221: 67-85.
doi: 10.1111/nph.15343 pmid: 30007071
[44] Yan G C, Miroslav N, Ye M J, Xiao Z X, Liang Y C. Silicon acquisition and accumulation in plant and its significance for agriculture. J Integr Agric, 2018, 17: 2138-2150.
[45] Vahideh R, Movahhedi D M, Balouchi H, Yadavi A, Hamidian M. Silicon can improve nutrient uptake and performance of black cumin under drought and salinity stresses. Commun Soil Sci Plan, 2023, 54: 297-310.
[46] Kalyani M, Biswarup M, Prateek K. Effect of zinc and foliar application of silicon on growth and yield of maize (Zea mays L.). Int J Plant Soil Sci, 2023, 35: 141-146.
[1] ZHANG Gui-Qin, WANG Hong-Zhang, GUO Xin-Song, ZHU Fu-Jun, GAO Han, ZHANG Ji-Wang, ZHAO Bin, REN Bai-Zhao, LIU Peng, REN Hao. Effects of organic material inputs on soil physicochemical properties and summer maize yield formation in coastal saline-alkali land [J]. Acta Agronomica Sinica, 2024, 50(9): 2323-2334.
[2] ZHANG Zhen, HE Jian-Ning, SHI Yu, YU Zhen-Wen, ZHANG Yong-Li. Effects of row spacing and planting patterns on photosynthetic characteristics and yield of wheat [J]. Acta Agronomica Sinica, 2024, 50(9): 2396-2407.
[3] XU Yi-Fan, XU Cai-Long, LI Rui-Dong, WU Zong-Sheng, HUA Jian-Xin, YANG Lin, SONG Wen-Wen, WU Cun-Xiang. Deep side fertilization improved soybean yield by optimizing leaf function and nitrogen accumulation [J]. Acta Agronomica Sinica, 2024, 50(9): 2335-2346.
[4] YANG Yu-Chen, JIN Ya-Rong, LUO Jin-Chan, ZHU Xin, LI Wei-Hang, JIA Ji-Yuan, WANG Xiao-Shan, HUANG De-Jun, HUANG Lin-Kai. Identification and expression analysis of the WD40 gene family in pearl millet [J]. Acta Agronomica Sinica, 2024, 50(9): 2219-2236.
[5] LIU Zhi-Peng, GOU Zhi-Wen, CHAI Qiang, YIN Wen, FAN Zhi-Long, HU Fa-Long, FAN Hong, WANG Qi-Ming. Effect of green manure on wheat and maize yields in diversified cropping patterns in an arid irrigated agricultural area [J]. Acta Agronomica Sinica, 2024, 50(9): 2415-2424.
[6] PENG Jie, XIE Xiao-Qi, ZHANG Zhao, YAO Xiao-Fen, QIU Shen, CHEN Dan-Dan, GU Xiao-Na, WANG Yu-Jie, WANG Chen-Chen, YANG Guo-Zheng. Relationship between cotton yield and canopy microenvironment under summer direct seeding [J]. Acta Agronomica Sinica, 2024, 50(9): 2371-2382.
[7] LIU Chen, WANG Kun-Kun, LIAO Shi-Peng, YANG Jia-Qun, CONG Ri-Huan, REN Tao, LI Xiao-Kun, LU Jian-Wei. Effects of nitrogen fertilizer application levels on yield and nitrogen absorption and utilization of oilseed rape under maize-oilseed rape and rice-oilseed rape rotation fields [J]. Acta Agronomica Sinica, 2024, 50(8): 2067-2077.
[8] LOU Hong-Xiang, HUANG Xiao-Yu, JIANG Meng, NING Ning, BIAN Meng-Lei, ZHANG Lei, LUO Dong-Xu, QIN Meng-Qian, KUAI Jie, WANG Bo, WANG Jing, ZHAO Jie, XU Zheng-Hua, ZHOU Guang-Sheng. Optimal allocation of sowing date and sowing rate of late-sowing rapeseed in the Yangtze River Basin [J]. Acta Agronomica Sinica, 2024, 50(8): 2091-2105.
[9] YANG Qi-Rui, LI Lan-Tao, ZHANG Duo, WANG Ya-Xian, SHENG Kai, WANG Yi-Lun. Effect of phosphorus application on yield, quality, light temperature physiological characteristics, and root morphology in summer peanut [J]. Acta Agronomica Sinica, 2024, 50(7): 1841-1854.
[10] CAO Zi-Qi, ZHAO Xiao-Qing, ZHANG Xiang-Qian, WANG Jian-Guo, LI Juan, HAN Yun-Fei, LIU Dan, GAO Yan-Hua, LU Zhan-Yuan, REN Yong-Feng. Effects of nitrogen application levels on the accumulation, distribution of nitrogen, phosphorus and potassium, and the corresponding yield of Cyperus esculentus in sandy soil [J]. Acta Agronomica Sinica, 2024, 50(7): 1805-1817.
[11] HAN Xiao-Chen, ZHANG Gui-Qin, WANG Ya-Hui, REN Hao, WANG Hong-Zhang, LIU Guo-Li, LIN Dian-Xu, WANG Zi-Qiang, ZHANG Ji-Wang, ZHAO Bin, REN Bao-Zhao, LIU Peng. Effects of soil conditioners on soil salinity content and maize yield in coastal saline-alkali land [J]. Acta Agronomica Sinica, 2024, 50(7): 1776-1786.
[12] LI Chang-Xi, DONG Zhan-Peng, GUAN Yong-Hu, LIU Jin-Wei, LI Hang, MEI Yong-Jun. Genetic contribution and decision coefficient analysis of agronomic characters and lint yield traits of upland cotton in southern Xinjiang [J]. Acta Agronomica Sinica, 2024, 50(6): 1486-1502.
[13] WANG Fei-Er, GUO Yao, LI Pan, WEI Jin-Gui, FAN Zhi-Long, HU Fa-Long, FAN Hong, HE Wei, YIN Wen, CHEN Gui-Ping. Compensation mechanism of increased maize density on yield with water and nitrogen reduction supply in oasis irrigation areas [J]. Acta Agronomica Sinica, 2024, 50(6): 1616-1627.
[14] ZHANG Zhi-Yuan, ZHOU Jie-Guang, LIU Jia-Jun, WANG Su-Rong, WANG Tong-Zhu, ZHAO Cong-Hao, YOU Jia-Ning, DING Pu-Yang, TANG Hua-Ping, LIU Yan-Lin, JIANG Qian-Tao, CHEN Guo-Yue, WEI Yu-Ming, MA Jian. Identification and verification of low-tillering QTL based on a new model of genetic analysis in wheat [J]. Acta Agronomica Sinica, 2024, 50(6): 1373-1383.
[15] WANG Long, LI Jing, QIAN Chen, LIN Guo-Bing, LI Yi-Yang, YANG Guang, ZUO Qing-Song. Effects of salt stress on yield, quality, and physiology in rapeseed [J]. Acta Agronomica Sinica, 2024, 50(6): 1597-1607.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!