Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2024, Vol. 50 ›› Issue (9): 2415-2424.doi: 10.3724/SP.J.1006.2024.41005

• RESEARCH NOTES • Previous Articles    

Effect of green manure on wheat and maize yields in diversified cropping patterns in an arid irrigated agricultural area

LIU Zhi-Peng(), GOU Zhi-Wen, CHAI Qiang*(), YIN Wen*(), FAN Zhi-Long, HU Fa-Long, FAN Hong, WANG Qi-Ming   

  1. State Key Laboratory of Aridland Crop Science / College of Agronomy, Gansu Agricultural University, Lanzhou 730070, Gansu, China
  • Received:2024-01-23 Accepted:2024-05-21 Online:2024-09-12 Published:2024-06-03
  • Contact: *E-mail: chaiq@gsau.edu.cn; E-mail: yinwen@gsau.edu.cn
  • Supported by:
    Natural Science Foundation of China(U21A20218);Natural Science Foundation of China(32101857);China Agriculture Research System of MOF and MARA(Green manure, CARS-22-G-12);Gansu Province Top Leading Talent Project(GSBJLJ-2022-23)

Abstract:

To investigate the impact of multiple cropping with leguminous green manure on yield performance indicators of wheat and maize in diversified cropping patterns, and to establish a high-yield technology pathway for crops in arid irrigation areas through the application of leguminous green manure, a field positioning experiment was conducted in 2017. Leaf area index (LAI), leaf area duration (LAD), crop growth rate (CGR), grain yield (GY), and the response characteristics of yield components were assessed from 2019 to 2021 to determine the feasibility of enhancing crop diversification and improving crop yield through the use of green manure. The experiment consisted of five cropping patterns with varying levels of crop diversification: monoculture maize (M), monoculture wheat (W) with a once-a-year harvest, wheat multiple cropped with green manure (W-G) and wheat intercropped with maize (W||M) with a twice-a-year harvest, and wheat multiple cropped with green manure intercropped with maize (W-G||M) with a thrice-a-year harvest. The results indicated that the mixed grain yield of different cropping systems increased with the level of crop diversification. The twice-a-year harvest pattern W||M showed significantly higher yield than W and M, while W-G exhibited significantly higher yield than W. The three-harvest-a-year pattern W-G||M showed significantly higher yield than W||M and W-G. Under net acreage, the grain yield of both component crops increased with higher levels of diversification. Yield performance indicators such as LAI, LAD, and late phenological stage CGR of the main crop also increased with increasing levels of crop diversification. Regarding yield components, the number of kernels in the spike of wheat and the number of ears of maize increased with higher levels of crop diversification. W-G showed significantly higher values than W for the number of kernels in the spike of wheat and the weight of 1000 kernels. Pathway analysis revealed that the yield increase in wheat was primarily attributed to the increase in the number of kernels in the ear, while the yield increase in maize was mainly due to the increase in the effective number of ears per unit area. The study demonstrated that increased levels of crop diversification led to higher grain yield and improved yield performance indicators of the main crop. Moreover, in arid irrigated areas, the implementation of legume green manure to enhance crop diversification in cropping systems can contribute to achieving higher yields.

Key words: crop diversification, green manure, intercropping, multiple cropping, yield performance

Fig. 1

Dynamics of leaf area index changes throughout the growth stages of wheat, maize, and intercropping in different treatments W-G||M: multiple cropping green manure after wheat harvested in wheat||maize intercropping; W||M: wheat||maize intercropping; W-G: spring wheat-green manure multiple cropping; M: monocropping maize; W: monocropping spring wheat."

Fig. 2

Total leaf area duration throughout the growth stages of crop populations in different treatments Different lowercase letters within the same year indicate significant differences among treatments at the 0.05 probability level."

Fig. 3

Crop growth rate for different cropping systems W-G||M: multiple cropping green manure after wheat harvested in wheat||maize intercropping; W||M: wheat||maize intercropping; W-G: spring wheat-green manure multiple cropping; M: monocropping maize; W: monocropping spring wheat."

Table 1

Grain yield of wheat and maize in different treatments in 2019-2021"

年份
Year
处理
Treatment
籽粒产量Grain yield (kg hm-2)
小麦Wheat 玉米Maize 总产量Total grain yield
2019 W-G||M 4118±90 c 9591±857 b 13,709±838 a
W||M 3731±108 d 9051±196 b 12,782±299 a
M 11,920±567 a 11,920±567 b
W-G 6588±128 a 6588±128 c
W 6203±346 b 6203±346 c
2020 W-G||M 3071±214 c 10,907±240 b 13,979±398 a
W||M 3016±22 c 9840±183 c 12,856±198 b
M 11,952±586 a 11,952±586 c
W-G 6761±195 a 6761±195 d
W 5874±118 b 5874±118 e
2021 W-G||M 3817±109 c 9800±558 b 13,617±574 a
W||M 3278±59 d 8802±173 c 12,080±206 b
M 13,157±784 a 13,157±784 b
W-G 6647±658 a 6647±658 c
W 5858±387 b 5858±387 d
显著性(P值) Significance (P-value)
种植模式Cropping pattern (C) 0*** 0*** 0***
年份Year (Y) 0.001** 0.033* 0.967
种植模式×年份 C×Y 0.016* 0.007** 0.033*

Table 2

Composition of wheat and maize yields by different cropping patterns under net acreage in 2019-2021"

年份Year 处理Treatment 穗数
Spike number (×104 ear hm-2)
穗粒数
Kernel number per spike
千粒重
1000-kernel weight (g)
小麦Wheat 玉米Maize 小麦Wheat 玉米Maize 小麦Wheat 玉米Maize
2019 W-G||M 872.73±14.60 a 9.48±0.48 a 40.93±1.76 a 606.87±6.91 a 47.00±1.25 a 430.06±6.87 a
W||M 876.87±23.61 a 8.86±0.19 a 38.11±2.02 ab 546.40±23.85 b 42.60±2.00 b 401.42±7.03 b
M 7.73±0.23 b 549.40±37.20 b 397.28±9.42 b
W-G 876.40±14.83 a 36.77±1.80 b 41.27±1.10 b
W 851.31±20.77 a 33.37±0.49 c 40.37±0.67 b
2020 W-G||M 851.33±8.36 a 9.57±0.17 a 35.87±0.25 a 592.67±6.47 a 48.20±1.87 a 429.06±10.81 a
W||M 840.73±8.44 a 9.10±0.15 b 30.67±0.83 c 538.93±13.63 c 41.31±1.31 c 414.56±2.22 a
M 7.51±0.28 c 566.27±10.74 b 417.00±17.02 a
W-G 839.53±20.42 a 32.17±0.97 b 46.38±0.86 ab
W 832.60±10.10 a 26.80±0.35 d 44.65±0.06 b
2021 W-G||M 877.33±3.79 a 9.27±0.18 a 36.67±1.53 a 564.27±46.25 a 47.13±1.35 a 399.27±8.73 b
W||M 851.67±3.79 b 7.45±0.26 b 35.33±2.08 a 566.93±41.89 a 43.47±0.56 b 421.16±3.29 a
M 7.50±0.12 b 554.13±22.35 a 428.79±5.86 a
W-G 843.33±3.21 bc 35.00±1.00 a 46.01±0.52 a
W 837.33±6.66 c 33.00±1.00 b 43.71±1.37 b

Fig. 4

Path analysis of yield components of wheat and maize SN: spike number of wheat; EN: ear number of maize; KNS: kernel number per spike; TKW: 1000-kernel weight; GY: grain yields; Solid line: direct path; Dashed line: indirect path; Bold value: decision coefficient; Thin body: value pathways."

[1] Godfray H C J, Beddington J R, Crute I R, Haddad L, Lawrence D, Muir J F, Pretty J, Robinson S, Thomas S M, Toulmin C. Food security: the challenge of feeding 9 billion people. Science, 2010, 327: 812-818.
doi: 10.1126/science.1185383 pmid: 20110467
[2] 王凯澄, 韩桐, 臧华栋, 陈阜, 薄晓智, 褚庆全. 基于地貌分区的近30年中国粮食生产空间分异研究. 作物学报, 2021, 47: 2501-2510.
doi: 10.3724/SP.J.1006.2021.03068
Wang K C, Han T, Zang H D, Chen F, Bo X Z, Chu Q Q. Spatial distribution of Chinese grain production in the past 30 years based on geomorphological division. Acta Agron Sin, 2021, 47: 2501-2510 (in Chinese with English abstract).
[3] Kremen C, Iles A, Bacon C. Diversified farming systems: an agroecological, systems-based alternative to modern industrial agriculture. Ecol Soc, 2012, 17: 44-63.
[4] Beillouin D, Ben-Ari T, Malezieux E, Seufert V, Makowski D. Positive but variable effects of crop diversification on biodiversity and ecosystem services. Global Chang Biol, 2021, 27: 4697-4710.
[5] Cong W F, Li C J, Wang G Z, Zhang F S. Designing diversified cropping systems in China: theory, approaches and implementation. Front Agric Sci Eng, 2021, 8: 362-372.
[6] 刘巽浩. 论我国耕地种植指数(复种)的潜力. 作物杂志, 1997, (3): 1-3.
Liu X H. On the potential of cropping index (sequential cropping) of arable land in China. Crops, 1997, (3): 1-3 (in Chinese).
[7] Yin X, Song Z, Shi S, Bai Z, Jiang Y, Zheng A, Huang W, Chen N, Chen F. Developments and prospects of multiple cropping in China. Farm Syst, 2024, 2: 100083.
[8] Li C J, Hoffland E, Kuyper T W, Yu Y, Zhang C C, Li H G, Zhang F S, van der Werf W. Syndromes of production in intercropping impact yield gains. Nat Plants, 2020, 6: 653-660.
doi: 10.1038/s41477-020-0680-9 pmid: 32483328
[9] Li X F, Wang Z G, Bao X G, Sun J H, Yang S C, Wang P, Wang C B, Wu J P, Liu X R, Tian X L, Wang Y, Li J P, Wang Y, Xia H Y, Mei P P, Wang X F, Zhao J H, Yu R P, Zhang W P, Che Z X, Gui L G, Callaway R M, Tilman D, Li L. Long-term increased grain yield and soil fertility from intercropping. Nat Sust, 2021, 4: 943-950.
[10] Li C J, Stomph T-J, Makowski D, Li H, Zhang C H, Zhang F S, van der Werf W. The Productive performance of intercropping. Proc Natl Acad Sci USA, 2023, 120: e2201886120.
doi: 10.1073/pnas.2201886120 pmid: 36595678
[11] 王一帆, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 间作小麦光合性能对地上地下互作强度的响应. 作物学报, 2021, 47: 929-941.
doi: 10.3724/SP.J.1006.2021.01047
Wang Y F, Yin W, Hu F L, Fan H, Fan Z L, Zhao C, Yu A Z, Chai Q. Response of photosynthetic performance of intercropped wheat to interaction intensity between above- and below-ground. Acta Agron Sin, 2021, 47: 929-941 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2021.01047
[12] 樊志龙, 柴强, 曹卫东, 于爱忠, 赵财, 谢军红, 殷文, 胡发龙. 绿肥在我国旱地农业生态系统中的服务功能及其应用. 应用生态学报, 2020, 31: 1389-1402.
doi: 10.13287/j.1001-9332.202004.023
Fan Z L, Chai Q, Cao W D, Yu A Z, Zhao C, Xie J H, Yin W, Hu F L. Ecosystem service function of green manure and its application in dryland agriculture of China. Chin J Appl Ecol, 2020, 31: 1389-1402 (in Chinese with English abstract).
[13] 蹇述莲, 李书鑫, 刘胜群, 李向楠. 覆盖作物及其作用的研究进展. 作物学报, 2022, 48: 1-14.
doi: 10.3724/SP.J.1006.2022.03058
Jian S L, Li S X, Liu S Q, Li X N. Research advances of cover crops and their important roles. Acta Agron Sin, 2022, 48: 1-14 (in Chinese with English abstract).
[14] Ablimit R, Li W K, Zhang J D, Gao H N, Zhao Y M, Cheng M M, Meng X Q, An L Z, Chen Y. Altering microbial community for improving soil properties and agricultural sustainability during a 10-year maize-green manure intercropping in northwest China. J Environ Manag, 2022, 321: 115859.
[15] Liu K, Bandara M, Hamel C, Knight J D, Gan Y T. Intensifying crop rotations with pulse crops enhances system productivity and soil organic carbon in semi-arid environments. Field Crops Res, 2020, 248: 107657.
[16] 罗跃, 张久东, 周国朋, 常单娜, 高嵩涓, 包兴国, 车宗贤, 朱青, 曹卫东. 河西绿洲灌区间作绿肥及其不同利用方式对玉米产量及土壤肥力的提升效应. 植物营养与肥料学报, 2022, 28: 402-413.
Luo Y, Zhang J D, Zhou G P, Chang D N, Gao S J, Bao X G, Che Z X, Zhu Q, Cao W D. Intercropping maize with green manure crops at various utilization patterns improves maize yield and soil fertility in Hexi Oasis irrigated area. J Plant Nutr Fert, 2022, 28: 402-413 (in Chinese with English abstract).
[17] Gan Y T, Hamel C, O’Donovan J T, Cutforth H, Zentner R P, Campbell C A, Niu Y N, Poppy L. Diversifying crop rotations with pulses enhances system productivity. Sci Rep, 2015, 5: 14625.
doi: 10.1038/srep14625 pmid: 26424172
[18] 张宾, 赵明, 董志强, 李建国, 陈传永, 孙锐. 作物高产群体LAI动态模拟模型的建立与检验. 作物学报, 2007, 33: 612-619.
Zhang B, Zhao M, Dong Z Q, Li J G, Chen C Y, Sun R. Establishment and test of lai dynamic simulation model for high yield population. Acta Agron Sin, 2007, 33: 612-619 (in Chinese with English abstract).
[19] Yin W, Chai Q, Guo Y, Feng F X, Zhao C, Yu A Z, Hu F L. Analysis of leaf area index dynamic and grain yield components of intercropped wheat and maize under straw mulch combined with reduced tillage in arid environments. J Agric Sci, 2016, 8: 26-42.
[20] 马群, 杨雄, 李敏, 李国业, 张洪程, 戴其根, 霍中洋, 许轲, 魏海燕, 高辉. 不同氮肥群体最高生产力水稻品种的物质生产积累. 中国农业科学, 2011, 44: 4159-4169.
doi: 10.3864/j.issn.0578-1752.2011.20.004
Ma Q, Yang X, Li M, Li G Y, Zhang H C, Dai Q G, Huo Z Y, Xu K, Wei H Y, Gao H. Studies on the characteristics of dry matter production and accumulation of rice varieties with different productivity levels. Sci Agric Sin, 2011, 44: 4159-4169 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2011.20.004
[21] 薛娴, 许会敏, 吴鸿洋, 沈应柏, 肖建伟, 万迎朗. 植物光合作用循环电子传递的研究进. 植物生理学报, 2017, 53: 145-158.
Xue X, Xu H M, Wu H Y, Shen Y B, Xiao J W, Wan Y L. Research progress of cyclic electron transport in plant photosynthesis. Plant Physiol J, 2017, 53: 145-158 (in Chinese with English abstract).
[22] Watiki J, Fukai S, Banda J, Keating B. Radiation interception and growth of maize/cowpea intercrop as affected by maize plant density and cowpea cultivar. Field Crops Res, 1993, 35: 123-133.
[23] 王自奎, 吴普特, 赵西宁, 李正中, 付小军. 作物间套作群体光能截获和利用机理研究进展. 自然资源学报, 2015, 30: 1057-1066.
doi: 10.11849/zrzyxb.2015.06.016
Wang Z K, Wu P T, Zhao X N, Li Z Z, Fu X J. A review of light interception and utilization by intercropped canopies. J Nat Resour, 2015, 30: 1057-1066 (in Chinese with English abstract).
[24] Liu G Z, Yang Y S, Guo X X, Liu W M, Xie R Z, Ming B, Xue J, Wang K R, Li S K, Hou P. Coordinating maize source and sink relationship to achieve yield potential of 22.5 Mg ha-1. Field Crops Res, 2022, 283: 108544.
[25] Ciampitti I A, Zhang H, Friedemann P, Vyn T J. Potential physiological frameworks for mid-season field phenotyping of final plant nitrogen uptake, nitrogen use efficiency, and grain yield in maize. Crop Sci, 2012, 52: 2728-2742.
[26] 柴强, 胡发龙, 陈桂平. 禾豆间作氮素高效利用机理及农艺调控途径研究进展. 中国生态农业学报, 2017, 25: 19-26.
Chai Q, Hu F L, Chen G P. Research advance in the mechanism and agronomic regulation of high-efficient use of nitrogen in cereal-legume intercropping. Chin J Eco-Agric, 2017, 25: 19-26 (in Chinese with English abstract).
[27] 李含婷, 柴强, 胡发龙, 王国璀, 王琦明, 樊志龙, 殷文, 范虹. 间作绿肥弥补减施氮肥引起的玉米产量损失. 植物营养与肥料学报, 2022, 28: 1329-1340.
Li H T, Chai Q, Hu F L, Wang G C, Wang Q M, Fan Z L, Yin W, Fan H. Intercropping green manure with maize reduces nitrogen fertilizer input and stabilizes grain yield. J Plant Nutr Fert, 2022, 28: 1329-1340 (in Chinese with English abstract).
[28] 杨昭, 柴强, 王玉, 苟志文, 樊志龙, 胡发龙, 殷文. 河西绿洲灌区减量灌溉下绿肥对小麦光合源及产量的补偿效应. 植物营养与肥料学报, 2022, 28: 1003-1014.
Yang Z, Chai Q, Wang Y, Gou Z W, Fan Z L, Hu F L, Yin W. Compensation of green manure on photosynthetic source and yield loss of wheat caused by reduced irrigation in Hexi oasis irrigation area. J Plant Nutr Fert, 2022, 28: 1003-1014 (in Chinese with English abstract).
[29] 杜进勇, 柴强, 王一帆, 范虹, 胡发龙, 殷文, 李登业. 地上地下互作强度对小麦间作玉米光合特性的影响. 作物学报, 2019, 45: 1398-1406.
doi: 10.3724/SP.J.1006.2019.81093
Du J Y, Chai Q, Wang Y F, Fan H, Hu F L, Yin W, Li D Y. Effect of above- and below-ground interaction intensity on photosynthetic characteristics of wheat-maize intercropping. Acta Agron Sin, 2019, 45: 1398-1406 (in Chinese with English abstract).
[30] 殷芳, 何小七, 樊志龙, 胡发龙, 范虹, 殷文, 柴强. 复种绿肥补偿减量施氮导致的小麦光合效能和产量损失. 植物营养与肥料学报, 2022, 28: 1990-2000.
Yin F, He X Q, Fan Z L, Hu F L, Fan H, Yin W, Chai Q. Compensation of photosynthesis indexes and yield loss of wheat caused by nitrogen reduction with multiple cropping green manures. J Plant Nutr Fert, 2022, 28: 1990-2000 (in Chinese with English abstract).
[31] Zhou G P, Chang D N, Gao S J, Liang T, Liu R, Cao W D. Co-incorporating leguminous green manure and rice straw drives the synergistic release of carbon and nitrogen, increases hydrolase activities, and changes the composition of main microbial groups. Biol Fert Soils, 2021, 57: 547-561.
[32] 马国胜, 薛吉全, 路海东, 张仁和, 邰书静. 不同类型饲用玉米品种群体生理指标的研究. 草业学报, 2006, 15(5): 70-75.
Ma G S, Xue J Q, Lu H D, Zhang R H, Tai S J. A study on the population physiological indices of different types of forage Zea mays. Acta Pratac Sin, 2006, 15(5): 70-75 (in Chinese with English abstract).
[33] 杜青峰, 王党军, 于翔宇, 姚露花, 和玉吉, 王瑞, 马生兰, 郭彦军. 玉米间作夏季绿肥对当季植物养分吸收和土壤养分有效性的影响. 草业学报, 2016, 25(3): 225-233.
doi: 10.11686/cyxb2015483
Du Q F, Wang D J, Yu X Y, Yao L H, He Y J, Wang R, Ma S L, Guo Y J. The effects of corn and green manure intercropping on soil nutrient availability and plant nutrient uptake. Acta Pratac Sin, 2016, 25(3): 225-233 (in Chinese with English abstract).
[34] 王国璀, 张松茂, 胡发龙, 殷文, 樊志龙, 范虹, 于爱忠, 赵财, 柴强. 绿洲灌区春小麦产量和氮素利用率对绿肥还田量的响应. 植物营养与肥料学报, 2021, 27: 1164-1172.
Wang G C, Zhang S M, Hu F L, Yin W, Fan Z L, Fan H, Yu A Z, Zhao C, Chai Q. Response of grain yield and nitrogen utilization efficiency of spring wheat to green manure incorporation amount in oasis irrigation district. J Plant Nutr Fert, 2021, 27: 1164-1172 (in Chinese with English abstract).
[35] 赵明, 李建国, 张宾, 董志强, 王美云. 论作物高产挖潜的补偿机制. 作物学报, 2006, 32: 1566-1572.
Zhao M, Li J G, Zhang B, Dong Z Q, Wang M Y. The compensatory mechanism in exploring crop production potential. Acta Agron Sin, 2006, 32: 1566-1572 (in Chinese with English abstract).
[36] 王一帆, 秦亚洲, 冯福学, 赵财, 于爱忠, 刘畅, 柴强. 根间作用与密度协同作用对小麦间作玉米产量及产量构成的影响. 作物学报, 2017, 43: 754-762.
Wang Y F, Qin Y Z, Feng F X, Zhao C, Yu A Z, Liu C, Chai Q. Synergistic effect of root interaction and density on yield and yield components of wheat/maize intercropping system. Acta Agron Sin, 2017, 43: 754-762 (in Chinese with English abstract).
[37] 田纪春, 邓志英, 胡瑞波, 王延训. 不同类型超级小麦产量构成因素及籽粒产量的通径分析. 作物学报, 2006, 32: 1699-1705.
Tian J C, Deng Z Y, Hu R B, Wang Y X. Yield components of super wheat cultivars with different types and the path coefficient analysis on grain yield. Acta Agron Sin, 2006, 32: 1699-1705 (in Chinese with English abstract).
[38] Xu K, Chai Q, Hu F, Fan Z, Yin W. N-fertilizer postponing application improves dry matter translocation and increases system productivity of wheat/maize intercropping. Sci Rep, 2021, 11: 22825.
doi: 10.1038/s41598-021-02345-5 pmid: 34819592
[39] 赵娜, 赵护兵, 鱼昌为, 曹群虎, 李敏, 曹卫东, 高亚军. 旱地豆科绿肥腐解及养分释放动态研究. 植物营养与肥料学报, 2011, 17: 1179-1187.
Zhao N, Zhao H B, Yu C W, Cao Q H, Li M, Cao W D, Gao Y J. Nutrient releases of leguminous green manures in rainfed lands. Plant Nutr Fert Sci, 2011, 17: 1179-1187 (in Chinese with English abstract).
[40] 李隆. 间套作强化农田生态系统服务功能的研究进展与应用展望. 中国生态农业学报, 2016, 24: 403-415.
Li L. Intercropping enhances agroecosystem services and functioning: current knowledge and perspectives. Chin J Eco-Agric, 2016, 24: 403-415 (in Chinese with English abstract).
[41] 耿川雄, 任家兵, 马心灵, 龙光强, 鲁耀, 汤利. 基于LCA的不同间作体系产量优势及温室效应研究. 中国生态农业学报, 2020, 28: 159-167.
Geng C X, Ren J B, Ma X L, Long G Q, Lu Y, Tang L. Yield improvement and greenhouse effect of different intercropping systems based on life cycle assessment. Chin J Eco-Agric, 2020, 28: 159-167 (in Chinese with English abstract).
[42] Chai Q, Nemecek T, Liang C, Zhao C, Yu A Z, Coulter J A, Wang Y F, Hu F L, Wang L, Siddique K H M, Gan Y T. Integrated farming with intercropping increases food production while reducing environmental footprint. Proc Natl Acad Sci USA, 2021, 118: e2106382118.
[1] SHANG Yong-Pan, YU Ai-Zhong, WANG Yu-Long, WANG Peng-Fei, LI Yue, CHAI Jian, LYU Han-Qiang, YANG Xue-Hui, WANG Feng. Effects of green manure application methods on dry matter accumulation, distribution, and yield of maize in oasis irrigation area [J]. Acta Agronomica Sinica, 2024, 50(3): 686-694.
[2] YANG Li-Da, REN Jun-Bo, PENG Xin-Yue, YANG Xue-Li, LUO Kai, CHEN Ping, YUAN Xiao-Ting, PU Tian, YONG Tai-Wen, YANG Wen-Yu. Crop growth characteristics and its effects on yield formation through nitrogen application and interspecific distance in soybean/maize strip relay intercropping [J]. Acta Agronomica Sinica, 2024, 50(1): 251-264.
[3] YUAN Xiao-Ting, WANG Tian, LUO Kai, LIU Shan-Shan, PENG Xin-Yue, YANG Li-Da, PU Tian, WANG Xiao-Chun, YANG Wen-Yu, YONG Tai-Wen. Effects of bandwidth and plant spacing on biomass accumulation and allocation and yield formation in strip intercropping soybean [J]. Acta Agronomica Sinica, 2024, 50(1): 161-171.
[4] ZHANG Diao-Liang, YANG Zhao, HU Fa-Long, YIN Wen, CHAI Qiang, FAN Zhi-Long. Effects of multiple cropping green manure on grain quality and yield of wheat with different irrigation levels [J]. Acta Agronomica Sinica, 2023, 49(9): 2572-2581.
[5] WANG Yu-Long, YU Ai-Zhong, LYU Han-Qiang, LYU Yi-Tong, SU Xiang-Xiang, WANG Peng-Fei, CHAI Jian. Effects of green manure replanting and returning after wheat on following year’s maize root traits and water use efficiency in oasis irrigation area [J]. Acta Agronomica Sinica, 2023, 49(5): 1350-1362.
[6] WU Xiang-Qi, LIU Bo, ZHANG Wei, YANG Xue-Ni, GUO Zi-Yan, LIU Tie-Ning, ZHANG Xu-Dong, HAN Qing-Fang. Effects of wheat-pea intercropping on population photosynthetic characteristics and crops productivity [J]. Acta Agronomica Sinica, 2023, 49(4): 1079-1089.
[7] TANG Wen-Qiang, ZHANG Wen-Long, ZHU Xiao-Qiao, DONG Bi-Zheng, LI Yong-Cheng, YANG Nan, ZHANG Yao, WANG Yun-Yue, HAN Guang-Yu. Effects of diverse mixture intercropping on the structure and function of bacterial communities in rice rhizosphere [J]. Acta Agronomica Sinica, 2023, 49(4): 1111-1121.
[8] SHU Ze-Bing, LUO Wan-Yu, PU Tian, CHEN Guo-Peng, LIANG Bing, YANG Wen-Yu, WANG Xiao-Chun. Optimization of field configuration technology of strip intercropping of fresh corn and fresh soybean based on high yield and high efficiency [J]. Acta Agronomica Sinica, 2023, 49(4): 1140-1150.
[9] LIU Shan-Shan, PANG Ting, YUAN Xiao-Ting, LUO Kai, CHEN Ping, FU Zhi-Dan, WANG Xiao-Chun, YANG Feng, YONG Tai-Wen, YANG Wen-Yu. Effects of row spacing on root nodule growth and nitrogen fixation potential of different nodulation characteristics soybeans in intercropping [J]. Acta Agronomica Sinica, 2023, 49(3): 833-844.
[10] XIAO Jian, WEI Xing-Xuan, YANG Shang-Dong, LU Wen, TAN Hong-Wei. Effects of intercropping with watermelons on cane yields, soil physicochemical properties and micro-ecology in rhizospheres of sugarcanes [J]. Acta Agronomica Sinica, 2023, 49(2): 526-538.
[11] CHAI Jian, YU Ai-Zhong, LI Yue, WANG Yu-Long, WANG Feng, WANG Peng-Fei, LYU Han-Qiang, YANG Xue-Hui, SHANG Yong-Pan. Effects of green manure incorporation combined with nitrogen fertilizer reduction on wheat yield and nitrogen utilization in oasis irrigated area [J]. Acta Agronomica Sinica, 2023, 49(11): 3131-3140.
[12] GAO Chao, CHEN Ping, DU Qing, FU Zhi-Dan, LUO Kai, LIN Ping, LI Yi-Ling, LIU Shan-Shan, YONG Tai-Wen, YANG Wen-Yu. Effects of sowing date and density on stem, leaf growth, and yield formation in strip intercropping soybean [J]. Acta Agronomica Sinica, 2023, 49(11): 3090-3099.
[13] WANG Peng-Fei, YU Ai-Zhong, WANG Yu-Long, SU Xiang-Xiang, CHAI Jian, LI Yue, LYU Han-Qiang, SHANG Yong-Pan, YANG Xue-Hui. Effects of multiple cropping green manure after wheat harvest combined with reduced nitrogen application on soil hydrothermal characteristics and maize yield [J]. Acta Agronomica Sinica, 2023, 49(10): 2793-2805.
[14] LIN Zhi-Min, QIN Xian-Jin, WU Hong-Miao, PANG Zi-Qin, LIN Wen-Xiong. Differential response of different Radix pseudostellariae cultivars to continuous cropping stress and its intraspecific intercropping effects [J]. Acta Agronomica Sinica, 2022, 48(9): 2351-2365.
[15] LI Xin, WANG Jian, LI Ya-Bing, HAN Ying-Chun, WANG Zhan-Biao, FENG Lu, WANG Guo-Ping, XIONG Shi-Wu, LI Cun-Dong, LI Xiao-Fei. Effects of different intercropping systems on cotton yield, biomass accumulation, and allocation [J]. Acta Agronomica Sinica, 2022, 48(8): 2041-2052.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!