Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2024, Vol. 50 ›› Issue (9): 2219-2236.doi: 10.3724/SP.J.1006.2024.34214

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Identification and expression analysis of the WD40 gene family in pearl millet

YANG Yu-Chen2(), JIN Ya-Rong2, LUO Jin-Chan2, ZHU Xin2, LI Wei-Hang2, JIA Ji-Yuan2, WANG Xiao-Shan2, HUANG De-Jun1,*(), HUANG Lin-Kai2,*()   

  1. 1Chongqing Academy of Animal Science, Chongqing 402460, China
    2College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
  • Received:2023-12-25 Accepted:2024-05-21 Online:2024-09-12 Published:2024-06-13
  • Contact: *E-mail: huanglinkai@sicau.edu.cn; E-mail: xkyhdj@163.com
  • Supported by:
    Chongqing Municipal Special Funds Project(23515C);Chongqing Natural Science Foundation Project(CSTB2022NSCQ-MSX0274);Sichuan Province Forage Innovation Team Project(SCCXTD-2020-16);Sichuan Province Breeding Tackling Project(2021YFYZ0013)

Abstract:

Pearl millet is a globally significant cereal, known for its excellent photosynthetic capabilities and high production potential. It has evolved tolerance to infertile soils and the ability to adapt to various abiotic stressors and diverse environmental conditions, setting it apart from other crops. The PgWD40 gene family plays a crucial role in plant defense against biotic and abiotic stresses, as well as in the regulation of plant growth and development. In this study, we conducted a comprehensive identification and analysis of the PgWD40 gene family and its expression pattern in pearl millet. A total of 209 members of the PgWD40 gene family were identified and categorized into five subfamilies through phylogenetic analysis of pearl millet and rice. Members within the same subfamily exhibited some similarity in their conserved sequences and gene structures. Furthermore, analysis of promoter cis-acting elements revealed that 176 PgWD40 genes were associated with plant growth and development, while 208 PgWD40 gene members contained cis-acting elements related to different hormone stress responses. Transcriptomic data analysis and qRT-PCR analysis indicated that PMA3G03393.1, PMA4G00558.1, and PMA5G02217.1 were induced by salt, heat, and drought stresses, suggesting their involvement in regulating and responding to abiotic stresses through hormone-dependent signaling pathways. These genes hold potential for further studies on the tolerance function of the PgWD40 gene family. Additionally, the PgWD40 gene family exhibited differential expression during different stages of pearl millet tasseling. Through gene expression heat maps, as well as GO and KEGG analysis, it was found that many members of the PgWD40 gene family are involved in various stages of plant growth, development, and seed formation. The results of this study provide a theoretical basis for comprehensive analysis of the structure and biological function of the PgWD40 gene, as well as understanding the molecular mechanisms underlying stress tolerance and molecular breeding. Furthermore, it offers valuable genetic resources for the cultivation of new high-efficiency stress-resistant crop varieties.

Key words: Pearl millet, WD40 gene family, bioinformatics analysis, yield, adversity stress

Table S1

Candidate gene qRT PCR primers and gene cloning and linkage primers"

引物名称
Primer names
上游引物
Forward primer (5°-3°)
下游引物
Reverse primer (5°-3°)
DL-PMA3G03393.1 TTCCTTGCCTACAACATG CCACAGCCTTCACTTCTT
DL-PMA4G01199.1 TGACGAGGATGATGAAGTGAA CCAAAGCGGAAACCAGAG
DL-PMA7G00781.1 ATCAAGGCATCACCAAAT AGACCACGAAGAAGGGAC
DL-PMA4G00558.1 CGGACGATGAGGACGACGAAG TTGACGAGGGAGCCGAGGAG
DL-PMA5G00729.1 ATGCCATTTACTGATGATAG AATAAGGTGCTTGGGACA
DL-PMA3G05660.1 TGGCGACCTGAGTATGAG CCCAGTATCCAGATCCCT
DL-PMA5G02217.1 CGTGAGATGAGGCTGAAAGA TCGGGCGATTGGTAGATG
DL-PMA6G00539.1 GTGGCATCACCAACTAAC GAGAAGTGGCAACATAGAA
DL-UBC-E2 ACCGCCTGACAATCCCTATG GGGATAGTCTGGCGGAAAATG
KL-PMA5G02217.1 CGTGAGATGAGGCTGAAAGA TCGGGCGATTGGTAGATG
KL-PMA4G00558.1 CGGACGATGAGGACGACGAAG TTGACGAGGGAGCCGAGGAG
LK-PMA5G02217.1 GGACAGGGTACCCGGGGATCCATGCACTGGTCTCCCCTGTTC CACCATGGTACTAGTGTCGACGAAGAAGAACGCGTCCAGGTAG
LK-PMA4G00558.1 GGACAGGGTACCCGGGGATCCATGGGGAACCGCAAGAAGC CACCATGGTACTAGTGTCGACCGCCGCGCCCATGTGCTT
YS-M13 TGTAAAACGACGGCCAGT CAGGAAACAGCTATGACC

Table S2

Analysis of physical and chemical properties of WD40 protein"

蛋白名称
Protein name
亚细胞定位
Subcellular location
氨基酸数目
Aminoacid number
分子量
Molecular weight
理论等电点
pI
亲水性平均系数GRAVY 不稳定系数
Instability index
PMA0G00793.1 细胞核Nucleus 2465 271,464.84 6.30 -0.088 42.19
PMA1G00217.1 细胞核Nucleus 149 16,369.59 8.45 -0.285 40.90
PMA1G00219.1 细胞核Nucleus 322 34,004.50 6.03 -0.005 36.17
PMA1G00767.1 细胞核Nucleus 392 41,676.28 4.98 0.010 39.71
PMA1G01014.1 细胞核Nucleus 392 41,722.37 4.98 0.018 39.20
PMA1G02748.1 细胞核Nucleus 444 50,257.79 4.77 -0.430 45.00
PMA1G02765.1 细胞核Nucleus 685 77,923.58 5.64 -0.708 45.45
PMA1G03446.1 细胞核Nucleus 409 44,705.74 4.83 -0.244 41.78
PMA1G04181.1 细胞核Nucleus 1091 121,161.61 8.10 -0.216 47.58
PMA1G04536.1 细胞核Nucleus 461 51,592.20 6.05 -0.495 36.39
PMA1G04659.1 细胞核Nucleus 827 89,725.16 4.89 0.102 50.90
PMA1G05610.1 细胞核Nucleus 883 97,829.17 6.09 -0.126 39.47
PMA1G05712.1 细胞核Nucleus 359 39,159.68 4.65 -0.324 34.52
PMA1G05801.1 细胞核Nucleus 321 35,394.84 6.25 -0.193 51.16
PMA1G05895.1 细胞质Cytoplasm 334 36,292.64 6.13 -0.169 30.55
PMA1G06030.1 细胞核Nucleus 486 53,553.13 6.57 -0.564 50.67
PMA1G06073.1 细胞核Nucleus 1130 125,324.14 5.66 -0.488 41.81
PMA1G06201.1 细胞核Nucleus 420 45,918.71 6.45 -0.214 49.07
PMA1G06361.1 细胞核Nucleus 478 52,872.12 8.25 -0.333 32.00
PMA1G06512.1 细胞核Nucleus 625 69,769.76 5.75 -0.208 47.69
PMA1G06569.1 细胞核Nucleus 400 43,640.78 9.52 -0.166 35.05
PMA1G06802.1 细胞核Nucleus 591 67,089.43 9.32 -0.556 51.79
PMA1G07347.1 细胞核Nucleus 327 36,369.05 6.66 -0.270 32.27
PMA1G07708.1 细胞核Nucleus 558 59,054.70 7.62 -0.370 42.71
PMA1G07756.1 细胞核Nucleus 1236 133,951.74 4.57 -0.470 61.75
PMA1G07797.1 细胞核Nucleus 877 96,241.49 6.54 -0.291 56.18
PMA1G07960.1 细胞核Nucleus 346 38,249.59 4.94 -0.438 48.32
PMA2G00100.1 细胞核Nucleus 437 44,718.46 5.31 -0.148 49.93
PMA2G00413.1 质膜plasma membrane 3226 360,005.44 5.88 -0.109 45.92
PMA2G00952.1 细胞核Nucleus 481 52,702.61 8.12 -0.385 54.59
PMA2G00990.1 细胞核Nucleus 937 104,940.17 4.72 -0.225 35.55
PMA2G01434.1 细胞核Nucleus 321 35,451.08 6.03 -0.144 36.26
PMA2G01657.1 细胞核Nucleus 470 51,291.66 7.70 -0.380 49.36
PMA2G02572.1 细胞核Nucleus 1280 137,842.55 6.04 -0.345 49.26
PMA2G02702.1 细胞核Nucleus 548 60,766.91 8.57 -0.320 34.78
PMA2G03403.1 细胞核Nucleus 454 50,701.42 5.29 -0.433 26.71
PMA2G03704.1 细胞核Nucleus 910 102,742.23 4.92 -0.294 35.71
PMA2G03982.1 细胞核Nucleus 311 33,490.38 5.38 -0.336 50.51
PMA2G04109.1 细胞核Nucleus 861 97,304.46 6.50 -0.350 37.96
PMA2G04873.1 细胞核Nucleus 623 68,257.36 5.36 -0.685 42.69
PMA2G04881.1 细胞核Nucleus 346 39,364.00 8.11 -0.177 39.35
PMA2G04891.1 细胞核Nucleus 526 57,608.26 6.04 -0.304 24.9
PMA2G05041.1 细胞核Nucleus 474 52,197.49 9.13 -0.392 39.13
PMA2G05138.1 细胞核Nucleus 819 90,497.01 6.94 -0.379 40.99
PMA2G05709.1 细胞核Nucleus 504 52,589.91 8.58 -0.155 52.34
PMA2G05778.1 细胞核Nucleus 431 48,657.33 4.86 -0.527 45.78
PMA2G05796.1 细胞核Nucleus 506 56,413.23 6.28 -0.719 55.89
PMA2G05985.1 内质网Endoplasmic reticulum. 380 41,711.77 7.15 -0.300 30.39
PMA2G06056.1 细胞核Nucleus 316 35,200.67 6.11 -0.240 34.14
PMA2G06198.1 细胞核Nucleus 518 55,648.23 8.87 -0.393 56.04
PMA2G06296.1 细胞核Nucleus 1219 136,490.97 6.57 -0.219 34.88
PMA2G06386.1 细胞核Nucleus 766 82,587.06 6.27 -0.448 51.65
PMA2G06408.1 细胞核Nucleus 319 34,260.66 6.75 -0.117 30.60
PMA2G06485.1 细胞核Nucleus 806 88,550.65 7.63 -0.345 43.46
PMA2G06512.1 细胞核Nucleus 422 46,093.73 4.55 -0.361 41.55
PMA2G06520.1 细胞核Nucleus 494 52,329.12 8.11 -0.385 46.24
PMA2G06561.1 叶绿体Chloroplast. 3585 397,756.23 5.68 -0.158 45.61
PMA2G06587.1 细胞核Nucleus 507 55,370.58 6.48 -0.337 38.67
PMA2G06589.1 细胞核Nucleus 433 46,991.82 5.57 0.003 42.56
PMA2G06662.1 细胞核Nucleus 423 45,957.79 7.63 -0.206 40.32
PMA2G07120.1 细胞核Nucleus 369 40,518.76 8.62 -0.005 35.65
PMA2G07533.1 细胞核Nucleus 553 61,282.69 9.26 -0.738 68.15
PMA2G07594.1 细胞核Nucleus 445 47,368.03 8.84 -0.132 32.65
PMA2G07605.1 细胞核Nucleus 725 79,019.32 6.82 -0.525 45.28
PMA3G00139.1 细胞核Nucleus 806 87,816.92 6.45 -0.674 60.55
PMA3G00146.1 细胞核Nucleus 960 105,115.41 8.78 -0.412 44.83
PMA3G00177.1 细胞核Nucleus 959 107,715.47 5.07 -0.372 41.22
PMA3G00886.1 细胞核Nucleus 476 51,930.36 8.55 -0.418 50.34
PMA3G00941.1 细胞核Nucleus 883 97,211.67 6.1 -0.227 38.32
PMA3G01194.1 细胞核Nucleus 697 76,837.82 5.96 -0.480 52.21
PMA3G01569.1 细胞核Nucleus 781 85,956.52 7.28 -0.629 66.19
PMA3G01833.1 细胞核Nucleus 344 38,400.00 4.82 -0.268 44.69
PMA3G02151.1 细胞核Nucleus 457 46,892.97 10.06 0 47.39
PMA3G02964.1 细胞核Nucleus 669 74,608.88 8.31 -0.576 43.10
PMA3G03393.1 细胞核Nucleus 1008 109,231.86 6.87 -0.321 38.96
PMA3G03537.1 细胞核Nucleus 137 15,111.24 7.69 -0.073 38.88
PMA3G04747.1 细胞核Nucleus 1127 122,219.27 8.35 -0.267 58.29
PMA3G05484.1 细胞核Nucleus 417 44,233.84 4.76 -0.346 40.52
PMA3G05660.1 细胞核Nucleus 678 76,202.42 8.71 -0.461 39.85
PMA3G05758.1 细胞核Nucleus 303 33,400.46 7.57 -0.274 38.38
PMA3G06171.1 细胞核Nucleus 474 53,201.10 6.28 -0.314 57.06
PMA3G06172.1 细胞核Nucleus 434 47,552.71 9.12 -0.366 39.33
PMA3G06467.1 细胞核Nucleus 521 58,551.30 6.45 -0.572 59.14
PMA3G06676.1 细胞核Nucleus 785 86,524.28 6.88 -0.590 57.54
PMA3G06886.1 细胞核Nucleus 2856 310,990.10 5.82 -0.114 48.22
PMA3G06996.1 细胞核Nucleus 426 45,952.16 8.15 -0.255 29.23
PMA3G07032.1 细胞核Nucleus 359 38,646.59 5.02 -0.075 50.01
PMA3G07196.1 细胞核Nucleus 473 51,733.01 6.95 -0.419 50.19
PMA3G07405.1 细胞核Nucleus 994 112,445.75 5.06 -0.545 33.28
PMA3G07416.1 细胞核Nucleus 1332 144,494.63 5.66 -0.361 43.47
PMA3G07594.1 细胞核Nucleus 420 44,768.68 9.05 -0.202 45.35
PMA3G07849.1 细胞核Nucleus 690 77,023.29 6.85 -0.402 55.23
PMA3G08081.1 细胞核Nucleus 1448 160,789.00 6.91 -0.213 49.72
PMA3G08095.1 细胞核Nucleus 339 37,566.66 6.41 -0.355 40.64
PMA3G08220.1 细胞核Nucleus 835 91,410.17 6.7 -0.525 45.77
PMA3G08261.1 细胞核Nucleus 382 42,263.85 8.44 -0.236 35.66
PMA4G00280.1 细胞核Nucleus 379 42,300.88 5.76 -0.241 40.80
PMA4G00343.1 细胞核Nucleus 771 86,343.16 8.27 -0.400 44.22
PMA4G00351.1 细胞核Nucleus 599 66,619.63 6.04 -0.323 40.41
PMA4G00356.1 细胞核Nucleus 344 38,359.49 7.67 -0.490 33.95
PMA4G00558.1 细胞核Nucleus 525 56,138.57 9.52 -0.475 53.36
PMA4G00708.1 细胞核Nucleus 1384 151,258.67 8.49 -0.110 41.90
PMA4G00806.1 细胞核Nucleus 323 33,830.33 7.69 0.001 32.62
PMA4G01031.1 细胞核Nucleus 1359 149,461.10 6.38 -0.170 50.06
PMA4G01199.1 细胞核Nucleus 537 58,359.36 9.62 -0.131 42.92
PMA4G01748.1 细胞核Nucleus 537 58,351.38 9.62 -0.123 43.08
PMA4G02122.1 细胞核Nucleus 505 54,971.56 6.44 -0.136 43.68
PMA4G02464.1 细胞核Nucleus 1018 112,999.59 7.37 -0.325 38.68
PMA4G02604.1 细胞核Nucleus 558 61,127.57 9.62 -0.436 60.16
PMA4G02948.1 细胞核Nucleus 496 55,778.10 8.60 -0.346 42.15
PMA4G03423.1 细胞质Cytoplasm 650 72,846.72 6.38 -0.427 44.61
PMA4G03555.1 细胞核Nucleus 417 44,768.38 4.48 -0.171 31.02
PMA4G03775.1 细胞质, 细胞核Cytoplasm, Nucleus 1351 150,028.82 6.72 -0.353 35.38
PMA4G04247.1 细胞核Nucleus 437 49,440.99 5.43 -0.567 34.96
PMA4G04304.1 细胞核Nucleus 886 97,382.94 6.16 -0.072 41.89
PMA4G05601.1 细胞核Nucleus 932 100,042.50 8.82 -0.618 62.63
PMA4G05672.1 细胞核Nucleus 437 48,075.70 9.32 -0.246 53.31
PMA4G05783.1 细胞核Nucleus 563 60,177.89 6.63 -0.431 39.74
PMA4G06215.1 细胞核Nucleus 478 52,687.81 5.08 -0.453 48.96
PMA5G00048.1 细胞核Nucleus 486 54,262.97 5.97 -0.313 42.43
PMA5G00065.1 细胞核Nucleus 1333 146,896.02 6.05 -0.124 45.23
PMA5G00091.1 细胞核Nucleus 749 82,761.34 5.71 -0.490 56.26
PMA5G00152.1 细胞核Nucleus 531 56,902.66 9.17 -0.318 40.69
PMA5G00393.1 细胞核Nucleus 937 103,649.83 6.36 -0.277 46.49
PMA5G00599.1 叶绿体, 细胞核Chloroplast, Nucleus 1388 153,239.02 6.44 -0.106 49.24
PMA5G00729.1 细胞核Nucleus 748 84,095.68 6.19 -0.540 48.70
PMA5G00929.1 细胞核Nucleus 570 62,146.24 4.73 -0.478 41.28
PMA5G01270.1 细胞核Nucleus 1129 124,995.73 6.68 -0.356 43.21
PMA5G01303.1 细胞核Nucleus 179 20,035.50 5.41 -0.278 32.44
PMA5G01527.1 细胞核Nucleus 480 53,737.19 6.26 -0.496 42.15
PMA5G01614.1 细胞核Nucleus 630 68,294.60 6.31 -0.244 46.73
PMA5G01672.1 细胞核Nucleus 1681 188,842.65 6.54 -0.724 49.30
PMA5G02007.1 细胞核Nucleus 526 58,363.66 5.73 -0.506 46.90
PMA5G02217.1 细胞核Nucleus 292 31,753.50 5.3 -0.146 33.98
PMA5G02326.1 细胞核Nucleus 701 77,353.01 6.8 -0.526 47.28
PMA5G02346.1 细胞核Nucleus 445 48,614.04 8.52 -0.278 50.31
PMA5G02456.1 细胞核Nucleus 314 32,962.19 6.66 -0.086 40.60
PMA5G02562.1 细胞核Nucleus 344 37,618.20 8.28 -0.399 33.35
PMA5G02857.1 细胞核Nucleus 443 48,363.44 6.41 -0.317 36.24
PMA5G03186.1 细胞核Nucleus 413 45,981.90 6.55 -0.532 35.96
PMA5G03629.1 细胞核Nucleus 487 54,149.50 4.54 -0.502 34.02
PMA5G04031.1 整合膜蛋白Integral membrane protein 3262 366,453.79 6.23 -0.075 46.20
PMA5G04119.1 细胞核Nucleus 555 61,343.29 6.23 -0.497 40.28
PMA5G04316.1 细胞核Nucleus 657 73,138.67 6.49 -0.405 45.98
PMA5G04368.1 细胞核Nucleus 905 101,187.57 6.69 -0.176 50.62
PMA5G04793.1 细胞核Nucleus 339 36,902.27 5.51 -0.368 38.35
PMA5G04860.1 细胞核Nucleus 903 101,813.39 4.88 -0.240 40.08
PMA5G05243.1 细胞核Nucleus 199 21,992.07 6.43 -0.154 45.68
PMA5G05244.1 细胞核Nucleus 274 30,197.32 5.93 -0.097 43.72
PMA5G05456.1 细胞核Nucleus 559 63,039.57 5.70 -0.715 35.67
PMA5G05860.1 细胞核Nucleus 440 47,379.37 9.15 -0.283 49.63
PMA5G05900.1 细胞核Nucleus 714 78,944.72 8.95 -0.770 54.54
PMA5G06012.1 细胞核Nucleus 733 79,808.32 8.33 -0.300 48.80
PMA6G00045.1 细胞核Nucleus 518 54,949.01 7.37 -0.171 48.34
PMA6G00058.1 细胞核Nucleus 1417 152,442.89 5.81 -0.189 55.31
PMA6G00190.1 细胞核Nucleus 305 33,158.16 5.85 -0.245 33.36
PMA6G00264.1 细胞核Nucleus 425 46,542.45 6.07 -0.263 45.04
PMA6G00276.1 细胞核Nucleus 802 88,984.57 9.14 -0.363 45.03
PMA6G00277.1 细胞核Nucleus 391 42,534.46 8.06 -0.049 27.63
PMA6G00331.1 细胞核Nucleus 1214 135,908.23 6.66 -0.212 31.98
PMA6G00424.1 细胞核Nucleus 253 27,702.88 7.65 -0.034 29.63
PMA6G00426.1 细胞核Nucleus 174 17,825.96 9.84 0.434 67.85
PMA6G00442.1 细胞核Nucleus 484 53,114.51 7.29 -0.188 41.48
PMA6G00539.1 细胞核Nucleus 863 95,133.05 6.46 -0.550 59.62
PMA6G00623.1 细胞核Nucleus 417 46,141.60 8.28 -0.160 36.73
PMA6G01002.1 细胞核Nucleus 591 65,909.04 8.28 -0.721 45.05
PMA6G01158.1 细胞核Nucleus 610 66,336.86 6.26 -0.202 29.64
PMA6G01528.1 细胞核Nucleus 1130 124,753.56 6.79 -0.348 38.42
PMA6G02166.1 细胞核Nucleus 517 58,330.47 6.96 -0.385 40.41
PMA6G02184.1 细胞核Nucleus 1649 182,068.88 5.93 -0.150 52.76
PMA6G03130.1 细胞核Nucleus 1205 134,028.97 6.03 -0.182 43.25
PMA6G03218.1 细胞核Nucleus 1205 134,084.07 6.05 -0.180 43.73
PMA6G03544.1 细胞核Nucleus 900 99,100.11 6.78 -0.731 59.96
PMA6G03546.1 细胞核Nucleus 872 95,444.56 6.30 -0.560 54.13
PMA6G03948.1 细胞核Nucleus 345 37,853.78 8.61 -0.402 41.65
PMA6G04468.1 细胞质Cytoplasm 334 36,305.86 6.3 -0.101 34.72
PMA6G04616.1 细胞核Nucleus 898 99,014.75 5.91 -0.092 46.84
PMA6G04682.1 细胞核Nucleus 453 50,011.73 5.84 -0.501 46.33
PMA6G04859.1 细胞核Nucleus 782 86,990.63 5.26 -0.397 56.35
PMA6G05403.1 细胞核Nucleus 479 52,010.73 9.03 -0.203 44.05
PMA6G05433.1 细胞核Nucleus 833 91,540.97 8.28 -0.319 40.75
PMA6G06158.1 细胞核Nucleus 451 49,884.85 7.24 -0.453 45.26
PMA6G06236.1 细胞核Nucleus 359 38,809.74 5.19 -0.061 44.68
PMA6G06558.1 细胞核Nucleus 457 49,731.87 9.42 -0.276 53.64
PMA6G06757.1 细胞核Nucleus 499 54,477.63 4.50 -0.478 45.15
PMA6G06858.1 细胞核Nucleus 459 49,536.67 5.15 -0.351 62.24
PMA7G00183.1 细胞核Nucleus 1134 122,186.87 5.13 -0.303 49.60
PMA7G00484.1 细胞核Nucleus 313 34,887.18 5.24 -0.188 31.42
PMA7G00719.1 细胞核Nucleus 435 47,443.67 5.79 -0.192 42.79
PMA7G00744.1 细胞核Nucleus 452 52,016.35 9.45 -0.635 42.66
PMA7G00781.1 细胞核Nucleus 488 54,101.47 5.50 -0.034 37.74
PMA7G00782.1 细胞核Nucleus 171 18,555.35 8.54 0.165 30.24
PMA7G00991.1 细胞核Nucleus 326 35,399.17 8.58 -0.098 36.05
PMA7G01251.1 细胞核Nucleus 467 51,644.04 8.43 -0.459 49.73
PMA7G02044.1 细胞核Nucleus 383 2444.33 4.67 -0.344 42.01
PMA7G03038.1 细胞核Nucleus 182 19,654.30 6.01 -0.227 41.14
PMA7G03703.1 细胞核Nucleus 381 40,919.03 5.51 -0.062 54.88
PMA7G04112.1 细胞核Nucleus 331 36,828.55 6.16 -0.412 26.60
PMA7G04156.1 细胞核Nucleus 573 63,340.86 8.14 -0.206 44.74
PMA7G04786.1 细胞核Nucleus 1009 110,000.00 7.27 -0.358 41.41
PMA7G05461.1 细胞核Nucleus 350 38,868.13 4.92 -0.447 32.23
PMA7G05512.1 细胞核Nucleus 301 32,387.74 6.44 -0.062 29.38
PMA7G05993.1 细胞核Nucleus 103 11,548.15 6.94 -0.172 2.16
PMA7G05994.1 细胞核Nucleus 394 43,350.11 5.18 -0.615 65.95
PMA7G06048.1 细胞核Nucleus 396 43,401.77 6.47 -0.116 44.20
PMA7G06380.1 细胞核Nucleus 326 36,267.66 6.06 -0.424 31.81
PMA7G06743.1 细胞核Nucleus 756 82,460.69 5.37 -0.133 33.00
PMA7G06785.1 细胞核Nucleus 573 62,201.15 4.65 -0.492 43.97
PMA7G06994.1 细胞核Nucleus 481 52,195.22 9.46 -0.363 52.70

Fig. 1

Distribution of PgWD40 family members on chromosomes map"

Fig. S1

Analysis of the conservative domain, conserved motifs, and gene structure of the Ⅰ subfamily of PgWD40 gene family From left to right: (a) Evolution tree of WD40 gene family of Pennisetum americanum. (b) The motif distribution of WD40 protein in Pearl millet. The different colors on the right label represent different motifs. (c) The structure of representative PgWD40 protein. The protein structure is based on the existence of WD40 and the internal and external Substructure of 209 other domains (d) of Pennisetum americanum WD40 gene recognized by NCBI. Exons and introns are represented by yellow and green boxes, respectively; The yellow box represents CDS."

Fig. S2

Analysis of the conservative domain, conserved motifs, and gene structure of the Ⅱ subfamily of the PgWD40 gene family From left to right: (a) Evolution tree of WD40 gene family of Pennisetum americanum. (b) The motif distribution of WD40 protein in Pearl millet. The different colors on the right label represent different motifs. (c) The structure of representative PgWD40 protein. The protein structure is based on the existence of WD40 and the internal and external Substructure of 209 other domains (d) of Pennisetum americanum WD40 gene recognized by NCBI. Exons and introns are represented by yellow and green boxes, respectively; The yellow box represents CDS."

Fig. S3

Analysis of the conservative domain, conserved motifs, and gene structure of the Ⅲ to Ⅴ subfamilies of the PgWD40 gene family From left to right: (a) Evolution tree of WD40 gene family of Pennisetum americanum. (b) The motif distribution of WD40 protein in Pearl millet. The different colors on the right label represent different motifs. (c) The structure of representative PgWD40 protein. The protein structure is based on the existence of WD40 and the internal and external Substructure of 209 other domains (d) of Pennisetum Americanum WD40 gene recognized by NCBI. Exons and introns are represented by yellow and green boxes, respectively; The yellow box represents CDS."

Fig. 2

Conserved motif signature of the PgWD40 family proteins The numbers represent 10 different patterns and their codes. Colored letters represent the amino acid residue types in each motif sequence identifier."

Fig. S4

Analysis of cis-acting elements in the promoter sequences of PgWD40 genes The responsive elements in the promoter sequences of PgWD40 genes include abscisic acid, anaerobic induction, auxin response, jasmonic acid response, circadian rhythm regulation, gibberellin response, light response, hypoxia-specific induction, growth and development related elements, salicylic acid response, defense and stress response, drought induction, low temperature response, and wound response elements."

Fig. 3

Evolutionary tree of the WD40 gene family members in Pennisetum glaucum (Pg) and Oryza sativa (Os)"

Fig. 4

Synteny analysis of the PgWD40 gene family"

Fig. 5

Synteny analysis of the WD40 gene family in Pennisetum glaucum (Pg) and Oryza sativa (Os)"

Fig. 6

Expression heatmap of PgWD40 gene family members under salt stress “L” stands for leaf, “R” stands for root, and the numbers represent the duration of stress."

Fig. 7

Expression heatmap of PgWD40 gene family members under heat stress “L” stands for leaf, “R” stands for root, and the numbers represent the duration of stress."

Fig. 8

Expression heatmap of PgWD40 gene family members under drought stress “L” stands for leaf, “R” stands for root, and the numbers represent the duration of stress."

Fig. 9

Expression heatmap of PgWD40 gene family members in different parts The respective parts are as follows: HI_SP represents spikes at heading stage, FW_F represents spikes at flowering stage, SI_SD represents spikes at wax ripening stage, and seed represents fully ripened seeds."

Fig. 10

Expression analysis of PgWD40 gene family members under different stress conditions D: drought stress; H: heat stress; S: salt stress; the number after stress represents the duration of stress."

Fig. 11

Protein-protein interaction network of PgWD40 proteins Colorful spheres represent different proteins, and within each sphere is the corresponding three-dimensional structure of that protein. The connections between different proteins are specified as follows: Sky-blue line: obtained from curated databases; purple line: experimentally determined; green line: gene neighborhood; deep blue line: gene co-occurrence; light yellow line: text data mining; black line: co-expression; light blue line: protein homology translation."

Fig. 12

Gene Ontology (GO) analysis of PgWD40 gene family members The Gene Ontology (GO) analysis was conducted using the eggNOG online platform, and it was divided into three aspects: molecular function, biological process, and cellular component. The Y-axis represents specific GO categories, and the X-axis represents the corresponding protein sequence counts."

Fig. 13

KEGG analysis of PgWD40 gene family members"

Fig. 14

Tertiary structure analysis of eight PgWD40 proteins"

Fig. 15

Subcellular localization analysis of empty vector 2300, PMA4G00558.1, and PMA5G02217.1"

[1] Wu B, Sun M, Zhang H, Yang D, Lin C, Khan I, Wang X, Zhang X, Nie G, Feng G, Yan Y, Li Z, Peng Y, Huang L. Transcriptome analysis revealed the regulation of gibberellin and the establishment of photosynthetic system promote rapid seed germination and early growth of seedling in pearl millet. Biotechnol Biofuels, 2021, 14: 94.
doi: 10.1186/s13068-021-01946-6 pmid: 33840392
[2] Serba D D, Perumal R, Tesso T T, Min D. Status of global pearl millet breeding programs and the way forward. Crop Sci, 2017, 57: 2891-2905.
[3] Yan H, Sun M, Zhang Z, Jin Y, Zhang A, Lin C, Wu B, He M, Xu B, Wang J, Qin P, Mendieta J P, Nie G, Wang J, Jones C S, Feng G, Srivastava R K, Zhang X, Bombarely A, Luo D, Jin L, Peng Y, Wang X, Ji Y, Tian S, Huang L. Pangenomic analysis identifies structural variation associated with heat tolerance in pearl millet. Nat Genet, 2023, 55: 507-518.
doi: 10.1038/s41588-023-01302-4 pmid: 36864101
[4] Mohammed R, Gangashetty P I, Karimoune L, Ba N M. Genetic variation and diversity of pearl millet [Pennisetum glaucum (L.)] genotypes assessed for millet head miner, Heliocheilus albipunctella resistance, in West Africa. Euphytica, 2020, 216: 158.
[5] Khatri A B, Patel P T, Patel R, Patel M S, Shah S K, Patel J S, Vaghela P O. Genetic analysis of grain biochemical parameters and yield in pearl millet [Pennisetum glaucum (L.) R. Br.]. J Cereal Sci, 2023, 113: 103746.
[6] Varshney R K, Shi C, Thudi M, Mariac C, Wallace J, Qi P, Zhang H, Zhao Y, Wang X, Rathore A, Srivastava R K, Chitikineni A, Fan G, Bajaj P, Punnuri S, Gupta S K, Wang H, Jiang Y, Couderc M, Katta M A V S K, Paudel D R, Mungra K D, Chen W, Harris-Shultz K R, Garg V, Desai N, Doddamani D, Kane N A, Conner J A, Ghatak A, Chaturvedi P, Subramaniam S, Yadav O P, Berthouly-Salazar C, Hamidou F, Wang J, Liang X, Clotault J, Upadhyaya H D, Cubry P, Rhoné B, Gueye M C, Sunkar R, Dupuy C, Sparvoli F, Cheng S, Mahala R S, Singh B, Yadav R S, Lyons E, Datta S K, Hash C T, Devos K M, Buckler E, Bennetzen J L, Paterson A H, Ozias-Akins P, Grando S, Wang J, Mohapatra T, Weckwerth W, Reif J C, Liu X, Vigouroux Y, Xu X. Pearl millet genome sequence provides a resource to improve agronomic traits in arid environments. Nat Biotechnol, 2017, 35: 969-976.
doi: 10.1038/nbt.3943 pmid: 28922347
[7] Feng R, Zhang C, Ma R, Cai Z, Lin Y, Yu M. Identification and characterization of WD40 superfamily genes in peach. Gene, 2019, 710: 291-306.
doi: S0378-1119(19)30558-X pmid: 31185283
[8] Wang C, Tang Y, Li Y, Hu C, Li J, Lyu A. Genome-wide identification and bioinformatics analysis of the WD40 transcription factor family and candidate gene screening for anthocyanin biosynthesis in Rhododendron simsii. BMC Genomics, 2023, 24: 488.
[9] Jain B P, Pandey S. WD 40 repeat proteins: signalling scaffold with diverse functions. Protein J, 2018, 37: 391-406.
[10] Hu R, Xiao J, Gu T, Yu X, Zhang Y, Chang J, Yang G, He G. Genome-wide identification and analysis of WD40 proteins in wheat (Triticum aestivum L.). BMC Genomics, 2018, 19: 803.
[11] Ouyang Y, Huang X, Lu Z, Yao J. Genomic survey, expression profile and co-expression network analysis of OsWD40 family in rice. BMC Genomics, 2012, 13: 100.
doi: 10.1186/1471-2164-13-100 pmid: 22429805
[12] Liu H, Xiu Z, Yang H, Ma Z, Yang D, Wang H, Tan B-C. Maize Shrek1 encodes a WD40 protein that regulates pre-rRNA processing in ribosome biogenesis. Plant Cell, 2022, 34: 4028-4044.
[13] Xin Y, Wu Y, Han X, Xu L A. Overexpression of the Ginkgo biloba WD40 gene GbLWD1-like improves salt tolerance in transgenic Populus. Plant Sci, 2021, 313: 111092.
[14] Eryong C, Bo S. OsABT, a rice WD40 domain-containing protein, is involved in abiotic stress tolerance. Rice Sci, 2022, 29: 247-256.
doi: 10.1016/j.rsci.2021.07.012
[15] Yang X, Wang J, Xia X, Zhang Z, He J, Nong B, Luo T, Feng R, Wu Y, Pan Y, Xiong F, Zeng Y, Chen C, Guo H, Xu Z, Li D, Deng G. OsTTG1, a WD40 repeat gene, regulates anthocyanin biosynthesis in rice. Plant J, 2021, 107: 198-214.
[16] Liu Y, Hou H, Jiang X, Wang P, Dai X, Chen W, Gao L, Xia T. A WD40 repeat protein from Camellia sinensis regulates anthocyanin and proanthocyanidin accumulation through the formation of MYB-bHLH-WD40 ternary complexes. Int J Mol Sci, 2018, 19: 1686.
[17] Sun Y B, Zhang X J, Zhong M C, Dong X, Yu D M, Jiang X D, Wang D, Cui W H, Chen J H, Hu J Y. Genome-wide identification of WD40 genes reveals a functional diversification of COP1-like genes in Rosaceae. Plant Mol Biol, 2020, 104: 81-95.
[18] Zhang X, Feng Q, Miao J, Zhu J, Zhou C, Fan D, Lu Y, Tian Q, Wang Y, Zhan Q, Wang Z Q, Wang A, Zhang L, Shang-Guan Y, Li W, Chen J, Weng Q, Huang T, Tang S, Si L, Huang X, Wang Z X, Han B. The WD40 domain-containing protein Ehd5 positively regulates flowering in rice (Oryza sativa). Plant Cell, 2023, 35: 4002-4019.
[19] Cai J, Huang H, Xu X, Zhu G. An Arabidopsis WD40 repeat-containing protein XIW1 promotes salt inhibition of seed germination. Plant Signal Behav, 2020, 15: 1712542.
[20] Kim Y J, Kim M H, Hong W J, Moon S, Kim E J, Silva J, Lee J, Lee S, Kim S T, Park S K, Jung K H. GORI, encoding the WD40 domain protein, is required for pollen tube germination and elongation in rice. Plant J, 2021, 105: 1645-1664.
[21] Xu C, Min J. Structure and function of WD40 domain proteins. Protein Cell, 2011, 2: 202-214.
doi: 10.1007/s13238-011-1018-1 pmid: 21468892
[22] Zhang S, Song Z, An L, Liu X, Hu X W, Naz A, Zhou R, Guo X, He L, Zhu H. WD40 repeat and FYVE domain containing 3 is essential for cardiac development. Cardiovasc Res, 2018, 115: 1320-1331.
[23] Mistry J, Chuguransky S, Williams L, Qureshi M, Salazar G A, Sonnhammer E L, Tosatto S C, Paladin L, Raj S, Richardson L J. Pfam: the protein families database in 2021. Nucleic Acids Res, 2021, 49: D412-D419.
[24] Sun M, Yan H, Zhang A, Jin Y, Lin C, Luo L, Wu B, Fan Y, Tian S, Cao X, Wang Z, Luo J, Yang Y, Jia J, Zhou P, Tang Q, Jones C S, Varshney R K, Srivastava R K, He M, Xie Z, Wang X, Feng G, Nie G, Huang D, Zhang X, Zhu F, Huang L. Milletdb: a multi-omics database to accelerate the research of functional genomics and molecular breeding of millets. Planteic Biotechnol J, 2023, 21: 2348-2357.
[25] Gasteiger E, Gattiker A, Hoogland C, Ivanyi I, Appel R D, Bairoch A. ExPASy: the proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res, 2003, 31: 3784-3788.
doi: 10.1093/nar/gkg563 pmid: 12824418
[26] Chou K C, Shen H B. Plant-mPLoc: a top-down strategy to augment the power for predicting plant protein subcellular localization. PLoS One, 2010, 5: e11335.
[27] Combet C, Blanchet C, Geourjon C, Deleage G. NPS@: network protein sequence analysis. Trends Biochem Sci, 2000, 25: 147-150.
doi: 10.1016/s0968-0004(99)01540-6 pmid: 10694887
[28] Kelley L A, Mezulis S, Yates C M, Wass M N, Sternberg M J. The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protocols, 2015, 10: 845-858.
[29] Tamura K, Stecher G, Kumar S. MEGA11: molecular evolutionary genetics analysis version 11. Mol Biol Evol, 2021, 38: 3022-3027.
doi: 10.1093/molbev/msab120 pmid: 33892491
[30] Xie J, Chen Y, Cai G, Cai R, Hu Z, Wang H. Tree Visualization by One Table (tvBOT): a web application for visualizing, modifying and annotating phylogenetic trees. Nucleic Acids Res, 2023, 51: W587-W592.
doi: 10.1093/nar/gkad359 pmid: 37144476
[31] Chen C, Chen H, Zhang Y, Thomas H R, Frank M H, He Y, Xia R. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant, 2020, 13: 1194-1202.
doi: S1674-2052(20)30187-8 pmid: 32585190
[32] Bailey T L, Boden M, Buske F A, Frith M, Grant C E, Clementi L, Ren J, Li W W, Noble W S. MEME SUITE: tools for motif discovery and searching. Nucl Acids Res, 2009, 37: W202-W208.
[33] Lescot M, Déhais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y, Rouzé P, Rombauts S. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res, 2002, 30: 325-327.
[34] Li G, Xu B, Zhang Y, Xu Y, Khan N U, Xie J, Sun X, Guo H, Wu Z, Wang X, Zhang H, Li J, Xu J, Wang W, Zhang Z, Li Z. RGN1 controls grain number and shapes panicle architecture in rice. Plant Biotechnol J, 2022, 20: 158-167.
[35] Shi D Q, Liu J, Xiang Y H, Ye D, Yang W C. SLOW WALKER1, Essential for gametogenesis in Arabidopsis, encodes a WD40 protein involved in 18S ribosomal RNA biogenesis. Plant Cell, 2005, 17: 2340-2354.
[36] Ohbayashi I, Lin C Y, Shinohara N, Matsumura Y, Machida Y, Horiguchi G, Tsukaya H, Sugiyama M. Evidence for a role of ANAC082 as a ribosomal stress response mediator leading to growth defects and developmental alterations in Arabidopsis. Plant Cell, 2017, 29: 2644-2660.
[37] Walker A R, Davison P A, Bolognesi-Winfield A C, James C M, Srinivasan N, Blundell T L, Esch J J, Marks M D, Gray J C. The TRANSPARENT TESTA GLABRA1 locus, which regulates trichome differentiation and anthocyanin biosynthesis in Arabidopsis, encodes a WD40 repeat protein. Plant Cell, 1999, 11: 1337-1349.
doi: 10.1105/tpc.11.7.1337 pmid: 10402433
[38] Zhao L, Gao L, Wang H, Chen X, Wang Y, Yang H, Wei C, Wan X, Xia T. The R2R3-MYB, bHLH, WD40, and related transcription factors in flavonoid biosynthesis. Funct Integr Genomics, 2013, 13: 75-98.
[39] Higa L A, Wu M, Ye T, Kobayashi R, Sun H, Zhang H. CUL4- DDB1 ubiquitin ligase interacts with multiple WD40-repeat proteins and regulates histone methylation. Nat Cell Biol, 2006, 8: 1277-1283.
[40] Guerriero G, Hausman J F, Ezcurra I. WD40-repeat proteins in plant cell wall formation: current evidence and research prospects. Front Plant Sci, 2015, 6: 1112.
doi: 10.3389/fpls.2015.01112 pmid: 26734023
[41] Chen W, Chen L, Zhang X, Yang N, Guo J, Wang M, Ji S, Zhao X, Yin P, Cai L. Convergent selection of a WD40 protein that enhances grain yield in maize and rice. Science, 2022, 375: eabg7985.
[42] Schreel J D, von der Crone J S, Kangur O, Steppe K. Influence of drought on foliar water uptake capacity of temperate tree species. Forests, 2019, 10: 562.
[43] Bu Y, Sun B, Zhou A, Zhang X, Takano T, Liu S. Overexpression of AtOxR gene improves abiotic stresses tolerance and vitamin C content in Arabidopsis thaliana. BMC Biotechnol, 2016, 16: 69.
[44] Radha B, Sunitha N C, Sah R P, Md Azharudheen T P, Krishna G, Umesh D K, Thomas S, Anilkumar C, Upadhyay S, Kumar A, Manikanta Ch L N, Behera S, Marndi B C, Siddique K H M. Physiological and molecular implications of multiple abiotic stresses on yield and quality of rice. Front Plant Sci, 2023, 13: 996514.
[45] Jin Y, Luo J, Yang Y, Jia J, Sun M, Wang X, Khan I, Huang D, Huang L. The evolution and expansion of RWP-RK gene family improve the heat adaptability of elephant grass (Pennisetum purpureum Schum.). BMC Genomics, 2023, 24: 510.
[1] YANG Shu, BAI Wei, CAI Qian, DU Gui-Juan. Characteristics of light distribution in maize‖alfalfa intercropping systems and their effects on plant traits and yield [J]. Acta Agronomica Sinica, 2025, 51(9): 2514-2526.
[2] GUO Bao-Wei, WANG Wang, WANG Kai, WANG Yan, ZENG Xin, JING Xiu, WANG Jing, NI Xin-Hua, XU Ke, ZHANG Hong-Cheng. Population dynamic characteristics and formation mechanisms of super high-yielding of two types of glutinous rice in the middle and lower reaches of the Yangtze Rive [J]. Acta Agronomica Sinica, 2025, 51(9): 2433-2453.
[3] FU Jiang-Peng, LIU Fa-Cai, YAN Bao-Qin, WANG Yong-Dong, LI Li-Li, WEI Wei, ZHOU Ying-Xia. Effect of replacing common urea with controlled-release fertilizer on dry matter accumulation, partitioning, yield, and quality of sorghum in dryland farming [J]. Acta Agronomica Sinica, 2025, 51(9): 2501-2513.
[4] ZHANG Hai-Yan, XIE Bei-Tao, DONG Shun-Xu, ZHANG Li-Ming, DUAN Wen-Xue. Effects of different types and ratios of water-soluble fertilizers on the yield and quality of table-use sweet potato [Ipomoea batatas (L.) Lam.] under drip irrigation [J]. Acta Agronomica Sinica, 2025, 51(9): 2485-2500.
[5] YANG Ting-Ting, CHEN Juan, ABDUL Rehman, LI Jing, YAN Su-Hui, WANG Jian-Lai, LI Wen-Yang. Effects of weak light post-anthesis on dry matter accumulation and translocation, grain yield, and starch quality in soft wheat [J]. Acta Agronomica Sinica, 2025, 51(8): 2204-2219.
[6] FAN You-Zhong, WANG Xian-Ling, WANG Zong-Kai, WANG Chun-Yun, WANG Tian-Yao, XIE Jie, KUAI Jie, WANG Bo, WANG Jing, XU Zheng-Hua, ZHAO Jie, ZHOU Guang-Sheng. Effects of straw incorporation combined with nitrogen management on photosynthetic efficiency and yield of rapeseed following rice [J]. Acta Agronomica Sinica, 2025, 51(8): 2139-2151.
[7] YOU Gen-Ji, XIE Hao, LIANG Yu-Wen, LI Long, WANG Yu-Ru, JIANG Chen-Yang, GUO Jian, LI Guang-Hao, LU Da-Lei. Effects of nitrogen fertilizer reduction measures on yield and nitrogen use efficiency of spring maize in Jianghuai region [J]. Acta Agronomica Sinica, 2025, 51(8): 2152-2163.
[8] LI Yi-Qian, XU Shou-Zhen, LIU Ping, MA Qi, XIE Bin, CHEN Hong. Genome-wide association study of yield components using a 40K SNP array and identification of a stable locus for boll weight in upland cotton (Gossypium hirsutum L.) [J]. Acta Agronomica Sinica, 2025, 51(8): 2128-2138.
[9] LI Qiu-Yun, LI Shi-Gui, FAN Jun-Liang, LIU Hao-Tian, ZHAO Xiao-Bin, LYU Shuo, WANG Yan-Hao, YUE Yun, ZHANG Ning, SI Huai-Jun. Effects of ionic zinc and nano-zinc on physiological characteristics, yield, and quality of potato [J]. Acta Agronomica Sinica, 2025, 51(7): 1838-1849.
[10] CHEN Ru-Xue, SUN Li-Fang, ZHANG Xin-Yuan, MU Hai-Meng, ZHANG Yong-Xin, YUAN Li-Xue, PENG Shi-Le, WANG Zhuang-Zhuang, WANG Yong-Hua. Effects of combined straw returning and microbial inoculant application on carbon-nitrogen metabolism in flag leaves and yield formation in winter wheat [J]. Acta Agronomica Sinica, 2025, 51(7): 1901-1913.
[11] WAN Shu-Bo, ZHANG Jia-Lei, GAO Hua-Xin, WANG Cai-Bin. Advances and prospects of high-yield peanut cultivation in China [J]. Acta Agronomica Sinica, 2025, 51(7): 1703-1711.
[12] HUO Jian-Zhe, YU Ai-Zhong, WANG Yu-Long, WANG Peng-Fei, YIN Bo, LIU Ya-Long, ZHANG Dong-Ling, JIANG Ke-Qiang, PANG Xiao-Neng, WANG Feng. Effect of organic manure substitution for chemical fertilizer on yield, quality, and nitrogen utilization of sweet maize in oasis irrigation areas [J]. Acta Agronomica Sinica, 2025, 51(7): 1887-1900.
[13] DONG Wei-Jin, ZHANG Ya-Feng, LI Qi-Yun, LU Yang, ZHANG Zheng-Kun, SUI Li. Effects of Beauveria bassiana colonization on maize growth and yield under elevated CO2 concentration [J]. Acta Agronomica Sinica, 2025, 51(7): 1874-1886.
[14] WU Liu-Ge, CHEN Jian, ZHANG Xin, DENG Ai-Xing, SONG Zhen-Wei, ZHENG Cheng-Yan, ZHANG Wei-Jian. Changes in yield and quality traits of nationally approved winter wheat varieties in China over last twenty years [J]. Acta Agronomica Sinica, 2025, 51(7): 1814-1826.
[15] ZHAO Jia-Wen, LI Zi-Hong, OU Xing-Yu, WANG Yi-Lang, DING Xiao-Fei, LIANG Yue-Yao, DING Wen-Jin, ZHANG Hai-Peng, MA Shang-Yu, FAN Yong-Hui, HUANG Zheng-Lai, ZHANG Wen-Jing. Effects of nitrogen and potassium fertilizer management on grain yield and quality of weak-gluten wheat [J]. Acta Agronomica Sinica, 2025, 51(7): 1914-1933.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!