Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (11): 3007-3016.doi: 10.3724/SP.J.1006.2023.34015
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
GONG Hui-Ling1,*(), LIN Hong-Xia1, REN Xiao-Li1, LI Tong1, WANG Chen-Xia1, BAI Jiang-Ping2,3
[1] |
Tauzin A S, Giardina T. Sucrose and invertases, a part of the plant defense response to the biotic stresses. Front Plant Sci, 2014, 5: 293.
doi: 10.3389/fpls.2014.00293 pmid: 25002866 |
[2] | 赵杰堂. 蔗糖转化酶在高等植物生长发育及胁迫响应中的功能研究进展. 热带亚热带植物学报, 2016, 24: 352-358. |
Zhao J T. Advances in research on invertase in plant development and response to abiotic and biotic stresses. J Trop Suptrop Bot, 2016, 24: 352-358 (in Chinese with English abstract). | |
[3] |
Hothorn M, Wolf S, Aloy P, Greiner S, Scheffzek K. Structural insights into the target specificity of plant invertase and pectin methylesterase inhibitory proteins. Plant Cell, 2004, 16: 3437-3447.
pmid: 15528298 |
[4] |
Nägele T, Henkel S, Hörmiller I, Sauter T, Sawodny O, Ederer M, Heyer A G. Mathematical modeling of the central carbohydrate metabolism in Arabidopsis reveals a substantial regulatory influence of vacuolar invertase on whole plant carbon metabolism. Plant Physiol, 2010, 153: 260-272.
doi: 10.1104/pp.110.154443 |
[5] |
Wang L, Li X R, Lian H, Ni D A, He Y K, Chen X Y, Ruan Y L. Evidence that high activity of vacuolar invertase is required for cotton fiber and Arabidopsis root elongation through osmotic dependent and independent pathways, respectively. Plant Physiol, 2010, 154: 744-756.
doi: 10.1104/pp.110.162487 pmid: 20699399 |
[6] |
Wang L, Ruan Y L. Critical roles of vacuolar invertase in floral organ development and male and female fertilities are revealed through characterization of GhStvacINV1-RNAi cotton plants. Plant Physiol, 2016, 171: 405-423.
doi: 10.1104/pp.16.00197 pmid: 26969720 |
[7] |
Qin G, Zhu Z, Wang W, Cai J, Chen Y, Li L, Tian S. A tomato vacuolar invertase inhibitor mediates sucrose metabolism and influences fruit ripening. Plant Physiol, 2016, 172: 1596-1611.
pmid: 27694342 |
[8] |
McLaughlin J E, Boyer J S. Sugar-responsive gene expression, invertase activity, and senescence in aborting maize ovaries at low water potentials. Ann Bot, 2004, 94: 675-689.
doi: 10.1093/aob/mch193 |
[9] |
Trouverie J, Chateau-Joubert S, Thévenot C, Jacquemot M P, Prioul J L. Regulation of vacuolar invertase by abscisic acid or glucose in leaves and roots from maize plantlets. Planta, 2004, 219: 894-905.
pmid: 15179513 |
[10] |
Liu X, Zhang C, Ou Y B, Lin Y, Song B, Xie C H, Liu J, Li X Q. Systematic analysis of potato acid invertase genes reveals that a cold-responsive member, StvacINV1, regulates cold-induced sweetening of tubers. Mol Genet Genomics, 2011, 286: 109-118.
doi: 10.1007/s00438-011-0632-1 pmid: 21691778 |
[11] |
Yuan B Z, Nishiyama S, Kang Y H. Effects of different irrigation regimes on the growth and yield of drip-irrigated potato. Agric Water Manage, 2003, 63: 153-167.
doi: 10.1016/S0378-3774(03)00174-4 |
[12] |
李鹏程, 毕真真, 孙超, 秦天元, 梁文君, 王一好, 许德蓉, 刘玉汇, 张俊莲, 白江平. DNA甲基化参与调控马铃薯响应干旱胁迫的关键基因挖掘. 作物学报, 2021, 47: 599-612.
doi: 10.3724/SP.J.1006.2021.04152 |
Li P C, Bi Z Z, Sun C, Qin T Y, Liang W J, Wang Y H, Xu D R, Liu Y H, Zhang J L, Bai J P. Key genes mining of DNA methylation involved in regulating drought stress response in potato. Acta Agron Sin, 2021, 47: 599-612 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2021.04152 |
|
[13] |
Gervais T, Creelman A, Li X, Bizimungu B, Koeyer D D, Dahal K. Potato response to drought stress physiological and growth basis: Front Plant Sci, 2021, 12: 698060.
doi: 10.3389/fpls.2021.698060 |
[14] | 王郁, 程鑫, 叶夕苗, 程李香, 李高峰, 文国宏, 王玉萍, 张峰. 不同品系马铃薯块茎末端糖化差异分析. 中国粮油学报, 2020, 35(7): 22-27. |
Wang Y, Cheng X, Ye X M, Cheng L X, Li G F, Wen G H, Wang Y P, Zhang F. Analysis of sugar-end differences of potato tubersin different lines. J Chin Cereals Oils Assoc, 2020, 35(7): 22-27 (in Chinese with English abstract). | |
[15] |
Bhaskar P B, Wu L, Busse J S, Whitty B R, Hamernik A J, Jansky S H, Buel C R, Bethke P C, Jiang J. Suppression of the vacuolar invertase gene prevents cold-Induced sweetening in potato. Plant Physiol, 2010, 154: 939-948.
doi: 10.1104/pp.110.162545 pmid: 20736383 |
[16] |
Liu X, Lin Y, Liu J, Song B, Ou Y, Zhang H, Li M, Xie C. StInvInh2 as an inhibitor of StvacINV1 regulates the cold-induced sweetening of potato tubers by specifically capping vacuolar invertase activity. Plant Biotechnol J, 2013, 11: 640-647.
doi: 10.1111/pbi.12054 pmid: 23421503 |
[17] |
Lin Y, Liu T, Liu J, Liu X, Ou Y, Zhang H, Li M, Sonnewald U, Song B, Xie C. Subtle regulation of potato acid invertase activity by a protein complex of invertase, invertase inhibitor, and SUCROSE NONFERMENTING1-RELATED protein KINASE. Plant Physiol, 2015, 168: 1807-1819.
doi: 10.1104/pp.15.00664 pmid: 26134163 |
[18] |
Kyriacou M C, Siomos A S, Ioannides I M, Gerasopoulos D. The chip-processing potential of four potato (Solanum tuberosum L.)cultivars in response to long-term cold storage and reconditioning. J Sci Food Agric, 2009, 89: 758-764.
doi: 10.1002/jsfa.v89:5 |
[19] |
Eldredge E P, Holmes Z A, Mosley A R, Shock C C, Stieber T D. Effects of transitory water stress on potato tuber stem-end reducing sugar and fry color. Am Potato J, 1996, 73: 517-530.
doi: 10.1007/BF02851697 |
[20] |
Wang Y, Bussan A J, Bethke P C. Stem-end defect in chipping potatoes (Solanum tuberosum L.)as influenced by mild environmental stresses. Am J Potato Res, 2012, 89: 392-399.
doi: 10.1007/s12230-012-9259-y |
[21] | Burton W G. Senescence in stored potato tubers. Ann Appl Biol, 1977, 85: 433-436. |
[22] |
Wu L, Bhaskar P B, Busse J S, Zhang R, Bethke P C, Jiang J. Developing cold-chipping potato varieties by silencing the vacuolar invertase gene. Crop Sci, 2011, 51: 981-990.
doi: 10.2135/cropsci2010.08.0473 |
[23] | Zhu X, Richael C, Chamberlain P, Busse J S, Bussan A J, Jiang J, Bethke P C. Vacuolar invertase gene silencing in potato (solanum tuberosum L.)improves processing quality by decreasing the frequency of sugar-end defects. PLoS One, 2014, 9: 93381. |
[24] |
Wiberley-Bradford A E, Bethke P C. Suppression of the vacuolar invertase gene delays senescent sweetening in chipping potatoes. J Sci Food Agric, 2018, 98: 354-360.
doi: 10.1002/jsfa.8478 |
[25] |
Greiner S, Rausch T, Sonnewald U, Herbers K. Ectopic expression of a tobacco invertase inhibitor homolog prevents cold-induced sweetening of potato tubers. Nat Biotechnol, 1999, 17: 708-711.
doi: 10.1038/10924 pmid: 10404166 |
[26] |
McKenzie M J, Chen R K Y, Harris J C, Ashworth M J, Brummell D A. Post-translational regulation of acid invertase activity by vacuolar invertase inhibitor affects resistance to cold-induced sweetening of potato tubers. Plant Cell Environ, 2013, 36: 176-185.
doi: 10.1111/pce.2013.36.issue-1 |
[27] | Chen S F, Liang K, Yin D M, Ni D A, Zhang Z G, Ruan Y L. Ectopic expression of a tobacco vacuolar invertase inhibitor in guard cells confers drought tolerance in Arabidopsis. J Enzyme Inhib Med Chem J, 2016, 31: 1381-1385. |
[28] |
Yang D, Xie Y, Sun H, Bian X, Ke Q, Kim H S, Ji C Y, Jin R, Wang W, Zhang C, Ma J, Li Z, Ma D, Kwak S S. IbINH positively regulates drought stress tolerance in sweetpotato. Plant Physiol Biochem, 2020, 146: 403-410.
doi: 10.1016/j.plaphy.2019.11.039 |
[29] |
Shang Y, Dai C, Lee M M, Kwak J M, Nam K H. BRI1-associated receptor kinase 1 regulates guard cell ABA signaling mediated by open stomata 1in Arabidopsis. Mol Plant, 2016, 9: 447-460.
doi: S1674-2052(15)00467-0 pmid: 26724418 |
[30] | 杜培兵, 杨文静. 马铃薯抗旱品种筛选及鉴定试验. 中国蔬菜, 2018, (9): 29-34. |
Du P B, Yang W J. Screening and identification test of drought resistant potato varieties. China Veget, 2018, (9): 29-34 (in Chinese with English abstract). | |
[31] | 田伟丽, 王亚路, 梅旭荣, 李玉中, 郭家选. 水分胁迫对设施马铃薯叶片脱落酸和水分利用效率的影响研究. 作物杂志, 2015, (1): 103-108. |
Tian W L, Wang Y L, Mei X R, Li Y Z, Guo J X. Effect of water stress on ABA content in leaf and water efficiency of facilities potato. Crops, 2015, (1): 103-108 (in Chinese with English abstract). | |
[32] | 李合生. 植物生理生化实验原理与技术. 北京: 高等教育出版社, 2000. pp 260-261. |
Li H S. Principles and Techniques of Plant Physiological and Biochemical Experiments. Beijing: Higher Education Press, 2000. pp 260-261 (in Chinese). | |
[33] | 肖世远. 间苯二酚光度法测定蔗糖的适宜条件. 四川师范学院学报(自然科学版), 1998, 19: 293-295. |
Xiao S Y. The suitable conditions of measuring cane sugar by using resorcinol-photometric method. J Sichuan Teach Coll (Nat Sci Edn), 1998, 19: 293-295 (in Chinese with English abstract). | |
[34] |
Ahiakpa J K, Magdy M, Karikari B, Munir S, Mumtaz M A, Tamim S A, Mahmood S, Liu G, Chen W, Wang Y, Zhang Y. Genome-wide identification and expression profiling of tomato invertase genes indicate their response to stress and phytohormones. J Plant Growth Regul, 2022, 41: 1481-1498.
doi: 10.1007/s00344-021-10384-5 |
[35] |
Albacete A, Cantero-Navarro E, Großkinsky D K, Arias C L, Balibrea M E, Bru R, Fragner L, Ghanem M E, González MDLC, Hernández J A, Martínez-Andújar C, van der Graaff E, Weckwerth W, Zellnig G, Pérez-Alfocea F, Roitsch T. Ectopic overexpression of the cell wall invertase gene CIN1 leads to dehydration avoidance in tomato. J Exp Bot, 2015, 66: 863-878.
doi: 10.1093/jxb/eru448 pmid: 25392479 |
[36] |
Abbas A, Shah A N, Shah A A, Nadeem M A, Alsaleh A, Javed T, Alotaibi S S, Abdelsalam N R. Genome-wide analysis of invertase gene family, and expression profiling under abiotic stress conditions in potato. Biology, 2022, 11: 539.
doi: 10.3390/biology11040539 |
[37] |
Egilla J N, Davies F T, Boutton T W. Drought stress influences leaf water content, photosynthesis, and water-use efficiency of Hibiscus rosa-sinensis at three potassium concentrations. Photosynthetica, 2005, 43: 135-140.
doi: 10.1007/s11099-005-5140-2 |
[38] |
Ni D A. Role of vacuolar invertase in regulating Arabidopsis stomatal opening. Acta Physiol Plant, 2012, 34: 2449-2452.
doi: 10.1007/s11738-012-1036-5 |
[39] |
Antunes W C, Provart N J, Williams T C R, Loureiro M E. Changes in stomatal function and water use efficiency in potato plants with altered sucrolytic activity. Plant Cell Environ, 2012, 35: 747-759.
doi: 10.1111/pce.2012.35.issue-4 |
[40] |
Medeiros D B, Souza L P, Antunes W C, Araújo W L, Daloso D M, Fernie1 A R. Sucrose breakdown within guard cells provides substrates for glycolysis and glutamine biosynthes is during light-induced stomatal opening. Plant J, 2018, 94: 583-594.
doi: 10.1111/tpj.2018.94.issue-4 |
[41] | Lima V F, Medeiros D B, Dos Anjos L, Gago J, Fernie A R, Daloso D M. Toward multifaceted roles of sucrose in the regulation of stomatal movement. Plant Signal Behav, 2018, 13: 1494468. |
[42] |
Daloso D M, Dos Anjos L, Fernie A R. Roles of sucrose in guard cell regulation. New Phytol, 2016, 211: 809-818.
doi: 10.1111/nph.13950 pmid: 27060199 |
[43] |
Kelly G, Moshelion M, David-Schwartz R, Halperin O, Wallach R, Attia Z, Belausov E, Granot D. Hexokinase mediates stomatal closure. Plant J, 2013, 75: 977-988.
doi: 10.1111/tpj.12258 |
[44] | Koh E J, Lee S J, Hong S W, Lee H S, Lee H. The ABA effect on the accumulation of an invertase inhibitor transcript that is driven by the CAMV35S promoter in ARABIDOPSIS. Mol Cells, 2008, 26: 236-242 |
[45] |
Jin Y, Ni D A, Ruan Y L. Posttranslational elevation of cell wall invertase activity by silencing its inhibitor in tomato delays leaf senescence and increases seed weight and fruit hexose level. Plant Cell, 2009, 21: 2072-2089.
doi: 10.1105/tpc.108.063719 pmid: 19574437 |
[1] | YANG Yi, HE Zhi-Qiang, LIN Jia-Hui, LI Yang, CHEN Fei, LYU Chang-Wen, TANG Dao-Bin, ZHOU Quan-Lu, WANG Ji-Chun. Effects of coconut bran application rate on soil physicochemical properties and sweet-potato yield [J]. Acta Agronomica Sinica, 2023, 49(9): 2517-2527. |
[2] | SU Yi-Jun, ZHAO Lu-Kuan, TANG Fen, DAI Xi-Bin, SUN Ya-Wei, ZHOU Zhi-Lin, LIU Ya-Ju, CAO Qing-He. Genetic diversity and population structure analysis of 378 introduced sweetpotato germplasm collections [J]. Acta Agronomica Sinica, 2023, 49(9): 2582-2593. |
[3] | LIU Jie, CAI Cheng-Cheng, LIU Shi-Feng, DENG Meng-Sheng, WANG Xue-Feng, WEN He, LI Luo-Pin, YAN Feng-Jun, WANG Xi-Yao. Function analysis of potato StCYP85A3 in promoting germination and root elongation [J]. Acta Agronomica Sinica, 2023, 49(9): 2462-2471. |
[4] | JIA Rui-Xue, CHEN Yi-Hang, ZHANG Rong, TANG Chao-Chen, WANG Zhang-Ying. Simultaneous determination of 13 carotenoids in sweetpotato by Ultra- Performance Liquid Chromatography [J]. Acta Agronomica Sinica, 2023, 49(8): 2259-2274. |
[5] | ZHAO Xi-Juan, LIU Sheng-Xuan, LIU Teng-Fei, ZHENG Jie, DU Juan, HU Xin-Xi, SONG Bo-Tao, HE Chang-Zheng. Transcriptome analysis reveals the regulatory role of the transcription factor StMYB113 in light-induced chlorophyll synthesis of potato tuber epidermis [J]. Acta Agronomica Sinica, 2023, 49(7): 1860-1870. |
[6] | WANG Yan-Nan, CHEN Jin-Jin, BIAN Qian-Qian, HU Lin-Lin, ZHANG Li, YIN Yu-Meng, QIAO Shou-Chen, CAO Guo-Zheng, KANG Zhi-He, ZHAO Guo-Rui, YANG Guo-Hong, YANG Yu-Feng. Integrated analysis of transcriptome and metabolome reveals the metabolic response pathways of sweetpotato under shade stress [J]. Acta Agronomica Sinica, 2023, 49(7): 1785-1798. |
[7] | SUO Hai-Cui, LIU Ji-Tao, WANG Li, LI Cheng-Chen, SHAN Jian-Wei, LI Xiao-Bo. Functional analysis of StZIP12 in regulating potato Zn uptake [J]. Acta Agronomica Sinica, 2023, 49(7): 1994-2001. |
[8] | MEI Yu-Qin, LIU Yi, WANG Chong, LEI Jian, ZHU Guo-Peng, YANG Xin-Sun. Genome-wide identification and expression analysis of PHB gene family in sweet potato [J]. Acta Agronomica Sinica, 2023, 49(6): 1715-1725. |
[9] | YUAN Da-Shuang, ZHANG Xiao-Li, ZHU Dong-Ming, YANG You-Hong, YAO Meng-Nan, LIANG Ying. Effects of BnMAPK2 on drought tolerance in Brassica napus [J]. Acta Agronomica Sinica, 2023, 49(6): 1518-1531. |
[10] | ZHANG Xiao-Hong, PENG Qiong, YAN Zheng. Transcriptome sequencing analysis of different sweet potato varieties under salt stress [J]. Acta Agronomica Sinica, 2023, 49(5): 1432-1444. |
[11] | CHEN Yi-Hang, TANG Chao-Chen, ZHANG Xiong-Jian, YAO Zhu-Fang, JIANG Bing-Zhi, WANG Zhang-Ying. Construction of core collection of sweetpotato based on phenotypic traits and SSR markers [J]. Acta Agronomica Sinica, 2023, 49(5): 1249-1261. |
[12] | LIU Ming, FAN Wen-Jing, ZHAO Peng, JIN Rong, ZHANG Qiang-Qiang, ZHU Xiao-Ya, WANG Jing, LI Qiang. Genotypes screening and comprehensive evaluation of sweetpotato tolerant to low potassium stress at seedling stage [J]. Acta Agronomica Sinica, 2023, 49(4): 926-937. |
[13] | LI Hong-Yan, LI Jie-Ya, LI Xiang, YE Guang-Ji, ZHOU Yun, WANG Jian. Effects of overexpression of LrAN2 gene on contents of anthocyanins and glycoalkaloids in potato [J]. Acta Agronomica Sinica, 2023, 49(4): 988-995. |
[14] | ZHANG Wei-Na, YU Hui-Fang, AN Zhen, LIU Wen-Kai, KANG Yi-Chen, SHI Ming-Fu, YANG Xin-Yu, ZHANG Ru-Yang, WANG Yong, QIN Shu-Hao. StEFR1 regulates late blight resistance positively in potato (Solanum tuberosum) [J]. Acta Agronomica Sinica, 2023, 49(4): 996-1005. |
[15] | WU Shi-Yu, CHEN Kuang-Ji, LYU Zun-Fu, XU Xi-Ming, PANG Lin-Jiang, LU Guo-Quan. Effects of nitrogen fertilizer application rate on starch contents and properties during storage root expansion in sweetpotato [J]. Acta Agronomica Sinica, 2023, 49(4): 1090-1101. |
|