Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2024, Vol. 50 ›› Issue (9): 2237-2247.doi: 10.3724/SP.J.1006.2024.34178

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Impact of potato StuPPO9 gene overexpression on drought resistance in Nicotiana benthamiana

LIU Bo(), CHI Ming* (), CAO Meng-Qi, TANG Da, YANG Heng-Zhao, ZHANG Wei-Hua, XUE Cong   

  1. School of Horticulture and Landscape Architecture, Tianjin Agricultural University, Tianjin 300384, China
  • Received:2023-11-01 Accepted:2024-05-21 Online:2024-09-12 Published:2024-05-28
  • Contact: *E-mail: chiming@tjau.edu.cn
  • Supported by:
    Tianjin Municipal Education Commission(2018KJ192)

Abstract:

To investigate the role of the potato polyphenol oxidase gene StuPPO9 in response to drought stress, we utilized the overexpression of the StuPPO9 gene in Nicotiana benthamiana through Agrobacterium-mediated transformation as the experimental material. Pot experiments were conducted to simulate natural drought stress, and various physiological indicators including growth morphology, chlorophyll content, malondialdehyde and proline levels, antioxidant enzyme activity, and expression of related resistance genes were compared and measured in transgenic and wild-type tobacco plants under drought stress for 0, 3, 6, 9 and 12 days. The results revealed that following the drought treatment, the transgenic strains exhibited significantly higher relative water content, chlorophyll content, proline levels, and superoxide dismutase (SOD) and peroxidase (POD) activities compared to the wild-type plants. Conversely, the malondialdehyde content was significantly lower in the transgenic strains compared to the wild-type. RT-qPCR analysis demonstrated a significant upregulation of expression levels in ROS scavenging system genes (SOD, POX), ABA biosynthesis genes (NCED, RD29A), proline biosynthesis gene (P5CS), and other stress response genes (LEA, ADC, SAMDC). These findings suggest that the overexpression of the StuPPO9 gene enhances drought tolerance in tobacco plants, providing a theoretical foundation for further exploration of StuPPO9’s role in regulating drought stress response.

Key words: StuPPO9, transgenic tobacco, drought tolerance, functional identification

Table 1

Primer sequences used in the study"

基因名称
Gene name
GenBank ID 正向引物
Forward primer (5°-3°)
反向引物
Reverse primer (3°-5°)
NtSOD XM_016657042.1 CTTATGTGTAGTCGCTGGTTGA AAGAGTTGCGCTCAAACGAT
NtApxL NM_001324874.1 AAGGCTCTCCTCTCTGATCC CTCTTCCTCCTATCGCAAGC
NtADC1 AF127239 TGCGTAGACGCTACTGTTTC GAGTTTGTAGGAGGTACGCC
NtSAMDC NM_001325698.3 AGTAGTGTCTTGAGGGCTGT AAATCCGAACGACACAGCTT
NtPOX2 AB178953 GACGAGTTGTTAACAGAGCCA AGAAGAACTCCTCCATCGCA
NtP5CS1 HM854026 AGACCTTAGTGGGCTTGAGA GTTAGGCTTCAACCTGCCTT
NtERD10C AB049337 TGGGGTTTGAAGGGTAATACAG AAGGTGAAAACCAAACCAACTG
NtLEA5 AF053076 GCTGCATCATCAGCTAGTGT CTCAGCAGCGTCAATCTCTT
NtNCED1 KM605435 AGCCCAAGATATCAATGCCAAG AGGAGCTTGGAGTGAGGAATTA
NtRD29A NM_001325924.1 TCATGGTGGACCCTATGCTAT CTGCAAAACTGGCCTATGTG
NtActin XM_016579509.1 GTCTCTTTGGATGCCTCTGC CATCCTATCAGCAATGCCCG
StuPPO9 XM_006347021.2 GGACCCGACGTTACCAAATG TGATGGAAGCTGGAAGTCGA
STPO XM_006347021.2 ATGTTCATGAATACATCTCAAAC CTAATCCTCAAGCACAATC

Fig. 1

PCR detection of StuPPO9 overexpression vector M: Trans2K Plus DNA marker; STPO: potato StuPPO9 gene amplification product."

Fig. 2

PCR identification of StuPPO9-overexpressing tobacco plants M: Trans2K Plus DNA marker; +: positive plasmid pCambia2301-StuPPO9 control; -: empty conversion tobacco; 5, 7, 9, 11, 15, 18: positive transgenic tobacco lines Line-5, Line-7, Line-9, Line-11, Line-15, and Line-18."

Fig. 3

StuPPO9 overexpression of tobacco positive plant strain StuPPO9 gene expression The lowercase letters indicate significant difference at the 0.05 probability level."

Fig. 4

Aboveground phenotypes of StuPPO9 transgenic tobacco under drought stress"

Fig. 5

Root phenotypes of StuPPO9 transgenic tobacco under drought stress"

Table 2

Changes in growth indicators of StuPPO9 transgenic tobacco under drought stress"

株系
Line
株高Height (cm) 茎粗Stem diameter (mm) 叶面积Leaf area (cm2)
对照组CK 干旱Drought 对照组CK 干旱Drought 对照组CK 干旱Drought
野生型WT 15.07±0.318 b 10.27±0.273 d 1.60±0.024 b 1.18±0.035 d 24.28±0.274 b 13.67±0.418 e
Line-5 15.60±0.306 b 13.47±0.203 c 1.67±0.021 ab 1.35±0.021 c 25.75±0.279 a 16.80±0.393 d
Line-9 16.40±0.173 a 14.00±0.252 c 1.75±0.031 a 1.42±0.029 c 26.41±0.188 a 18.77±0.256 c

Table 3

Relative moisture content of StuPPO9 transgenic tobacco shoot/root under drought stress (%)"

株系
Line
叶片Leaf 根系Root
对照组CK 干旱Drought 对照组CK 干旱Drought
野生型WT 92.25±0.584 a 85.06±0.208 c 94.36±0.220 b 87.24±0.347 d
Line-5 92.76±0.201 a 89.66±0.236 b 95.18±0.045 a 91.19±0.073 c
Line-9 93.15±0.075 a 90.12±0.602 b 95.27±0.074 a 91.34±0.044 c

Fig. 6

Changes in chlorophyll content in StuPPO9 transgenic tobacco under drought stress Significance of differences between treatments under drought stress treatment marked with different lowercase letters (P < 0.05)."

Fig. 7

Changes in malondialdehyde (A) and proline (B) content in StuPPO9 transgenic tobacco leaves under drought stress Significance of differences between treatments under drought stress treatment marked with different lowercase letters (P < 0.05)."

Fig. 8

Changes in superoxide dismutase (A) and peroxidase (B) activities in StuPPO9 transgenic tobacco leaves under drought stress Significance of differences between treatments under drought stress treatment marked with different lowercase letters (P < 0.05)."

Fig. 9

Expression of ROS and ABA-related genes in transgenic plants under drought stress Significance of differences between treatments under drought stress treatment marked with different lowercase letters (P < 0.05)."

Fig. 10

Expression of drought-resistant genes in transgenic plants under drought stress Significance of differences between treatments under drought stress treatment marked with different lowercase letters (P < 0.05)."

[1] Tran L T, Taylor J S, Constabel C P. The polyphenol oxidase gene family in land plants: lineage-specific duplication and expansion. BMC Genomics, 2012, 13: 395.
doi: 10.1186/1471-2164-13-395 pmid: 22897796
[2] 刘芳, 赵金红, 朱明慧, 甘芝霖, 倪元颖. 多酚氧化酶结构及褐变机理研究进展. 食品研究与开发, 2015, 36(6): 113-119.
Liu F, Zhao J H, Zhu M H, Gan Z L, Ni Y Y. Advances in research of the structure and browning mechanism of polyphenol oxidase. Food Res Dev, 2015, 36(6): 113-119 (in Chinese with English abstract).
[3] Xiao K, Liu X, Zhang A, Zha D, Zhu W M, Tan F, Huang Q, Zhou Y, Zhang M, Li J, Wu X. Genome-wide identification of polyphenol oxidase (PPO) family members in eggplant (Solanum melongena L.) and their expression in response to low temperature. Hortic Environ Biotechnol, 2022, 63: 747-758.
[4] Liang M, Haroldsen V, Cai X, Wu Y. Expression of a putative laccase gene, ZmLAC1, in maize primary roots under stress. Plant Cell Environ, 2006, 29: 746-753.
[5] Sharma N, Hundal G, Sharma I, Bhardwaj R. 28-Homobrassinolide alters protein content and activities of glutathione-S-transferase and polyphenol oxidase in Raphanus sativus L. plants under heavy metal stress. Toxicol Int, 2014, 21: 44-50.
doi: 10.4103/0971-6580.128792 pmid: 24748734
[6] Chen X, Wang B, Huang W, Wang T, Li Y, Zhong Z, Yang L, Li S, Tian J. Comparative proteomic analysis reveals elevated capacity for photosynthesis in polyphenol oxidase expression-silenced Clematis terniflora DC. leaves. Int J Mol Sci, 2018, 19: 3897.
[7] Szymborska-Sandhu I, Przybył J L, Pióro-Jabrucka E, Jędrzejuk A, Węglarz Z, Bączek K. Effect of shading on development, yield and quality of bastard balm herb (Melittis melissophyllum L.). Molecules, 2020, 25: 2142.
[8] 田奇琳, 林玉玲, 郑庆游, 苏荣峰, 赖钟雄. 龙眼DlPPO1基因的克隆及其表达调控分析. 西北植物学报, 2016, 36: 1098-1104.
Tian Q L, Lin Y L, Zheng Q Y, Su R F, Lai Z X. Cloning and expression regulation analysis of Longyan DlPPO1 gene. Acta Bot Boreali-Occident Sin, 2016, 36: 1098-1104 (in Chinese with English abstract).
[9] He F, Shi Y J, Zhao Q, Zhao K J, Cui X L, Chen L H, Wan X Q. Genome-wide investigation and expression profiling of polyphenol oxidase (PPO) family genes uncover likely functions in organ development and stress responses in Populus trichocarpa. BMC Genomics, 2021, 22: 731.
[10] Ullah Z, Iqbal J, Abbasi B A, Akhtar W, Kanwal S, Ali I, Mahmood T. Assessment of GUS expression induced by anti-sense OsPPO gene promoter and antioxidant enzymatic assays in response to drought and heavy metal stress in transgenic Arabidopsis thaliana. Sustainability, 2023, 15: 12783.
[11] Akhtar W, Mahmood T. Response of rice polyphenol oxidase promoter to drought and salt stress. Pak J Bot, 2017, 49: 21-23.
[12] Liu D, Meng S, Xiang Z, Yang G, He N. An R1R2R3 MYB transcription factor, MnMYB3R1, regulates the polyphenol oxidase gene in mulberry (Morus notabilis). Int J Mol Sci, 2019, 20: 2602.
[13] Chi M, Bhagwat B, Lane W D, Tang G, Su Y, Sun R, Oomah B D, Wiersma P A, Xiang Y. Reduced polyphenol oxidase gene expression and enzymatic browning in potato (Solanum tuberosum L.) with artificial microRNAs. BMC Plant Biol, 2014, 14: 62.
[14] 薛聪, 唐达, 黄洁萍, 刘波, 张卫华, 吴颖, 池明. 马铃薯CRISPR/Cas9编辑多酚氧化酶StuPPO9基因的初探. 植物生理学报, 2023, 59: 1135-1144.
Xue C, Tang D, Huang J P, Liu B, Zhang W H, Wu Y, Chi M. Preliminary exploration of the polyphenol oxidase StuPPO9 gene in potato CRISPR/Cas9 editing. Plant Physiol J, 2023, 59: 1135-1144 (in Chinese with English abstract).
[15] 张金辉, 池明, Yu X, 王远宏, 李二峰, 刘慧芹, 马睿. 马铃薯多酚氧化酶新成员StuPPO9基因的分离鉴定及其过表达烟草遗传转化. 食品研究与开发, 2020, 41(2): 165-171.
Zhang J H, Chi M, Yu X, Wang Y H, Li E F, Liu H Q, Ma R. Isolation and identification of StuPPO9 gene, a new member of potato polyphenol oxidase, and its overexpression in tobacco genetic transformation. Food Res Dev, 2020, 41(2): 165-171 (in Chinese with English abstract).
[16] 马文广, 崔华威, 李永平, 郑昀晔, 王洋, 秦国臣, 胡晋. 20个烟草品种干旱胁迫下发芽和苗期生理特性及耐旱性评价. 种子, 2012, 31(2): 25-30.
Ma W G, Cui H W, Li Y P, Zheng Y Y, Wang Y, Qin G C, Hu J. Evaluation of physiological characteristics and drought tolerance of 20 tobacco varieties during germination and seedling stage under drought stress. Seed, 2012, 31(2): 25-30 (in Chinese with English abstract).
[17] 高俊凤. 植物生理学实验指导. 北京: 高等教育出版社, 2006. pp 15-16.
Gao J F. Experimental Guidance for Plant Physiology. Beijing: Higher Education Press, 2006. pp 15-16 (in Chinese).
[18] 张志良, 瞿伟菁, 李小方. 植物生理学实验指导(第4版). 北京: 高等教育出版社, 2009. pp 227-229.
Zhang Z L, Qu W J, Li X F. Experimental Guidance on Plant Physiology, 4th edn. Beijing: Higher Education Press, 2009. pp 227-229 (in Chinese).
[19] Bates L S, Waldren R P, Teare I D. Rapid determination of free proline for water-stress studies. Plant Soil, 1973, 39: 205-207.
[20] 王学奎. 植物生理生化实验原理与技术. 北京: 高等教育出版社, 2006. pp 134-136.
Wang X K. Principles and Techniques of Plant Physiology and Biochemistry Experiments. Beijing: Higher Education Press, 2006. pp 134-136 (in Chinese).
[21] Gao K, Khan W U, Li J, Huang S, Yang X, Guo T, Guo B, Wu R, An X. Identification and validation of reliable reference genes for gene expression studies in Koelreuteria paniculata. Genes, 2022, 13: 714.
[22] Hosseinifard M, Stefaniak S, Ghorbani Javid M, Soltani E, Wojtyla L, Garnczarska M. Contribution of exogenous proline to abiotic stresses tolerance in plants: a review. Int J Mol Sci, 2022, 23: 5186.
[23] 张祎, 秦利军, 赵丹, 赵德刚. 超量表达NtHAK1基因提高烟草干旱胁迫能力. 植物生理学报, 2017, 53: 1444-1452.
Zhang Y, Qin L J, Zhao D, Zhao D G. Overexpression of NtHAK1 gene enhances tobacco’s drought stress ability. Plant Physiol J, 2017, 53: 1444-1452 (in Chinese with English abstract).
[24] 许兴, 郑国琦, 邓西平, 徐兆桢, 刘振荣. 不同基因型小麦幼苗抗旱抗盐性比较研究. 西北植物学报, 2002, 22: 1122-1135.
Xu X, Zheng G Q, Deng X P, Xu Z Z, Liu Z R. Comparative study on drought and salt resistance of wheat seedlings with different genotypes. Acta Bot Boreali-Occident Sin, 2002, 22: 1122-1135 (in Chinese with English abstract).
[25] 马秀芳, 沈秀瑛, 杨德光, 赵天宏, 郝宪彬, 沈枫. 不同耐旱性玉米品种对干旱的生理生化反应. 沈阳农业大学学报, 2002, 33(3): 167-170.
Ma X F, Shen X Y, Yang D G, Zhao T H, Hao X B, Shen F. Physiological and biochemical responses of maize varieties with different drought tolerance to drought. J Shenyang Agric Univ, 2002, 33(3): 167-170 (in Chinese with English abstract).
[26] 唐玉婧, 马猛, 邓西, 唐春, 邓荣, 杨淑慎. 干旱胁迫下小麦抗旱能力与其根系特征间的关系. 西北农林科技大学学报(自然科学版), 2014, 42(4): 48-54.
Tang Y J, Ma M, Deng X, Tang C, Deng R, Yang S S. The relationship between drought resistance and root characteristics of wheat under drought stress. J Northwest A&F Univ (Nat Sci Edn), 2014, 42(4): 48-54 (in Chinese with English abstract).
[27] 邓珍, 徐建飞, 段绍光, 刘杰, 卞春松, 庞万福, 金黎平. PEG-8000模拟干旱胁迫对11个马铃薯品种的组培苗生长指标的影响. 华北农学报, 2014, 29(5): 99-106.
doi: 10.7668/hbnxb.2014.05.017
Deng Z, Xu J F, Duan S G, Liu J, Bian C S, Pang W F, Jin L P. The effect of PEG-8000 simulated drought stress on the growth indicators of 11 potato varieties in tissue culture seedlings. Acta Agric Boreali-Sin, 2014, 29(5): 99-106 (in Chinese with English abstract).
[28] 杨宁, 王程亮, 李宜珅, 王新霞, 陈霞, 牛涛. 高山离子芥试管苗在 PEG-6000模拟干旱条件下的生理响应. 广西植物, 2015, 35: 77-83.
Yang N, Wang C L, Li Y S, Wang X X, Chen X, Niu T. Physiological response of alpine ion mustard plantlets under PEG-6000 simulated drought conditions. Guihaia, 2015, 35: 77-83 (in Chinese with English abstract).
[29] 沈庆庆, 王天菊, 王俊刚, 张树珍, 赵雪婷, 何丽莲, 李富生. 割手密转录因子SsWRKY1提高甘蔗品种抗旱能力的功能鉴定. 作物学报, 2023, 49: 2654-2664.
Shen Q Q, Wang T J, Wang J G, Zhang S Z, Zhao X T, He L L, Li F S. Functional identification of SsWRKY1, a transcription factor that enhances drought resistance in sugarcane varieties. Acta Agron Sin, 2023, 49: 2654-2664 (in Chinese with English abstract).
[30] 贾斯淳, 王娜, 郝兴宇, 宗毓铮, 张东升, 李萍. 不同干旱胁迫处理对大豆品种生长及逆境生理的影响. 华北农学报, 2019, 34(5): 137-144.
doi: 10.7668/hbnxb.201751770
Jia S C, Wang N, Hao X Y, Zong Y Z, Zhang D S, Li P. The effects of different drought stress treatments on the growth and stress physiology of soybean varieties. Acta Agric Boreali-Sin, 2019, 34(5): 137-144 (in Chinese with English abstract).
[31] 林庆同, 王伟, 杨美花, 黄浩, 石艳. 金属离子对马铃薯多酚氧化酶活力的影响. 厦门大学学报(自然科学版), 2010, 49: 561-563.
Lin Q T, Wang W, Yang M H, Huang H, Shi Y. The effect of metal ions on the activity of potato polyphenol oxidase. J Xiamen Univ (Nat Sci Edn), 2010, 49: 561-563 (in Chinese with English abstract).
[32] 徐萍, 李进, 吕海英, 李永洁, 李佳, 马春兰. 干旱胁迫对银沙槐幼苗叶绿体和线粒体超微结构及膜脂过氧化的影响. 干旱区研究, 2016, 33(1): 120-130.
Xu P, Li J, Lyu H Y, Li Y J, Li J, Ma C L. Effects of drought stress on the ultrastructure of chloroplasts and mitochondria, as well as membrane lipid peroxidation in silver sand locust seedlings. Arid Zone Res, 2016, 33(1): 120-130 (in Chinese with English abstract).
[33] 文利超, 熊涛, 邓智超, 刘涛, 郭存, 李伟, 郭永峰. 烟草转录因子NtNAC080在非生物胁迫下的表达分析及功能鉴定. 作物学报, 2023, 49: 2171-2182.
doi: 10.3724/SP.J.1006.2023.24193
Wen L C, Xiong T, Deng Z C, Liu T, Guo C, Li W, Guo Y F. Expression analysis and functional identification of tobacco transcription factor NtNAC080 under abiotic stress. Acta Agron Sin, 2023, 49: 2171-2182 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2023.24193
[34] Feng J, Wang L, Wu Y, Luo Q C, Zhang Y, Qiu D, Han J P, Su P P, Xiong Z Y, Chang J L. TaSnRK2.9, a sucrose non-fermenting 1-related protein kinase gene, positively regulates plant response to drought and salt stress in transgenic tobacco. Front Plant Sci, 2019, 9: 2003.
[35] Aziz E, Batool R, Akhtar W, Akhtar W, Rehman S, Gregersen P L, Mahmood T. Expression analysis of the polyphenol oxidase gene in response to signaling molecules, herbivory and wounding in antisense transgenic tobacco plants. 3 Biotech, 2019, 9: 55.
doi: 10.1007/s13205-019-1587-x pmid: 30729079
[36] Lee S U, Mun B G, Bae E K, Kim J Y, Kim H H, Shahid M, Choi Y I, Hussain A, Yun B W. Drought stress-mediated transcriptome profile reveals NCED as a key player modulating drought tolerance in Populus davidiana. Front Plant Sci, 2021, 12: 755539.
[37] Liu Y, Wang L, Xing X, Sun L, Pan J, Kong X, Zhang M, Li D. ZmLEA3, a multifunctional group 3 LEA protein from maize (Zea mays L.), is involved in biotic and abiotic stresses. Plant Cell Physiol, 2013, 54: 944-959.
[38] Mertens J, Aliyu H, Cowan D A. LEA proteins and the evolution of the WHy domain. Appl Environ Microbiol, 2018, 84: e00539.
[39] Jang E K, Min K H, Kim S H, Nam S H, Zhang S, Kim Y C, Cho B H, Yang K Y. Mitogen-activated protein kinase cascade in the signaling for polyamine biosynthesis in tobacco. Plant Cell Physiol, 2009, 50: 658-664.
[40] Bartels D, Sunkar R. Drought and salt tolerance in plants. Crit Rev Plant Sci, 2005, 24: 23-58.
[41] Huang X S, Luo T, Fu X Z, Fan Q J, Liu J H. Cloning and molecular characterization of a mitogen-activated protein kinase gene from Poncirus trifoliata whose ectopic expression confers dehydration/drought tolerance in transgenic tobacco. J Exp Bot, 2011, 62: 5191-5206.
[1] LIU Shuang, LI Shen, WANG Dong-Mei, SHA Xiao-Qian, HE Guan-Hua, ZHANG Deng-Feng, LI Yong-Xiang, LIU Xu-Yang, WANG Tian-Yu, LI Yu, LI Chun-Hui. Superior allele genes mining for drought tolerance in maize based on introgression line from a cross between maize and teosinte [J]. Acta Agronomica Sinica, 2024, 50(8): 1896-1906.
[2] ZHU Zhong-Lin, WEN Yue, ZHOU Qi, WU Yan-Fei, DU Xue-Zhu, SHENG Feng. Mechanism of loding residence and drought tolerance of OsCNGC10 gene in rice [J]. Acta Agronomica Sinica, 2024, 50(5): 1351-1360.
[3] LI Yang-Yang, WU Dan, XU Jun-Hong, CHEN Zhuo-Yong, XU Xin-Yuan, XU Jin-Pan, TANG Zhong-Lin, ZHANG Ya-Ru, ZHU Li, YAN Zhuo-Li, ZHOU Qing-Yuan, LI Jia-Na, LIU Lie-Zhao, TANG Zhang-Lin. Identification of candidate genes associated with drought tolerance based on QTL and transcriptome sequencing in Brassica napus L. [J]. Acta Agronomica Sinica, 2024, 50(4): 820-835.
[4] YUAN Da-Shuang, ZHANG Xiao-Li, ZHU Dong-Ming, YANG You-Hong, YAO Meng-Nan, LIANG Ying. Effects of BnMAPK2 on drought tolerance in Brassica napus [J]. Acta Agronomica Sinica, 2023, 49(6): 1518-1531.
[5] GONG Hui-Ling, LIN Hong-Xia, REN Xiao-Li, LI Tong, WANG Chen-Xia, BAI Jiang-Ping. StvacINV1 negatively regulates drought tolerance in potato [J]. Acta Agronomica Sinica, 2023, 49(11): 3007-3016.
[6] SHEN Qing-Qing, WANG Tian-Ju, WANG Jun-Gang, ZHANG Shu-Zhen, ZHAO Xue-Ting, HE Li-Lian, LI Fu-Sheng. Functional identification of Saccharum spontaneum transcription factor SsWRKY1 to improve drought tolerance in sugarcane [J]. Acta Agronomica Sinica, 2023, 49(10): 2654-2664.
[7] ZHOU Wen-Qi, QIANG Xiao-Xia, WANG Sen, JIANG Jing-Wen, WEI Wan-Rong. Mechanism of drought and salt tolerance of OsLPL2/PIR gene in rice [J]. Acta Agronomica Sinica, 2022, 48(6): 1401-1415.
[8] MENG Jiang-Yu, LIANG Guang-Wei, HE Ya-Jun, QIAN Wei. QTL mapping of salt and drought tolerance related traits in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(3): 462-471.
[9] HENG You-Qiang,YOU Xi-Long,WANG Yan. Pathogenesis-related protein gene SfPR1a from Salsola ferganica enhances the resistances to drought, salt and leaf spot disease in transgenic tobacco [J]. Acta Agronomica Sinica, 2020, 46(4): 503-512.
[10] Shan-Bin CHEN, Si-Fan SUN, Nan NIE, Bing DU, Shao-Zhen HE, Qing-Chang LIU, Hong ZHAI. Cloning of IbCAF1 and identification on tolerance to salt and drought stress in sweetpotato [J]. Acta Agronomica Sinica, 2020, 46(12): 1862-1869.
[11] ZHANG Huan, YANG Nai-Ke, SHANG Li-Li, GAO Xiao-Ru, LIU Qing-Chang, ZHAI Hong, GAO Shao-Pei, HE Shao-Zhen. Cloning and functional analysis of a drought tolerance-related gene IbNAC72 in sweet potato [J]. Acta Agronomica Sinica, 2020, 46(11): 1649-1658.
[12] Long LI,Xin-Guo MAO,Jing-Yi WANG,Xiao-Ping CHANG,Yu-Ping LIU,Rui-Lian JING. Drought Tolerance Evaluation of Wheat Germplasm Resources [J]. Acta Agronomica Sinica, 2018, 44(7): 988-999.
[13] Bin YU,Hong-Yu YANG,Li WANG,Yu-Hui LIU,Jiang-Ping BAI,Feng ZHANG,Di WANG,Jun-Lian ZHANG. Relationship between Potato Canopy-air Temperature Difference and Drought Tolerance [J]. Acta Agronomica Sinica, 2018, 44(7): 1086-1094.
[14] Jian-Wei WANG,Xiao-Lan HE,Wen-Xu LI,Xin-Hong CHEN. Molecular Cloning and Functional Analysis of 1-FFT in Wheat Relatives [J]. Acta Agronomica Sinica, 2018, 44(6): 814-823.
[15] Li-Li WAN, Zhuan-Rong WANG, Qiang XIN, Fa-Ming DONG, Deng-Feng HONG, Guang-Sheng YANG. Enhanced Accumulation of BnA7HSP70 Molecular Chaperone Binding Protein Improves Tolerance to Drought Stress in Transgenic Brassica napus [J]. Acta Agronomica Sinica, 2018, 44(04): 483-492.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!