Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2024, Vol. 50 ›› Issue (9): 2371-2382.doi: 10.3724/SP.J.1006.2024.34205

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Relationship between cotton yield and canopy microenvironment under summer direct seeding

PENG Jie(), XIE Xiao-Qi, ZHANG Zhao, YAO Xiao-Fen, QIU Shen, CHEN Dan-Dan, GU Xiao-Na, WANG Yu-Jie, WANG Chen-Chen, YANG Guo-Zheng*()   

  1. College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
  • Received:2023-12-06 Accepted:2024-05-21 Online:2024-09-12 Published:2024-06-04
  • Contact: *E-mail: ygzh9999@mail.hzau.edu.cn
  • Supported by:
    Hubei Hongshan Laboratory Project(2021hszd006)

Abstract:

The yield of cotton under summer direct seeding can be comparable to that of conventional cotton in a short growing period. However, the mechanisms behind high yield formation and its relationship with the canopy microenvironment remain unclear. Therefore, this experiment employed a completely randomized block design, with six different planting densities (7.50, 8.25, 9.00, 9.75, 10.50, and 11.25 plants m-2). The field experiment was conducted in Wuhan from 2022 to 2023. Temperature and humidity within the canopy were recorded using an automated meter, while light radiation intensity at various heights of the canopy during boll setting stage was measured using a canopy analyzer. Cotton was manually harvested to calculate the yield. The results indicated that cotton yield initially increased and then decreased with increasing planting density. Among them, the highest yield (3246.5 kg hm-2 of seed cotton and 1203.2 kg hm-2 of lint) was observed at a density of 9.75 plants per square meter, which was significantly higher than the yield at 7.50 plants m-2 (15.0% and 17.8% higher) over the two years. As planting density in creased, the average daily temperature, maximum temperature, and minimum temperature within the canopy decreased, while relative humidity, maximum humidity, and minimum humidity increased. Canopy light transmittance exhibited a “V” shape horizontally, with the maximum at the middle of the cotton row. Vertically, light transmittance in the middle and lower part (10-50 cm above the ground) decreased with increasing planting density, while the upper part (50-70 cm above the ground) showed an increase. Population leaf area index initially increased and then decreased with planting density, with the highest value observed at 9.75 plants m-2, averaging 2.6 over the two years. Correlation analysis showed that cotton yield decreased with the increase of average daily temperature and maximum temperature, while it increased with the increase of relative humidity and maximum humidity. Cotton yield decreased with increased light transmittance in the middle and lower part of the canopy, but increased with increased light transmittance in the upper part of the canopy. In conclusion, under summer cotton direct seeding, appropriately increasing the planting density (9.75-11.25 plants m-2) is beneficial for increasing boll number per unit area and improving the canopy microenvironment, ultimately increasing cotton yield. The optimal canopy microenvironment conditions are as follows: canopy transmittance of above 85% at 70 cm, 37%-40% at 50 cm, 14%-16% at 30 cm, and below 9% at 10 cm; canopy temperature of 26.5-27.0℃; and canopy humidity of 74%-77%.

Key words: summer direct seeding, yield, canopy microenvironment, planting density, leaf area index

Fig. 1

Temperature and precipitation during the whole cotton growth period in summer direct-seeded cotton fields (2022-2023)"

Fig. 2

Diagram of the wooden frame for measuring the distribution of light radiation (A) and temperature and humidity recorder (B) in cotton canopy A: the frame has a width of 50 cm (0, 10, 20, 30, 40, and 50 cm from the left cotton row) and a height of 100 cm (10, 30, 50, 70, and 100 cm from the ground), with a length of 100 cm. B: the temperature and humidity recorder is positioned 30 cm above the ground."

Table 1

Field air temperature and humidity after squaring in summer direct-seeded cotton fields (2022-2023)"

年份
Year
温度 Temperature (℃) 相对湿度
Relative humidity (%)
降雨日数Rainfall days (d) 降雨量Precipitation
(mm)
平均
Average
最高
Maximum
最低
Minimum
日较差
Daily range
2022 27.8 32.5 23.7 8.8 64.1 24 87.9
2023 26.5 30.5 23.0 7.5 72.9 58 886.5

Table 2

Effect of planting density on the yield and its components of summer direct-seeded cotton (2022-2023)"

年份
Year
种植密度
Planting density
(plants m-2)
铃数
Bolls
(No. m-2)
铃重
Boll weight (g)
衣分
Lint percentage
(%)
产量 Yield (kg hm-2)
籽棉 Seed cotton 皮棉 Lint cotton
2022 7.50 85.9 bc 3.9 a 34.4 a 2630.7 bc 904.2 bc
8.25 82.8 c 3.9 a 33.3 a 2519.9 c 838.1 c
9.00 93.6 ab 3.9 a 34.1 a 2808.6 ab 957.8 ab
9.75 97.9 a 4.2 a 35.1 a 2821.0 a 989.2 a
10.50 93.9 ab 3.9 a 35.1 a 2803.4 ab 983.5 a
11.25 93.8 ab 4.1 a 36.9 a 2639.1 abc 972.0 ab
平均值Average 91.3 4.0 34.8 2703.8 940.8
2023 7.50 89.0 d 5.1 a 37.7 a 3016.6 c 1138.0 c
8.25 91.9 cd 4.9 a 38.8 a 3236.3 bc 1255.2 bc
9.00 95.7 bcd 5.1 a 37.2 a 3493.2 ab 1298.4 ab
9.75 105.8 a 5.1 a 38.6 a 3672.1 a 1417.1 a
10.50 101.7 ab 5.1 a 37.5 a 3647.4 ab 1366.5 ab
11.25 100.3 abc 4.9 a 38.7 a 3484.8 ab 1346.9 ab
平均值Average 97.4 5.0 38.1 3425.1 1303.7
变异来源 Source of variance
年份 Year (Y) ** ** ** ** **
种植密度 Planting density (D) ** ns ns ** **
Y×D ns ns ns ns ns

Table 3

Effect of planting density on the canopy temperature after squaring in summer direct-seeded cotton fields (2022-2023)"

年份
Year
种植密度
Planting density (plants m-2)
冠层温度 Canopy temperature (℃)
平均值Average 最高值Maximum 最低值Minimum 日较差Daily range
2022 7.50 29.0 a 36.9 ab 21.3 a 15.6 a
8.25 28.4 ab 37.3 ab 21.4 a 15.9 a
9.00 27.9 abc 37.4 a 21.4 a 16.1 a
9.75 27.2 bcd 35.8 bc 21.5 a 14.2 b
10.50 26.3 d 35.0 c 20.2 a 14.8 ab
11.25 26.8 cd 36.0 abc 21.0 a 15.0 ab
平均值Average 27.6 36.4 21.1 15.3
2023 7.50 28.3 a 35.4 a 23.6 a 11.8 b
8.25 27.8 ab 35.4 a 22.8 ab 12.6 ab
9.00 26.9 bc 35.0 a 21.9 bc 13.1 a
9.75 26.7 c 32.8 b 22.4 bc 10.5 c
10.50 26.7 c 34.4 a 22.0 bc 12.4 ab
11.25 26.6 c 34.5 a 21.7 c 12.8 ab
平均值Average 27.2 34.6 22.4 12.2
变异来源 Source of variance
年份 Year (Y) ns ** ** **
种植密度 Planting density (D) ** ** * **
Y×D ns ns ns ns

Table 4

Effect of planting density on the canopy relative humidity after squaring in summer direct-seeded cotton fields (2022-2023)"

年份
Year
种植密度
Plant density
(plants m-2)
相对湿度 Relative humidity (%)
平均值Average 最高值Maximum 最低值Minimum 日较差Daily range
2022 7.50 67.4 c 86.4 bc 48.9 a 37.5 a
8.25 66.7 c 86.3 bc 46.4 a 39.9 a
9.00 67.8 bc 87.5 ab 45.7 a 41.8 a
9.75 68.6 bc 85.6 c 47.3 a 38.2 a
10.50 70.2 ab 87.6 ab 48.7 a 38.9 a
11.25 71.9 a 88.6 a 48.8 a 39.8 a
平均Average 68.8 87.0 47.6 39.3
2023 7.50 74.4 d 87.2 d 60.3 bc 26.9 c
8.25 76.9 c 92.1 c 55.3 d 36.8 a
9.00 78.8 bc 93.7 b 57.3 cd 36.4 a
9.75 79.2 b 94.0 b 55.7 d 38.3 a
10.50 83.9 a 96.1 a 63.9 a 32.2 b
11.25 80.0 b 96.4 a 61.1 ab 35.3 ab
平均Average 78.9 93.2 58.9 34.3
变异来源 Source of variance
年份 Year (Y) ** ** ** **
种植密度 Planting density (D) ** ** ** **
Y×D ** ** ns **

Fig. 3

Effect of planting density on the canopy light transmittance (%) at boll setting stage in summer direct-seeded cotton fields (2022-2023) The horizontal direction is 0, 10, 20, 30, 40, and 50 cm away from the left cotton row, and the vertical direction is 10, 30, 50, 70, and 100 cm away from the ground."

Fig. 4

Effect of planting density on the leaf area index (LAI) at boll setting stage in summer direct-seeded cotton fields (2022-2023) Different lowercase letters in the same year are significantly different among treatments (n = 3) at the 0.05 probability level. ** indicates significant difference at the 0.01 probability level."

Fig. 5

Correlation analysis between lint yield and canopy temperature and relative humidity in summer direct-seeded cotton fields (2022-2023) Values are means ± standard error (n = 3)."

Fig. 6

Correlation analysis between lint yield and light transmittance (%) of cotton canopy at boll setting stage in summer direct-seeded cotton fields (2022-2023) Values are means ± standard error (n = 3)."

[1] 董合忠, 杨国正, 李亚兵, 田立文, 代建龙, 孔祥强. 棉花轻简化栽培关键技术及其生理生态学机制. 作物学报, 2017, 43: 631-639.
Dong H Z, Yang G Z, Li Y B, Tian L W, Dai J L, Kong X Q. Key technologies for light and simplified cultivation of cotton and their eco-physiological mechanisms. Acta Agron Sin, 2017, 43: 631-639 (in Chinese with English abstract).
[2] 李亚兵, 韩迎春, 冯璐, 王国平, 王占彪, 毛树春. 我国棉花轻简化栽培关键技术研究进展. 棉花学报, 2017, 29(增刊1): 80-88.
Li Y B, Han Y C, Feng L, Wang G P, Wang Z B, Mao S C. Advances of light and simplified cultivation technologies in China. Cotton Sci, 2017, 29(S1): 80-88 (in Chinese with English abstract).
[3] 刘瑞显, 周治国, 陈德华, 张志刚, 郑曙峰, 杨长琴, 张国伟. 长江流域棉区棉花“三集中”的轻简高效理论与栽培途径. 中国棉花, 2018, 45(9): 11-12.
doi: 10.11963/1000-632X.lrxzzg.20180920
Liu R X, Zhou Z G, Chen D H, Zhang Z G, Zheng S F, Yang C Q, Zhang G W. Theory of “Sanjizhong” and technology on simple and efficient cotton cultivation in the Yangtze River Valley. China Cotton, 2018, 45(9): 11-12 (in Chinese).
[4] 杨长琴, 刘瑞显, 郭文琦, 张培通, 徐立华. 麦棉两熟不同种植方式棉花生育特性及产量构成. 江苏农业学报, 2011, 27: 944-949.
Yang C Q, Liu R X, Guo W Q, Zhang P T, Xu L H. Growth characteristics and yield components of cotton in different wheat-cotton double cropping systems. Jiangsu J Agric Sci, 2011, 27: 944-949 (in Chinese with English abstract).
[5] 杨长琴, 张国伟, 刘瑞显, 王晓婧, 倪万潮. 播期对麦(油)后直播棉产量、品质及氮磷钾利用的影响. 中国生态农业学报, 2020, 28: 42-49.
Yang C Q, Zhang G W, Liu R X, Wang X J, Ni W C. Effects of sowing dates on lint yield, fiber quality, and use of nitrogen, phosphorus and potassium in cotton field-seeded after barley or oilseed rape harvest in Yangtze River Valley, China. Chin J Ecol Agric, 2020, 28: 42-49 (in Chinese with English abstract).
[6] 张友昌, 黄晓莉, 胡爱兵, 李洪菊, 冯常辉, 李蔚, 张贤红, 罗艳萍, 杨国正. 长江流域麦/油后直播棉花播种时间下限研究. 棉花学报, 2021, 33: 155-168.
doi: 10.11963/1002-7807.zycygz.20210310
Zhang Y C, Huang X L, Hu A B, Li H J, Feng C H, Li W, Zhang X H, Luo Y P, Yang G Z. Study on the limitation of late sowing date on cotton planted after wheat/rape in the Yangtze River Basin. Cotton Sci, 2021, 33: 155-168 (in Chinese with English abstract).
doi: 10.11963/1002-7807.zycygz.20210310
[7] Li X F, Lei Y P, Han Y C, Wang Z B, Wang G P, Feng L, Du W L, Fan Z Y, Yang B F, Xiong S W, Xing F F, Xin M H, Li Y B. The relative impacts of changes in plant density and weather on cotton yield variability. Field Crops Res, 2021, 270: 108202.
[8] 李玲. 株行距配置对不同株型棉花冠层微环境及产量形成规律的影响. 新疆农业大学硕士学位论文, 新疆乌鲁木齐, 2021.
Li L. Effects of Row Spacing on Canopy Micro-environment and Yield Formation of Different Plant Types of Cotton. MS Thesis of Xinjiang Agricultural University, ürümqi, Xinjiang, China, 2021 (in Chinese with English abstract).
[9] 娄善伟, 赵强, 高云光, 郭仁松, 阿不力克木, 张巨松. 密度对棉花冠层小气候影响及其与棉花相关生理特征和纤维品质的关系. 棉花学报, 2010, 22: 260-266.
doi: 10.11963/cs100311
Lou S W, Zhao Q, Gao Y G, Guo R S, Abuli K M, Zhang J S. The effect of different density to canopy-microclimate and quality of cotton. Cotton Sci, 2010, 22: 260-266 (in Chinese with English abstract).
[10] Qi J, Zhang Y J, Dai J L, Xu S Z, Zhang D M, Nie J J, Sun X Z, Dong H Z. Late-planted short-season cotton without plastic mulching is an alternative to early-planted mulched full-season cotton. Ind Crop Prod, 2021, 163: 113325.
[11] 聂军军, 代建龙, 杜明伟, 张艳军, 田晓莉, 李召虎, 董合忠. 我国现代植棉理论与技术的新发展: 棉花集中成熟栽培. 中国农业科学, 2021, 54: 4286-4298.
doi: 10.3864/j.issn.0578-1752.2021.20.004
Nie J J, Dai J L, Du M W, Zhang Y J, Tian X L, Li Z H, Dong H Z. New development of modern cotton farming theory and technology in China: concentrated maturation cultivation of cotton. Sci Agric Sin, 2021, 54: 4286-4298 (in Chinese with English abstract).
[12] 胡启星, 刘帅, 白志刚, 孙巨龙, 刘婷, 崔爱花. 种植密度对长江流域直播棉花成铃分布及产量品质的影响. 江苏农业科学, 2022, 50(13): 124-128.
Hu Q X, Liu S, Bai Z G, Sun J L, Liu T, Cui A H. Impacts of planting density on boll distribution, yield and quality of direct-seeding cotton in the Yangtze River Basin. Jiangsu Agric Sci, 2022, 50(13): 124-128 (in Chinese).
[13] 董合忠, 张艳军, 张冬梅, 代建龙, 张旺锋. 基于集中收获的新型棉花群体结构. 中国农业科学, 2018, 51: 4615-4624.
doi: 10.3864/j.issn.0578-1752.2018.24.003
Dong H Z, Zhang Y J, Zhang D M, Dai J L, Zhang W F. New grouped harvesting-based population structures of cotton. Sci Agric Sin, 2018, 51: 4615-4624 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2018.24.003
[14] 祁杰, 代建龙, 孙学振, 董合忠. 短季棉的早熟性机制及栽培利用. 棉花学报, 2018, 30: 406-413.
Qi J, Dai J L, Sun X Z, Dong H Z. Short-season cotton: mechanism of early maturity and its cultivation. Cotton Sci, 2018, 30: 406-413 (in Chinese with English abstract).
doi: 10.11963/1002-7807.qjdhz.20180916
[15] 肖松华, 吴巧娟, 刘剑光, 陈旭升, 许乃银, 狄佳春, 马晓杰. 江苏省机械化植棉的可行性分析. 中国棉花, 2011, 38(4): 5-8.
doi: 10.11963/issn.1000-632X.20110402
Xiao S H, Wu Q J, Liu J G, Chen X S, Xu N Y, Di J C, Ma X J. The feasibility analysis of mechanization of cotton production in Jiangsu province. China Cotton, 2011, 38(4): 5-8 (in Chinese).
[16] 王秀媛, 马卉, 高宏云, 李楠楠, 李军宏, 夏军, 罗宏海. 新疆北部棉花冠层结构特征对滴灌定额的响应. 应用生态学报, 2019, 30: 4169-4176.
doi: 10.13287/j.1001-9332.201912.023
Wang X Y, Ma H, Gao H Y, Li N N, Li J H, Xia J, Luo H H. Responses of cotton canopy structure characteristics to drip irrigation quota in north Xinjiang, China. Chin J Appl Ecol, 2019, 30: 4169-4176 (in Chinese with English abstract).
doi: 10.13287/j.1001-9332.201912.023
[17] Chen Z K, Niu Y P, Zhao R H, Han C L, Han H Y, Luo H H. The combination of limited irrigation and high plant density optimizes canopy structure and improves the water use efficiency of cotton. Agric Water Manag, 2019, 218: 139-148.
[18] Wu B J, Zuo W Q, Yang P, Zhang W F. Optimal water and nitrogen management increases cotton yield through improving leaf number and canopy light environment. Field Crops Res, 2023, 290: 108745.
[19] Yang G Z, Luo X J, Nie Y C, Zhang X L. Effects of plant density on yield and canopy micro-environment in hybrid cotton. J Integr Agric, 2014, 13: 2154-2163.
[20] 李慧, 万华龙, 田立文, 刘连涛, 张永江, 白志英, 张科, 王国平, 孙红春, 李存东. 晚播增密对棉花群体光合及干物质积累与分配的影响. 棉花学报, 2020, 32: 339-347.
doi: 10.11963/1002-7807.lhlcd.20200622
Li H, Wan H L, Tian L W, Liu L T, Zhang Y J, Bai Z Y, Zhang K, Wang G P, Sun H C, Li C D. The effects of lncreased-density on canopy apparent photosynthesis, dry matter accumulation and distribution of cotton under late-sown condition. Cotton Sci, 2020, 32: 339-347 (in Chinese with English abstract).
[21] 刘翠, 张巨松, 阿依加玛丽, 石俊毅, 武辉. 密度对杂交棉群体冠层及光合特性的影响. 新疆农业科学, 2013, 50: 1-7.
Liu C, Zhang J S, Ayijiamali, Shi J Y, Wu H. Effects of densities on the group canopy and photosynthetic production of hybrid cotton. Xinjiang Agric Sci, 2013, 50: 1-7 (in Chinese with English abstract).
[22] 陈焕轩. 不同密度棉花水分消耗与冠层温度变化特征及对产量的影响. 郑州大学硕士学位论文, 河南郑州, 2021.
Chen H X. The Variability of Water Consumption and Canopy Temperature and Its Effect on Yield of Different Densities of Cotton. MS Thesis of Zhengzhou University, Zhengzhou, Henan, China, 2021 (in Chinese with English abstract).
[23] 冯国艺, 姚炎帝, 罗宏海, 张亚黎, 杜明伟, 张旺锋, 夏冬利, 董恒义. 新疆超高产棉花冠层光分布特征及其与群体光合生产的关系. 应用生态学报, 2012, 23: 1286-1294.
Feng G Y, Yao Y D, Luo H H, Zhang Y L, Du M W, Zhang W F, Xia D L, Dong H Y. Canopy light distribution and its correlation with photosynthetic production in super-high yielding cotton fields of Xinjiang, Northwest China. Chin J Appl Ecol, 2012, 23: 1286-1294 (in Chinese with English abstract).
[24] 王家勇, 李春梅, 徐文修, 李鹏程, 张娜, 李玲, 马云珍, 王芳. 种植密度对76 cm等行距机采棉冠层结构、冠层温湿度及产量的影响. 新疆农业科学, 2023, 60: 2609-2617.
doi: 10.6048/j.issn.1001-4330.2023.11.002
Wang J Y, Li C M, Xu W X, Li P C, Zhang N, Li L, Ma Y Z, Wang F. Effects of planting density on canopy structure, canopy temperature and humidity and yield of 76 cm machine-picked cotton with equal row spacing. Xinjiang Agric Sci, 2023, 60: 2609-2617 (in Chinese with English abstract).
doi: 10.6048/j.issn.1001-4330.2023.11.002
[25] Adams C, Thapa S, Kimura E. Determination of a plant population density threshold for optimizing cotton lint yield: a synthesis. Field Crops Res, 2019, 230: 11-16.
[26] 张旺锋, 王振林, 余松烈, 李少昆, 房建, 童文崧. 种植密度对新疆高产棉花群体光合作用、冠层结构及产量形成的影响. 植物生态学报, 2004, 28: 164-171.
doi: 10.17521/cjpe.2004.0024
Zhang W F, Wang Z L, Yu S L, Li S K, Fang J, Tong W S. Effects of planting density on canopy photosynthesis canopy structure and yield formation of high-yield cotton in Xinjiang China. Chin J Plant Ecol, 2004, 28: 164-171 (in Chinese with English abstract).
[27] Li X F, Han Y C, Wang G P, Feng L, Wang Z B, Yang B F, Du W L, Lei Y P, Xiong S W, Zhi X Y, Xing F F, Fan Z Y, Xin M H, Li Y B. Response of cotton fruit growth, intraspecific competition and yield to plant density. Eur J Agron, 2020, 114: 125991.
[28] 李显恩, 马学峰, 张钊, 杨丽荣, 吕娜, 姚晓芬, 邱深, 张贵粉, 杨国正. 夏直播棉成铃时间分布与产量的关系. 棉花学报, 2022, 34: 416-429.
doi: 10.11963/cs20210074
Li X E, Ma X F, Zhang Z, Yang L R, Lyu N, Yao X F, Qiu S, Zhang G F, Yang G Z. Relationship between boll temporal distribution and cotton yield under summer direct seeding. Cotton Sci, 2022, 34: 416-429 (in Chinese with English abstract).
doi: 10.11963/cs20210074
[29] 马学峰. 夏直播棉花产量形成的空间特异性. 华中农业大学硕士学位论文, 湖北武汉, 2022.
Ma X F. Spatial Specificity of Cotton Yield Formation Directly-sown in Summer. MS Thesis of Huazhong Agricultural University, Wuhan, Hubei, China, 2022 (in Chinese with English abstract).
[30] Zhi X Y, Han Y C, Li Y B, Wang G P, Du W L, Li X X, Mao S C, Feng L. Effects of plant density on cotton yield components and quality. J Integr Agric, 2016, 15: 1469-1479.
[31] 周相. 品种和密度对棉花成铃规律及棉铃内部产量构成的影响. 塔里木大学硕士学位论文, 新疆阿拉尔, 2022.
Zhou X. Effects of Variety and Density on Cotton Boll Formation and Boll Internal Yield Composition. MS Thesis of Tarim University, Alar, Xinjiang, China, 2022 (in Chinese with English abstract).
[32] Thapa S, Jessup K E, Pradhan G P, Rudd J C, Liu S, Mahan J R, Devkota R N, Baker J A, Xue Q W. Canopy temperature depression at grain filling correlates to winter wheat yield in the U.S. Southern High Plains. Field Crops Res, 2018, 217: 11-19.
[33] 孙啸震, 张黎妮, 戴艳娇, 贺新颖, 周治国, 王友华. 花铃期增温对棉花干物重累积的影响及其生理机制. 作物学报, 2012, 38: 683-690.
doi: 0.3724/SP.J.1006.2012.00683
Sun X Z, Zhang L N, Dai Y J, He X Y, Zhou Z G, Wang Y H. Effect of increased canopy temperature on cotton plant dry matter accumulation and its physiological mechanism. Acta Agron Sin, 2012, 38: 683-690 (in Chinese with English abstract).
[34] Lokhande S, Reddy K R. Quantifying temperature effects on cotton reproductive efficiency and fiber quality. Agron J, 2014, 106: 1275-1282.
[35] Thapa S, Stewart B A, Xue Q W, Rhoades M B, Angira B, Reznik J. Canopy temperature, yield, and harvest index of corn as affected by planting geometry in a semi-arid environment. Field Crops Res, 2018, 227: 110-118.
[36] Zhang Z, Ahmed S, Chattha M S, Liu A D, Liu J H, Lyu N, Yang L R, Ma X F, Li X N, Hao F R, Yang G Z. Managing plant density and nitrogen fertilizer to reduce nitrogen input without yield reduction of late-sown cotton after wheat by improving light interception and sink nitrogen partitioning in a double cropping system. Field Crops Res, 2023, 295: 108875.
[37] Murchie E H, Burgess A J. Casting light on the architecture of crop yield. Crop Environ, 2022, 1: 74-85.
[38] Kaggwa-Asiimwe R, Andrade-Sanchez P, Wang G Y. Plant architecture influences growth and yield response of upland cotton to population density. Field Crops Res, 2013, 145: 52-59.
[39] Yao H S, Zhang Y L, Yi X P, Zhang X G, Zhang W F. Cotton responds to different plant population densities by adjusting specific leaf area to optimize canopy photosynthetic use efficiency of light and nitrogen. Field Crops Res, 2016, 188: 10-16.
[40] Chapepa B, Mudada N, Mapuranga R. The impact of plant density and spatial arrangement on light interception on cotton crop and seed cotton yield: an overview. J Cotton Res, 2020, 3: 18.
[41] Khan A, Zheng J, Tan D K Y, Khan A, Akhtar K, Kong X, Munsif F, Iqbal A, Afridi M Z, Ullah A, Fahad S, Zhou R Y. Changes in leaf structural and functional characteristics when changing planting density at different growth stages alters cotton lint yield under a new planting model. Agronomy, 2019, 9: 859.
[42] 晏平. 密度对短季直播栽培棉花成铃时空分布及产量形成的影响. 湖南农业大学硕士学位论文, 湖南长沙, 2020.
Yan P. Effects of Density on Boll-forming Spatial and Temporal Distribution and Yield Formation of Short-growth-duration Direct Seeding Cotton. MS Thesis of Hunan Agricultural University, Changsha, Hunan, China, 2020 (in Chinese with English abstract).
[43] 李建峰, 王聪, 梁福斌, 陈厚川, 田景山, 康鹏, 张旺锋. 新疆机采模式下棉花株行距配置对冠层结构指标及产量的影响. 棉花学报, 2017, 29: 157-165.
doi: 10.11963/issn.1002-7807.201702005
Li J F, Wang C, Liang F B, Chen H C, Tian J S, Kang P, Zhang W F. Row spacing and planting density affect canopy structure and yield in machine-picked cotton in Xinjiang. Cotton Sci, 2017, 29: 157-165 (in Chinese with English abstract).
doi: 10.11963/issn.1002-7807.201702005
[44] 姚贺盛. 新疆棉花机采模式下高光效冠层结构特征及调控研究. 石河子大学博士学位论文, 新疆石河子, 2018.
Yao H S. Research on the Canopy Structure Characteristics of High Photosynthetic Efficiency and Its Regulation Mechanism in Machine-harvested Cotton (Gossypium spp.). PhD Dissertation of Shihezi University, Shihezi, Xinjiang, China, 2018 (in Chinese with English abstract).
[45] 支晓宇, 韩迎春, 王国平, 冯璐, 杨北方, 范正义, 杜文丽, 雷亚平, 毛树春, 李亚兵. 不同密度下棉花群体光辐射空间分布及生物量和纤维品质的变化. 棉花学报, 2017, 29: 365-373.
doi: 10.11963/1002-7807.zxylyb.20170407
Zhi X Y, Han Y C, Wang G P, Feng L, Yang B F, Fan Z Y, Du W L, Lei Y P, Mao S C, Li Y B. Changes to the PAR spatial distribution, biomass, and fiber quality in response to plant densities. Cotton Sci, 2017, 29: 365-373 (in Chinese with English abstract).
doi: 10.11963/1002-7807.zxylyb.20170407
[46] 刘帅, 李亚兵, 韩迎春, 王国平, 杨北方, 冯璐, 雷亚平, 范正义, 杜文丽. 棉花冠层不同尺度光能空间分布特征研究. 棉花学报, 2017, 29: 447-455.
doi: 10.11963/1002-7807.lslyb.20170903
Liu S, Li Y B, Han Y C, Wang G P, Yang B F, Feng L, Lei Y P, Fan Z Y, Du W L. Study on light spatial distribution at different scales in the cotton canopy. Cotton Sci, 2017, 29: 447-455 (in Chinese with English abstract).
doi: 10.11963/1002-7807.lslyb.20170903
[47] 王志才, 李存东, 张永江, 刘连涛, 孙红春. 种植密度对棉花主要群体质量指标的影响. 棉花学报, 2011, 23: 284-288.
doi: 10.11963/cs110316
Wang Z C, Li C D, Zhang Y J, Liu L T, Sun H C. Effects of different densities on main population quality of cotton. Cotton Sci, 2011, 23: 284-288 (in Chinese with English abstract).
[48] 刘帅, 李亚兵, 白志刚, 胡启星, 崔爱花. 种植密度对长江流域直播棉花群体生长的影响. 江西农业学报, 2020, 32(10): 1-6.
Liu S, Li Y B, Bai Z G, Hu Q X, Cui A H. Effects of planting density on yield and fiber quality of direct-seeding cotton in Yangtze River Valley. Acta Agric Jiangxi, 2020, 32(10): 1-6 (in Chinese with English abstract).
[1] ZHANG Gui-Qin, WANG Hong-Zhang, GUO Xin-Song, ZHU Fu-Jun, GAO Han, ZHANG Ji-Wang, ZHAO Bin, REN Bai-Zhao, LIU Peng, REN Hao. Effects of organic material inputs on soil physicochemical properties and summer maize yield formation in coastal saline-alkali land [J]. Acta Agronomica Sinica, 2024, 50(9): 2323-2334.
[2] ZHANG Qi-Qi, CHEN Jie-Chang, KUAI Jie, WANG Bo, WANG Jing, XU Zheng-Hua, ZHAO Jie, ZHAO Si-Ming, JIA Cai-Hua, ZHOU Guang-Sheng. Effect of high density planting on the quality of cold pressed rapeseed oil [J]. Acta Agronomica Sinica, 2024, 50(9): 2358-2370.
[3] ZHANG Zhen, HE Jian-Ning, SHI Yu, YU Zhen-Wen, ZHANG Yong-Li. Effects of row spacing and planting patterns on photosynthetic characteristics and yield of wheat [J]. Acta Agronomica Sinica, 2024, 50(9): 2396-2407.
[4] XU Yi-Fan, XU Cai-Long, LI Rui-Dong, WU Zong-Sheng, HUA Jian-Xin, YANG Lin, SONG Wen-Wen, WU Cun-Xiang. Deep side fertilization improved soybean yield by optimizing leaf function and nitrogen accumulation [J]. Acta Agronomica Sinica, 2024, 50(9): 2335-2346.
[5] YANG Yu-Chen, JIN Ya-Rong, LUO Jin-Chan, ZHU Xin, LI Wei-Hang, JIA Ji-Yuan, WANG Xiao-Shan, HUANG De-Jun, HUANG Lin-Kai. Identification and expression analysis of the WD40 gene family in pearl millet [J]. Acta Agronomica Sinica, 2024, 50(9): 2219-2236.
[6] LIU Zhi-Peng, GOU Zhi-Wen, CHAI Qiang, YIN Wen, FAN Zhi-Long, HU Fa-Long, FAN Hong, WANG Qi-Ming. Effect of green manure on wheat and maize yields in diversified cropping patterns in an arid irrigated agricultural area [J]. Acta Agronomica Sinica, 2024, 50(9): 2415-2424.
[7] SUN Zhao-Hua, REN Hao, WANG Hong-Zhang, WANG Zi-Qiang, YAO Hai-Yan, XIN Ai-Mei, ZHAO Bin, ZHANG Ji-Wang, REN Bai-Zhao, LIU Peng. Effects of foliar silicon sprays on leaf photosynthetic performance and grain yield of summer maize in coastal saline-alkali soil [J]. Acta Agronomica Sinica, 2024, 50(9): 2383-2395.
[8] LOU Hong-Xiang, HUANG Xiao-Yu, JIANG Meng, NING Ning, BIAN Meng-Lei, ZHANG Lei, LUO Dong-Xu, QIN Meng-Qian, KUAI Jie, WANG Bo, WANG Jing, ZHAO Jie, XU Zheng-Hua, ZHOU Guang-Sheng. Optimal allocation of sowing date and sowing rate of late-sowing rapeseed in the Yangtze River Basin [J]. Acta Agronomica Sinica, 2024, 50(8): 2091-2105.
[9] LIU Chen, WANG Kun-Kun, LIAO Shi-Peng, YANG Jia-Qun, CONG Ri-Huan, REN Tao, LI Xiao-Kun, LU Jian-Wei. Effects of nitrogen fertilizer application levels on yield and nitrogen absorption and utilization of oilseed rape under maize-oilseed rape and rice-oilseed rape rotation fields [J]. Acta Agronomica Sinica, 2024, 50(8): 2067-2077.
[10] YANG Qi-Rui, LI Lan-Tao, ZHANG Duo, WANG Ya-Xian, SHENG Kai, WANG Yi-Lun. Effect of phosphorus application on yield, quality, light temperature physiological characteristics, and root morphology in summer peanut [J]. Acta Agronomica Sinica, 2024, 50(7): 1841-1854.
[11] CAO Zi-Qi, ZHAO Xiao-Qing, ZHANG Xiang-Qian, WANG Jian-Guo, LI Juan, HAN Yun-Fei, LIU Dan, GAO Yan-Hua, LU Zhan-Yuan, REN Yong-Feng. Effects of nitrogen application levels on the accumulation, distribution of nitrogen, phosphorus and potassium, and the corresponding yield of Cyperus esculentus in sandy soil [J]. Acta Agronomica Sinica, 2024, 50(7): 1805-1817.
[12] HAN Xiao-Chen, ZHANG Gui-Qin, WANG Ya-Hui, REN Hao, WANG Hong-Zhang, LIU Guo-Li, LIN Dian-Xu, WANG Zi-Qiang, ZHANG Ji-Wang, ZHAO Bin, REN Bao-Zhao, LIU Peng. Effects of soil conditioners on soil salinity content and maize yield in coastal saline-alkali land [J]. Acta Agronomica Sinica, 2024, 50(7): 1776-1786.
[13] LI Chang-Xi, DONG Zhan-Peng, GUAN Yong-Hu, LIU Jin-Wei, LI Hang, MEI Yong-Jun. Genetic contribution and decision coefficient analysis of agronomic characters and lint yield traits of upland cotton in southern Xinjiang [J]. Acta Agronomica Sinica, 2024, 50(6): 1486-1502.
[14] WANG Fei-Er, GUO Yao, LI Pan, WEI Jin-Gui, FAN Zhi-Long, HU Fa-Long, FAN Hong, HE Wei, YIN Wen, CHEN Gui-Ping. Compensation mechanism of increased maize density on yield with water and nitrogen reduction supply in oasis irrigation areas [J]. Acta Agronomica Sinica, 2024, 50(6): 1616-1627.
[15] ZHANG Zhi-Yuan, ZHOU Jie-Guang, LIU Jia-Jun, WANG Su-Rong, WANG Tong-Zhu, ZHAO Cong-Hao, YOU Jia-Ning, DING Pu-Yang, TANG Hua-Ping, LIU Yan-Lin, JIANG Qian-Tao, CHEN Guo-Yue, WEI Yu-Ming, MA Jian. Identification and verification of low-tillering QTL based on a new model of genetic analysis in wheat [J]. Acta Agronomica Sinica, 2024, 50(6): 1373-1383.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!