Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (11): 3007-3016.doi: 10.3724/SP.J.1006.2023.34015

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

StvacINV1 negatively regulates drought tolerance in potato

GONG Hui-Ling1,*(), LIN Hong-Xia1, REN Xiao-Li1, LI Tong1, WANG Chen-Xia1, BAI Jiang-Ping2,3   

  1. 1School of Life Sciences and Engineering, Lanzhou University of Technology, Lanzhou 730050, Gansu, China
    2Gansu Provincial Key Laboratory of Aridland Crop Science / Gansu Key Laboratory of Crop Improvement and Germplasm Enhancement, Lanzhou 730070, Gansu, China
    3College of Agronomy, Gansu Agricultural University, Lanzhou 730070, Gansu, China
  • Received:2023-01-18 Accepted:2023-04-17 Online:2023-11-12 Published:2023-05-05
  • Supported by:
    National Natural Science Foundation of China(31860397);National Natural Science Foundation of China(31360296);Open Project of the State Key Laboratory of Crop Stress Biology for Arid Areas(CSBAAKF2018006);Key Program of Natural Science Foundation of Gansu Province(22JR5RA228)

Abstract:

Plant vacuolar acid invertase catalyses irreversible hydrolysis of sucrose into glucose and fructose, which plays a vital role in plant growth, development, and abiotic stress adaption. The vacuolar acid invertase gene StvacINV1 in potato (Solanum tuberosum L.) are involved in regulating cold-induced sweetening in tubers, however the physiological role of StvacINV1 during adaptation to drought stress conditions is not yet fully understood. To investigate the mechanism of StvacINV1 regulating drought toleration under natural drought stress (water was withheld), this experiment was conducted with potato cultivars ‘Atlantic’, ‘Russet Burbank’, and their StvacINV1-RNAi transgenic lines. The results showed that drought stress strongly reduced mRNA abundance of StvacINV1 and vacuolar acid invertase activity in the leaves of the wild-type plants and StvacINV1-RNAi transgenic lines. Compared with the wild type, the transgenic lines with high interference efficiency of StvacINV1-RNAi were less prone to slower wilting, lower water loss, lower MDA content, and higher relative water content in leaves under drought stress, which indicated that the transgenic strains with high interference efficiency of StvacINV1 had higher drought tolerance than wild type. StvaclNV1 regulated negatively drought tolerance of potao. Further analysis showed that under drought stress, stomatal aperture and stomatal conductance in highly interfered StvacINV1-RNAi transgenic lines were significantly lower than wild type, whereas water use efficiency was significantly higher, which demonstrated StvacINV1 might regulate the drought tolerance of potato plants by stomatal movement. Sucrose content in highly interfered StvacINV1-RNAi transgenic lines was significantly higher than wild type under drought stress, meanwhile the exogenous high concentration sucrose treatment can induce stomatal closure, which led us to speculate that StvacINV1 was involved in regulating stomatal closure through its catalytic substrate sucrose. Compared with wild type, StvacINV1-RNAi transgenic lines were more sensitive during ABA-induced stomatal closure. In conclusion, StvacINV1 negatively regulated the drought tolerance by stomatal closure in potato plants, and StvacINV1 may be involved in regulating stomatal closure through its catalytic substrate sucrose, and StvacINV1 was involved in ABA-induced stomatal closure. This study provides a theoretical basis for breeding potato varieties resistant to both sweetening (tubers) and drought stress.

Key words: potato, vacuolar acid invertase, drought tolerance, stomatal closure

Table 1

Primer sequences used in the study"

基因名称
Gene name
正向引物
Forward primer (5°-3°)
反向引物
Reverse primer (5°-3°)
ef1-α CAAGGATGACCCAGCCAAG TTCCTTACCTGAACGCCTGT
StvacINV1 GGTACGATATTAACGGTGTCTGG AGAAGGAGAGGATCAGATAAG

Fig. 1

StvacINV1 relative expression level (A) and vacuolar acid invertase (VIN) activity (B) in the WT and StvacINV1 RNA interference lines under normal or drought conditions"

Fig. 2

Plant morphology (A), relative water content (B), MDA content (C), fresh weight loss (D and E) of leaves in the WT and StvacINV1 RNA interference lines under normal or drought conditions"

Fig. 3

Stomatal aperture (A), stomatal conductance (B), and water use efficiency (WUE) (C) of leaves in the WT and StvacINV1 RNA interference lines under normal or drought conditions"

Fig. 4

Sucrose content of leaves in the WT and StvacINV1 RNA plants under normal or drought conditions"

Fig. 5

Effect of sucrose treatments on potato stomatal apearture"

Fig. 6

Effect of ABA treatments on potato stomatal aperture"

[1] Tauzin A S, Giardina T. Sucrose and invertases, a part of the plant defense response to the biotic stresses. Front Plant Sci, 2014, 5: 293.
doi: 10.3389/fpls.2014.00293 pmid: 25002866
[2] 赵杰堂. 蔗糖转化酶在高等植物生长发育及胁迫响应中的功能研究进展. 热带亚热带植物学报, 2016, 24: 352-358.
Zhao J T. Advances in research on invertase in plant development and response to abiotic and biotic stresses. J Trop Suptrop Bot, 2016, 24: 352-358 (in Chinese with English abstract).
[3] Hothorn M, Wolf S, Aloy P, Greiner S, Scheffzek K. Structural insights into the target specificity of plant invertase and pectin methylesterase inhibitory proteins. Plant Cell, 2004, 16: 3437-3447.
pmid: 15528298
[4] Nägele T, Henkel S, Hörmiller I, Sauter T, Sawodny O, Ederer M, Heyer A G. Mathematical modeling of the central carbohydrate metabolism in Arabidopsis reveals a substantial regulatory influence of vacuolar invertase on whole plant carbon metabolism. Plant Physiol, 2010, 153: 260-272.
doi: 10.1104/pp.110.154443
[5] Wang L, Li X R, Lian H, Ni D A, He Y K, Chen X Y, Ruan Y L. Evidence that high activity of vacuolar invertase is required for cotton fiber and Arabidopsis root elongation through osmotic dependent and independent pathways, respectively. Plant Physiol, 2010, 154: 744-756.
doi: 10.1104/pp.110.162487 pmid: 20699399
[6] Wang L, Ruan Y L. Critical roles of vacuolar invertase in floral organ development and male and female fertilities are revealed through characterization of GhStvacINV1-RNAi cotton plants. Plant Physiol, 2016, 171: 405-423.
doi: 10.1104/pp.16.00197 pmid: 26969720
[7] Qin G, Zhu Z, Wang W, Cai J, Chen Y, Li L, Tian S. A tomato vacuolar invertase inhibitor mediates sucrose metabolism and influences fruit ripening. Plant Physiol, 2016, 172: 1596-1611.
pmid: 27694342
[8] McLaughlin J E, Boyer J S. Sugar-responsive gene expression, invertase activity, and senescence in aborting maize ovaries at low water potentials. Ann Bot, 2004, 94: 675-689.
doi: 10.1093/aob/mch193
[9] Trouverie J, Chateau-Joubert S, Thévenot C, Jacquemot M P, Prioul J L. Regulation of vacuolar invertase by abscisic acid or glucose in leaves and roots from maize plantlets. Planta, 2004, 219: 894-905.
pmid: 15179513
[10] Liu X, Zhang C, Ou Y B, Lin Y, Song B, Xie C H, Liu J, Li X Q. Systematic analysis of potato acid invertase genes reveals that a cold-responsive member, StvacINV1, regulates cold-induced sweetening of tubers. Mol Genet Genomics, 2011, 286: 109-118.
doi: 10.1007/s00438-011-0632-1 pmid: 21691778
[11] Yuan B Z, Nishiyama S, Kang Y H. Effects of different irrigation regimes on the growth and yield of drip-irrigated potato. Agric Water Manage, 2003, 63: 153-167.
doi: 10.1016/S0378-3774(03)00174-4
[12] 李鹏程, 毕真真, 孙超, 秦天元, 梁文君, 王一好, 许德蓉, 刘玉汇, 张俊莲, 白江平. DNA甲基化参与调控马铃薯响应干旱胁迫的关键基因挖掘. 作物学报, 2021, 47: 599-612.
doi: 10.3724/SP.J.1006.2021.04152
Li P C, Bi Z Z, Sun C, Qin T Y, Liang W J, Wang Y H, Xu D R, Liu Y H, Zhang J L, Bai J P. Key genes mining of DNA methylation involved in regulating drought stress response in potato. Acta Agron Sin, 2021, 47: 599-612 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2021.04152
[13] Gervais T, Creelman A, Li X, Bizimungu B, Koeyer D D, Dahal K. Potato response to drought stress physiological and growth basis: Front Plant Sci, 2021, 12: 698060.
doi: 10.3389/fpls.2021.698060
[14] 王郁, 程鑫, 叶夕苗, 程李香, 李高峰, 文国宏, 王玉萍, 张峰. 不同品系马铃薯块茎末端糖化差异分析. 中国粮油学报, 2020, 35(7): 22-27.
Wang Y, Cheng X, Ye X M, Cheng L X, Li G F, Wen G H, Wang Y P, Zhang F. Analysis of sugar-end differences of potato tubersin different lines. J Chin Cereals Oils Assoc, 2020, 35(7): 22-27 (in Chinese with English abstract).
[15] Bhaskar P B, Wu L, Busse J S, Whitty B R, Hamernik A J, Jansky S H, Buel C R, Bethke P C, Jiang J. Suppression of the vacuolar invertase gene prevents cold-Induced sweetening in potato. Plant Physiol, 2010, 154: 939-948.
doi: 10.1104/pp.110.162545 pmid: 20736383
[16] Liu X, Lin Y, Liu J, Song B, Ou Y, Zhang H, Li M, Xie C. StInvInh2 as an inhibitor of StvacINV1 regulates the cold-induced sweetening of potato tubers by specifically capping vacuolar invertase activity. Plant Biotechnol J, 2013, 11: 640-647.
doi: 10.1111/pbi.12054 pmid: 23421503
[17] Lin Y, Liu T, Liu J, Liu X, Ou Y, Zhang H, Li M, Sonnewald U, Song B, Xie C. Subtle regulation of potato acid invertase activity by a protein complex of invertase, invertase inhibitor, and SUCROSE NONFERMENTING1-RELATED protein KINASE. Plant Physiol, 2015, 168: 1807-1819.
doi: 10.1104/pp.15.00664 pmid: 26134163
[18] Kyriacou M C, Siomos A S, Ioannides I M, Gerasopoulos D. The chip-processing potential of four potato (Solanum tuberosum L.)cultivars in response to long-term cold storage and reconditioning. J Sci Food Agric, 2009, 89: 758-764.
doi: 10.1002/jsfa.v89:5
[19] Eldredge E P, Holmes Z A, Mosley A R, Shock C C, Stieber T D. Effects of transitory water stress on potato tuber stem-end reducing sugar and fry color. Am Potato J, 1996, 73: 517-530.
doi: 10.1007/BF02851697
[20] Wang Y, Bussan A J, Bethke P C. Stem-end defect in chipping potatoes (Solanum tuberosum L.)as influenced by mild environmental stresses. Am J Potato Res, 2012, 89: 392-399.
doi: 10.1007/s12230-012-9259-y
[21] Burton W G. Senescence in stored potato tubers. Ann Appl Biol, 1977, 85: 433-436.
[22] Wu L, Bhaskar P B, Busse J S, Zhang R, Bethke P C, Jiang J. Developing cold-chipping potato varieties by silencing the vacuolar invertase gene. Crop Sci, 2011, 51: 981-990.
doi: 10.2135/cropsci2010.08.0473
[23] Zhu X, Richael C, Chamberlain P, Busse J S, Bussan A J, Jiang J, Bethke P C. Vacuolar invertase gene silencing in potato (solanum tuberosum L.)improves processing quality by decreasing the frequency of sugar-end defects. PLoS One, 2014, 9: 93381.
[24] Wiberley-Bradford A E, Bethke P C. Suppression of the vacuolar invertase gene delays senescent sweetening in chipping potatoes. J Sci Food Agric, 2018, 98: 354-360.
doi: 10.1002/jsfa.8478
[25] Greiner S, Rausch T, Sonnewald U, Herbers K. Ectopic expression of a tobacco invertase inhibitor homolog prevents cold-induced sweetening of potato tubers. Nat Biotechnol, 1999, 17: 708-711.
doi: 10.1038/10924 pmid: 10404166
[26] McKenzie M J, Chen R K Y, Harris J C, Ashworth M J, Brummell D A. Post-translational regulation of acid invertase activity by vacuolar invertase inhibitor affects resistance to cold-induced sweetening of potato tubers. Plant Cell Environ, 2013, 36: 176-185.
doi: 10.1111/pce.2013.36.issue-1
[27] Chen S F, Liang K, Yin D M, Ni D A, Zhang Z G, Ruan Y L. Ectopic expression of a tobacco vacuolar invertase inhibitor in guard cells confers drought tolerance in Arabidopsis. J Enzyme Inhib Med Chem J, 2016, 31: 1381-1385.
[28] Yang D, Xie Y, Sun H, Bian X, Ke Q, Kim H S, Ji C Y, Jin R, Wang W, Zhang C, Ma J, Li Z, Ma D, Kwak S S. IbINH positively regulates drought stress tolerance in sweetpotato. Plant Physiol Biochem, 2020, 146: 403-410.
doi: 10.1016/j.plaphy.2019.11.039
[29] Shang Y, Dai C, Lee M M, Kwak J M, Nam K H. BRI1-associated receptor kinase 1 regulates guard cell ABA signaling mediated by open stomata 1in Arabidopsis. Mol Plant, 2016, 9: 447-460.
doi: S1674-2052(15)00467-0 pmid: 26724418
[30] 杜培兵, 杨文静. 马铃薯抗旱品种筛选及鉴定试验. 中国蔬菜, 2018, (9): 29-34.
Du P B, Yang W J. Screening and identification test of drought resistant potato varieties. China Veget, 2018, (9): 29-34 (in Chinese with English abstract).
[31] 田伟丽, 王亚路, 梅旭荣, 李玉中, 郭家选. 水分胁迫对设施马铃薯叶片脱落酸和水分利用效率的影响研究. 作物杂志, 2015, (1): 103-108.
Tian W L, Wang Y L, Mei X R, Li Y Z, Guo J X. Effect of water stress on ABA content in leaf and water efficiency of facilities potato. Crops, 2015, (1): 103-108 (in Chinese with English abstract).
[32] 李合生. 植物生理生化实验原理与技术. 北京: 高等教育出版社, 2000. pp 260-261.
Li H S. Principles and Techniques of Plant Physiological and Biochemical Experiments. Beijing: Higher Education Press, 2000. pp 260-261 (in Chinese).
[33] 肖世远. 间苯二酚光度法测定蔗糖的适宜条件. 四川师范学院学报(自然科学版), 1998, 19: 293-295.
Xiao S Y. The suitable conditions of measuring cane sugar by using resorcinol-photometric method. J Sichuan Teach Coll (Nat Sci Edn), 1998, 19: 293-295 (in Chinese with English abstract).
[34] Ahiakpa J K, Magdy M, Karikari B, Munir S, Mumtaz M A, Tamim S A, Mahmood S, Liu G, Chen W, Wang Y, Zhang Y. Genome-wide identification and expression profiling of tomato invertase genes indicate their response to stress and phytohormones. J Plant Growth Regul, 2022, 41: 1481-1498.
doi: 10.1007/s00344-021-10384-5
[35] Albacete A, Cantero-Navarro E, Großkinsky D K, Arias C L, Balibrea M E, Bru R, Fragner L, Ghanem M E, González MDLC, Hernández J A, Martínez-Andújar C, van der Graaff E, Weckwerth W, Zellnig G, Pérez-Alfocea F, Roitsch T. Ectopic overexpression of the cell wall invertase gene CIN1 leads to dehydration avoidance in tomato. J Exp Bot, 2015, 66: 863-878.
doi: 10.1093/jxb/eru448 pmid: 25392479
[36] Abbas A, Shah A N, Shah A A, Nadeem M A, Alsaleh A, Javed T, Alotaibi S S, Abdelsalam N R. Genome-wide analysis of invertase gene family, and expression profiling under abiotic stress conditions in potato. Biology, 2022, 11: 539.
doi: 10.3390/biology11040539
[37] Egilla J N, Davies F T, Boutton T W. Drought stress influences leaf water content, photosynthesis, and water-use efficiency of Hibiscus rosa-sinensis at three potassium concentrations. Photosynthetica, 2005, 43: 135-140.
doi: 10.1007/s11099-005-5140-2
[38] Ni D A. Role of vacuolar invertase in regulating Arabidopsis stomatal opening. Acta Physiol Plant, 2012, 34: 2449-2452.
doi: 10.1007/s11738-012-1036-5
[39] Antunes W C, Provart N J, Williams T C R, Loureiro M E. Changes in stomatal function and water use efficiency in potato plants with altered sucrolytic activity. Plant Cell Environ, 2012, 35: 747-759.
doi: 10.1111/pce.2012.35.issue-4
[40] Medeiros D B, Souza L P, Antunes W C, Araújo W L, Daloso D M, Fernie1 A R. Sucrose breakdown within guard cells provides substrates for glycolysis and glutamine biosynthes is during light-induced stomatal opening. Plant J, 2018, 94: 583-594.
doi: 10.1111/tpj.2018.94.issue-4
[41] Lima V F, Medeiros D B, Dos Anjos L, Gago J, Fernie A R, Daloso D M. Toward multifaceted roles of sucrose in the regulation of stomatal movement. Plant Signal Behav, 2018, 13: 1494468.
[42] Daloso D M, Dos Anjos L, Fernie A R. Roles of sucrose in guard cell regulation. New Phytol, 2016, 211: 809-818.
doi: 10.1111/nph.13950 pmid: 27060199
[43] Kelly G, Moshelion M, David-Schwartz R, Halperin O, Wallach R, Attia Z, Belausov E, Granot D. Hexokinase mediates stomatal closure. Plant J, 2013, 75: 977-988.
doi: 10.1111/tpj.12258
[44] Koh E J, Lee S J, Hong S W, Lee H S, Lee H. The ABA effect on the accumulation of an invertase inhibitor transcript that is driven by the CAMV35S promoter in ARABIDOPSIS. Mol Cells, 2008, 26: 236-242
[45] Jin Y, Ni D A, Ruan Y L. Posttranslational elevation of cell wall invertase activity by silencing its inhibitor in tomato delays leaf senescence and increases seed weight and fruit hexose level. Plant Cell, 2009, 21: 2072-2089.
doi: 10.1105/tpc.108.063719 pmid: 19574437
[1] YANG Yi, HE Zhi-Qiang, LIN Jia-Hui, LI Yang, CHEN Fei, LYU Chang-Wen, TANG Dao-Bin, ZHOU Quan-Lu, WANG Ji-Chun. Effects of coconut bran application rate on soil physicochemical properties and sweet-potato yield [J]. Acta Agronomica Sinica, 2023, 49(9): 2517-2527.
[2] SU Yi-Jun, ZHAO Lu-Kuan, TANG Fen, DAI Xi-Bin, SUN Ya-Wei, ZHOU Zhi-Lin, LIU Ya-Ju, CAO Qing-He. Genetic diversity and population structure analysis of 378 introduced sweetpotato germplasm collections [J]. Acta Agronomica Sinica, 2023, 49(9): 2582-2593.
[3] LIU Jie, CAI Cheng-Cheng, LIU Shi-Feng, DENG Meng-Sheng, WANG Xue-Feng, WEN He, LI Luo-Pin, YAN Feng-Jun, WANG Xi-Yao. Function analysis of potato StCYP85A3 in promoting germination and root elongation [J]. Acta Agronomica Sinica, 2023, 49(9): 2462-2471.
[4] JIA Rui-Xue, CHEN Yi-Hang, ZHANG Rong, TANG Chao-Chen, WANG Zhang-Ying. Simultaneous determination of 13 carotenoids in sweetpotato by Ultra- Performance Liquid Chromatography [J]. Acta Agronomica Sinica, 2023, 49(8): 2259-2274.
[5] ZHAO Xi-Juan, LIU Sheng-Xuan, LIU Teng-Fei, ZHENG Jie, DU Juan, HU Xin-Xi, SONG Bo-Tao, HE Chang-Zheng. Transcriptome analysis reveals the regulatory role of the transcription factor StMYB113 in light-induced chlorophyll synthesis of potato tuber epidermis [J]. Acta Agronomica Sinica, 2023, 49(7): 1860-1870.
[6] WANG Yan-Nan, CHEN Jin-Jin, BIAN Qian-Qian, HU Lin-Lin, ZHANG Li, YIN Yu-Meng, QIAO Shou-Chen, CAO Guo-Zheng, KANG Zhi-He, ZHAO Guo-Rui, YANG Guo-Hong, YANG Yu-Feng. Integrated analysis of transcriptome and metabolome reveals the metabolic response pathways of sweetpotato under shade stress [J]. Acta Agronomica Sinica, 2023, 49(7): 1785-1798.
[7] SUO Hai-Cui, LIU Ji-Tao, WANG Li, LI Cheng-Chen, SHAN Jian-Wei, LI Xiao-Bo. Functional analysis of StZIP12 in regulating potato Zn uptake [J]. Acta Agronomica Sinica, 2023, 49(7): 1994-2001.
[8] MEI Yu-Qin, LIU Yi, WANG Chong, LEI Jian, ZHU Guo-Peng, YANG Xin-Sun. Genome-wide identification and expression analysis of PHB gene family in sweet potato [J]. Acta Agronomica Sinica, 2023, 49(6): 1715-1725.
[9] YUAN Da-Shuang, ZHANG Xiao-Li, ZHU Dong-Ming, YANG You-Hong, YAO Meng-Nan, LIANG Ying. Effects of BnMAPK2 on drought tolerance in Brassica napus [J]. Acta Agronomica Sinica, 2023, 49(6): 1518-1531.
[10] ZHANG Xiao-Hong, PENG Qiong, YAN Zheng. Transcriptome sequencing analysis of different sweet potato varieties under salt stress [J]. Acta Agronomica Sinica, 2023, 49(5): 1432-1444.
[11] CHEN Yi-Hang, TANG Chao-Chen, ZHANG Xiong-Jian, YAO Zhu-Fang, JIANG Bing-Zhi, WANG Zhang-Ying. Construction of core collection of sweetpotato based on phenotypic traits and SSR markers [J]. Acta Agronomica Sinica, 2023, 49(5): 1249-1261.
[12] LIU Ming, FAN Wen-Jing, ZHAO Peng, JIN Rong, ZHANG Qiang-Qiang, ZHU Xiao-Ya, WANG Jing, LI Qiang. Genotypes screening and comprehensive evaluation of sweetpotato tolerant to low potassium stress at seedling stage [J]. Acta Agronomica Sinica, 2023, 49(4): 926-937.
[13] LI Hong-Yan, LI Jie-Ya, LI Xiang, YE Guang-Ji, ZHOU Yun, WANG Jian. Effects of overexpression of LrAN2 gene on contents of anthocyanins and glycoalkaloids in potato [J]. Acta Agronomica Sinica, 2023, 49(4): 988-995.
[14] ZHANG Wei-Na, YU Hui-Fang, AN Zhen, LIU Wen-Kai, KANG Yi-Chen, SHI Ming-Fu, YANG Xin-Yu, ZHANG Ru-Yang, WANG Yong, QIN Shu-Hao. StEFR1 regulates late blight resistance positively in potato (Solanum tuberosum) [J]. Acta Agronomica Sinica, 2023, 49(4): 996-1005.
[15] WU Shi-Yu, CHEN Kuang-Ji, LYU Zun-Fu, XU Xi-Ming, PANG Lin-Jiang, LU Guo-Quan. Effects of nitrogen fertilizer application rate on starch contents and properties during storage root expansion in sweetpotato [J]. Acta Agronomica Sinica, 2023, 49(4): 1090-1101.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[5] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[6] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[7] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[8] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[9] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .
[10] XING Guang-Nan, ZHOU Bin, ZHAO Tuan-Jie, YU De-Yue, XING Han, HEN Shou-Yi, GAI Jun-Yi. Mapping QTLs of Resistance to Megacota cribraria (Fabricius) in Soybean[J]. Acta Agronomica Sinica, 2008, 34(03): 361 -368 .