Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2024, Vol. 50 ›› Issue (8): 2001-2013.doi: 10.3724/SP.J.1006.2024.33059

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Functional analysis of maize N-acetyltransferase ZmNAT1 gene in response to abiotic stress

GUO Si-Yu1,2(), ZHAO Ke-Yong2(), DAI Zheng-Gang1,2, ZOU Hua-Wen1,*(), WU Zhong-Yi2,*(), ZHANG Chun2,*()   

  1. 1College of Agriculture, Yangtze University, Jingzhou 434025, Hubei, China
    2Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences / Beijing Key Laboratory of Agricultural Gene Resources and Biotechnology, Beijing 100097, China
  • Received:2023-10-17 Accepted:2024-01-31 Online:2024-08-12 Published:2024-02-28
  • Contact: * E-mail: spring2007318@163.com;E-mail: zouhuawen@yangtzeu.edu.cn;E-mail: zwu22@126.com
  • About author:** Contributed equally to this work
  • Supported by:
    National Natural Science Foundation of China(32001430);National Natural Science Foundation of China(32171952);National Natural Science Foundation of China(31971839)

Abstract:

The GNAT (Gcn5-related N-acetyltransferase) family proteins play a crucial role in regulating plant growth and development, and responding to stress. At present, the biological functions of GNAT family genes have been reported in many species, but there are few studies on its function validation in maize (Zea mays L.). Exploring the functions of maize GNAT family genes not only enriches the genetic resources for maize breeding in China, but also provides an important basis for the creation of new germplasm resources of maize. In this study, the ZmNAT1 gene (Gene ID: 541936, GRMZM2G123159) was cloned. Bioinformatics analysis showed that the CDS of this gene was 519 bp, encoding 172 amino acids. ZmNAT1 contained a conserved domain unique to GNAT family. The relative expression level of ZmNAT1 gene in different tissues of maize at different stages under different stress conditions showed that the expression level of ZmNAT1 was the highest in mature roots, and the relative expression of ZmNAT1 gene could be induced in different degrees under different abiotic adversity stress conditions. Three independent transgenic Arabidopsis (Arabidopsis thaliana L.) pure lines with higher expression were obtained by heterologous expression, and phenotypic characterisation experiments under different adversity stress treatments were carried out on them, the results showed that transgenic Arabidopsis had a better phenotype relative to wild-type Arabidopsis, and the roots of transgenic plants under salt stress, osmotic stress, and drought were significantly longer than those of the wild-type,and the plants showed higher green leaf rate and chlorophyll content, and lower malondialdehyde content than the wild-type plants, which were significant difference. We speculated that ZmNAT1 gene may be involved in response to abiotic stress such as drought and salt in maize. This study provides an important reference for further analysis of the biological functions of ZmNAT1 in maize.

Key words: maize (Zea mays L.), ZmNAT1, root system, growth and development, adversity stress

Table 1

Information of primers"

引物名称Primer name 引物序列Primer sequence (5'-3')
pZmNAT1-F CCCGGGCTGCAGAATTCATGACGACAATCCGTCGGTTCTG
pZmNAT1-R CCATGGTACCCTCGAGAAGCTTGTTCAAAAATAAACTAGTGG
pZmNAT1RT-F AAGGGTGCTCCGGTACTACT
pZmNAT1RT-R AGTGGACGACAAATATTCGAGA
pGAPDHRT-F CCCTTCATCACCACGGACTAC
pGAPDHRT-R AACCTTCTTGGCACCACCCT
pActinRT-F GGTAACATTGTGCTCAGTGGTGG
pActinRT-R AACGACCTTAATCTTCATGCTGC

Fig. 1

Bioinformatics and evolutionary analysis of ZmNAT1 A: the conserved domain analysis; B: transmembrane structure prediction; C: promoter analysis of ZmNAT1; D: phylogenetic tree of HAT family proteins in Arabidopsis, rice, and maize."

Fig. 2

Analysis of the relative expression of ZmNAT1 in different tissues at different developmental periods in maize Different lowercase letters are significantly different at the 0.05 probability level."

Fig. 3

Relative expression of ZmNAT1 in maize above-ground and roots under different abiotic stresses A: dehydration treatment; B: high salt treatment; C: osmotic treatment; D: low temperature treatment. *: P < 0.05; **: P < 0.01."

Fig. 4

Positive identification and relative expression analysis of ZmNAT1 transgenic Arabidopsis thaliana in T3 generation A: PCR identification of the T3 generation transgenic Arabidopsis thaliana ZmNAT1 gene; B: RT-qPCR identification of the T3 generation transgenic Arabidopsis thaliana ZmNAT1 gene. M: DL2000 marker; P: positive control; N: negative control; W: water control; WT: wild-type Arabidopsis thaliana; L-1-L-6: T3 generation ZmNAT1 transgenic Arabidopsis thaliana; **: P < 0.01."

Fig. 5

Growth development and root length statistics of ZmNAT1 transgenic Arabidopsis thaliana under different salt concentration treatments A-E: growth and development of ZmNAT1 transgenic Arabidopsis thaliana and wild-type Arabidopsis thaliana under 0, 0.10, 0.12, 0.15, and 0.18 mol L-1 salt treatments; F: statistics and comparison of mean primary root lengths of transgenic and wild-type Arabidopsis thaliana under different concentrations of salt treatments; WT: wild type Arabidopsis thaliana; L-2, L-5, and L-6: Arabidopsis thaliana transgenic for ZmNAT1; Bar: 1.5 cm. *: P < 0.05; **: P < 0.01."

Fig. 6

Growth development and root length statistics of ZmNAT1 transgenic Arabidopsis thaliana treated with different mannitol concentrations Abbreviations are the same as those given in Fig. 5. A-D: growth and development of ZmNAT1 transgenic Arabidopsis thaliana and wild-type Arabidopsis thaliana under 0, 0.15, 0.20, and 0.30 mol L-1 mannitol treatments; E: statistics and comparison of mean primary root lengths of transgenic and wild-type Arabidopsis thaliana treated with different concentrations of mannitol. Bar: 1.5 cm. *: P < 0.05; **: P < 0.01."

Fig. 7

Growth and development of ZmNAT1 transgenic Arabidopsis thaliana in drought treatment and analysis of physiological indices A: growth of wild-type Arabidopsis thaliana and transgenic Arabidopsis thaliana in soil under normal conditions, drought treatment, and after rehydration, respectively; B: MDA content of WT and transgenic Arabidopsis thaliana in control and experimental groups; C: total chlorophyll contents of WT and transgenic Arabidopsis thaliana in control and experimental groups; D: statistics on green leaf rate of WT and transgenic Arabidopsis thaliana after drought treatment; E: statistics on green leaf rate of WT and transgenic Arabidopsis thaliana after 2 d of rehydration treatment. Abbreviations are the same as those given in Fig. 5. *: P < 0.05; **: P < 0.01."

Fig. 8

Growth and development of ZmNAT1 transgenic Arabidopsis thaliana in salt treatment and analysis of physiological indices A: growth of wild-type Arabidopsis thaliana and transgenic Arabidopsis thaliana in soil under normal conditions, salt treatment, respectively; B: MDA content of WT and transgenic Arabidopsis thaliana in control and experimental groups; C: total chlorophyll contents of WT and transgenic Arabidopsis thaliana in control and experimental groups; D: statistics on green leaf rate of WT and transgenic Arabidopsis thaliana after salt treatment. Abbreviations are the same as those given in Fig. 5. *: P < 0.05; **: P < 0.01."

[1] Goharrizi K J, Meru G, Kermani S G, Heidarinezhad A, Salehi F. Short-term cold stress affects physiological and biochemical traits of pistachio rootstocks. S Afr J Bot, 2021, 141: 90-98.
[2] 何含杰, 唐丽, 邓华凤, 邹志刚. 植物蛋白酪氨酸磷酸酶的生理功能研究进展. 植物生理学报, 2017, 53: 531-535.
He H J, Tang L, Deng H F, Zou Z G. Recent advance on the physiological functions of protein tyrosine phosphatases in plant. Acta Physiol Sin, 2017, 53: 531-535 (in Chinese with English abstract).
[3] 石永春, 杨永银, 薛瑞丽, 刘巧真. 植物中抗坏血酸的生物学功能研究进展. 植物生理学报, 2015, 51: 1-8.
Shi Y C, Yang Y Y, Xue R L, Liu Q Z. Research advance of biological functions of ascorbic acid in plants. Acta Physiol Sin, 2015, 51: 1-8 (in Chinese with English abstract).
[4] 王佺珍, 刘倩, 高娅妮, 柳旭. 植物对盐碱胁迫的响应机制研究进展. 生态学报, 2017, 37: 5565-5577.
Wang Q Z, Liu Q, Gao Y N, Liu X. Review on the mechanisms of response to salinity-alkalinity stress in plants. Acta Ecol Sin, 2017, 37: 5565-5577 (in Chinese with English abstract).
[5] 计淑霞, 戴绍军, 刘炜. 植物应答低温胁迫机制的研究进展. 生命科学, 2010, 22: 1013-1019.
Ji S X, Dai S J, Liu W. The advances of plants in response and adaption to low temperature stress. Life Sci, 2010, 22: 1013-1019 (in Chinese with English abstract).
[6] 冯鹏, 廖菲, 农向. 植物组蛋白乙酰转移酶研究进展. 乐山师范学院学报, 2022, 37(8): 8-14.
Feng P, Liao F, Nong X. Progress in plant histone acetyltransferases. J Leshan Norm Univ, 2022, 37(8): 8-14 (in Chinese).
[7] Eberharter A, Becker P B. Histone acetylation: a switch between repressive and permissive chromatin. EMBO Rep, 2002, 3: 224-229.
doi: 10.1093/embo-reports/kvf053 pmid: 11882541
[8] Kuo M H, Allis C D. Roles of histone acetyltransferases and deacetylases in gene regulation. Bioessays, 1998, 20: 615-626.
doi: 10.1002/(SICI)1521-1878(199808)20:8<615::AID-BIES4>3.0.CO;2-H pmid: 9780836
[9] Sterner D E, Berger S L. Acetylation of histones and transcription-related factors. Microbiol Mol Biol Rev, 2000, 64: 435-459.
[10] Struhl K. Histone acetylation and transcriptional regulatory mechanisms. Genes Dev, 1998, 12: 599-606.
[11] Mai A, Rotili D, Tarantino D, Nebbioso A, Castellano S, Sbardella G, Tini M, Altucci L. Identification of 4-hydroxyquinolines inhibitors of p300/CBP histone acetyltransferases. Bioorg Med Chem Lett, 2009, 19: 1132-1135.
doi: 10.1016/j.bmcl.2008.12.097 pmid: 19144517
[12] Kikuchi H, Nakayama T. GCN5 and BCR signalling collaborate to induce pre-mature B cell apoptosis through depletion of ICAD and IAP2 and activation of caspase activities. Gene, 2008, 419: 48-55.
doi: 10.1016/j.gene.2008.04.014 pmid: 18538956
[13] Boycheva I, Vassileva V, Iantcheva A. Histone acetyltransferases in plant development and plasticity. Curr Genomics, 2014, 15: 28-37.
doi: 10.2174/138920291501140306112742 pmid: 24653661
[14] Neuwald A F, Landsman D. GCN5-related histone N-acetyltransferases belong to a diverse superfamily that includes the yeast SPT10 protein. Trends Biochem Sci, 1997, 22: 154-155.
pmid: 9175471
[15] 夏德安, 刘春娟, 吕世博, 张彦妮, 刘奕佳, 马旭俊. 植物组蛋白乙酰基转移酶的研究进展. 生物技术通报, 2015, 31(7): 18-25.
doi: 10.13560/j.cnki.biotech.bull.1985.2015.07.003
Xia D A, Liu C J, Lyu S B, Zhang Y N, Liu Y J, Ma X J. Research progress of plant histone acetyltransferases. Biotechnol Bull, 2015, 31(7): 18-25 (in Chinese with English abstract).
doi: 10.13560/j.cnki.biotech.bull.1985.2015.07.003
[16] Servet C, Silva N C, Zhou D X. Histone acetyltransferase AtGCN5/HAG1 is a versatile regulator of developmental and inducible gene expression in Arabidopsis. Mol Plant, 2010, 3: 670-677.
[17] Bertrand C, Bergounioux C, Domenichini S, Delarue M, Zhou D X. Arabidopsis histone acetyltransferase AtGCN5 regulates the floral meristem activity through the WUSCHEL/AGAMOUS pathway. J Biol Chem, 2003, 278: 28246-28251.
doi: 10.1074/jbc.M302787200 pmid: 12740375
[18] Cohen R, Schocken J, Kaldis A, Vlachonasios K E, Hark A T, Mccain E R. The histone acetyltransferase GCN5 affects the inflorescence meristem and stamen development in Arabidopsis. Planta, 2009, 230: 1207-1221.
doi: 10.1007/s00425-009-1012-5 pmid: 19771450
[19] Kornet N, Scheres B. Members of the GCN5 histone acetyltransferase complex regulate PLETHORA-mediated root stem cell niche maintenance and transit amplifying cell proliferation in Arabidopsis. Plant Cell, 2009, 21: 1070-1079.
[20] Papaefthimiou D, Likotrafiti E, Kapazoglou A, Bladenopoulos K, Tsaftaris A. Epigenetic chromatin modifiers in barley: III. Isolation and characterization of the barley GNAT-MYST family of histone acetyltransferases and responses to exogenous ABA. Plant Physiol Bioch, 2010, 48: 98-107.
[21] Fang H, Liu X, Thorn G, Duan J, Tian L. Expression analysis of histone acetyltransferases in rice under drought stress. Biochem Bioph Res Commun, 2014, 443: 400-405.
[22] Zheng M, Lin J C, Liu X B, Chu W, Li J P, Gao Y J, A K X, Song W J, Xin M M, Yao Y Y, Peng H R, Ni Z F, Sun Q X, Hu Z R. Histone acetyltransferase TaHAG1 acts as a crucial regulator to strengthen salt tolerance of hexaploid wheat. Plant Physiol, 2021, 186: 1951-1969.
doi: 10.1093/plphys/kiab187 pmid: 33890670
[23] Wang T Y, Xing J W, Liu Z S, Zheng M, Yao Y Y, Hu Z R, Peng H R, Xin M M, Zhou D X, Ni Z F. Histone acetyltransferase GCN5-mediated regulation of long non-coding RNA At4 contributes to phosphate starvation response in Arabidopsis. J Exp Bot, 2019, 70: 6337-6348.
[24] Gan L, Wei Z Z, Yang Z R, Li F G, Wang Z. Updated mechanisms of GCN5: the monkey king of the plant kingdom in plant development and resistance to abiotic stresses. Cells, 2021, 10: 979.
[25] Eberharter A, Lechner T, Goralik-Schramel M, Loidl P. Purification and characterization of the cytoplasmic histone acetyltransferase B of maize embryos. FEBS Lett, 1996, 386: 75-81.
pmid: 8635608
[26] Lechner T, Lusser A, Brosch G, Eberharter A, Goralik-Schramel M, Loidl P. A comparative study of histone deacetylases of plant, fungal and vertebrate cells. Biochim Biophy Acta Prot Struct Mol Enzymolog, 1996, 1296: 181-188.
[27] Stockinger E J, Mao Y, Regier M K, Triezenberg S J, Thomashow M F. Transcriptional adaptor and histone acetyltransferase proteins in Arabidopsis and their interactions with CBF1, a transcriptional activator involved in cold-regulated gene expression. Nucleic Acids Res, 2001, 29: 1524-1533.
doi: 10.1093/nar/29.7.1524 pmid: 11266554
[28] Bhat R A, Riehl M, Santandrea G, Velasco R, Slocombe S, Donn G, Steinbiss H H, Thompson R D, Becker H A. Alteration of GCN5 levels in maize reveals dynamic responses to manipulating histone acetylation. Plant J, 2003, 33: 455-469.
pmid: 12581304
[29] Georgieva E I, Lopez-Rodas G, Hittmair A, Feichtinger H, Brosch G, Loidl P. Maize embryo germination. Planta, 1993, 192: 118-124.
[30] Chang L, Loranger S S, Mizzen C, Ernst S G, Allis C D, Annunziato A T. Histones in transit: cytosolic histone complexes and diacetylation of H4 during nucleosome assembly in human cells. Biochemistry, 1997, 36: 469-480.
pmid: 9012662
[31] 马宇馨, 杜璇玥, 李肖慧, 任莹, 张林旺, 邢继红, 张康, 董金皋. 玉米组蛋白乙酰转移酶的鉴定与表达规律分析. 河北农业大学学报, 2020, 43(5): 20-26.
doi: 10.13320/j.cnki.jauh.2020.0089
Ma Y X, Du X Y, Li X H, Ren Y, Zhang L W, Xing J H, Zhang K, Dong J G. Identification and expression analysis of histone acetyltransferase in maize. J Hebei Agric Univ, 2020, 43(5): 20-26 (in Chinese with English abstract).
[32] 余娇娇, 沈涛, 张晓东, 王雅妮. 缺氮胁迫下玉米组蛋白乙酰化相关酶的动态表达特征. 玉米科学, 2021, 29(6): 50-58.
Yu J J, Shen T, Zhang X D, Wang Y N. Dynamic expression patterns of corresponding enzymes of histone acetylation modification in maize under nitrogen deficiency. J Maize Sci, 2021, 29(6): 50-58 (in Chinese with English abstract).
[33] 悦曼芳, 张春, 郑登俞, 邹华文, 吴忠义. 玉米转录因子ZmbHLH91对非生物逆境胁迫的应答. 作物学报, 2022, 48: 3004-3017.
doi: 10.3724/SP.J.1006.2022.13060
Yue M F, Zhang C, Zheng D Y, Zou H W, Wu Z Y. Response of maize transcriptional factor ZmbHLH91 to abiotic stress. Acta Agron Sin, 2022, 48: 3004-3017 (in Chinese with English abstract).
[34] Song Z T, Chen X J, Luo L, Yu F F, Liu J X, Han J J. UBA domain protein SUF1 interacts with NatA-complex subunit NAA15 to regulate thermotolerance in Arabidopsis. J Integr Plant Biol, 2022, 64: 1297-1302.
[35] Huber M, Bienvenut W V, Linster E, Stephan I, Armbruster L, Sticht C, Layer D, Lapouge K, Meinnel T, Sinning I, Giglione C, Hell R, Wirtz M. NatB-mediated N-terminal acetylation affects growth and biotic stress responses. Plant Physiol, 2020, 182: 792-806.
doi: 10.1104/pp.19.00792 pmid: 31744933
[36] Liu X, Luo M, Zhang W, Zhao J H, Zhang J X, Wu K Q, Tian L I, Duan J. Histone acetyltransferases in rice (Oryza sativa L.): phylogenetic analysis, subcellular localization and expression. BMC Plant Biol, 2012, 12: 145.
[37] Fang H, Liu X, Thorn G, Duan J, Tian L. Expression analysis of histone acetyltransferases in rice under drought stress. Biochem Bioph Res Commun, 2014, 443: 400-405.
[38] Wang Z B, Zang C Z, Cui K R, Schones D E, Barski A, Peng W Q, Zhao K J. Genome-wide mapping of HATs and HDACs reveals distinct functions in active and inactive genes. Cell, 2009, 138: 1019-1031.
doi: 10.1016/j.cell.2009.06.049 pmid: 19698979
[39] Li S, Lin Y C J, Wang P Y, Zhang B F, Li M, Chen S, Shi R, Tunlaya-Anukit S, Liu X Y, Wang Z F, Dai X F, Yu J, Zhou C G, Liu B G, Wang J P, Chiang V L, Li W. The AREB1 transcription factor influences histone acetylation to regulate drought responses and tolerance in Populus trichocarpa. Plant Cell, 2019, 31: 663-686.
[40] Bertrand C, Benhamed M, Li Y F, Ayadi M, Lemonnier G, Renou J P, Delarue M, Zhou D X. Arabidopsis HAF2 gene encoding TATA-binding protein (TBP)-associated factor TAF1, is required to integrate light signals to regulate gene expression and growth. J Biol Chem, 2005, 280: 1465-1473.
doi: 10.1074/jbc.M409000200 pmid: 15525647
[41] Li H, Yan S H, Zhao L, Tan J J, Zhang Q, Gao F, Wang P, Hou H L, Li L J. Histone acetylation associated up-regulation of the cell wall related genes is involved in salt stress induced maize root swelling. BMC Plant Biol, 2014, 14: 105.
doi: 10.1186/1471-2229-14-105 pmid: 24758373
[1] YANG Yu-Chen, JIN Ya-Rong, LUO Jin-Chan, ZHU Xin, LI Wei-Hang, JIA Ji-Yuan, WANG Xiao-Shan, HUANG De-Jun, HUANG Lin-Kai. Identification and expression analysis of the WD40 gene family in pearl millet [J]. Acta Agronomica Sinica, 2024, 50(9): 2219-2236.
[2] LIU Chen-Ming, ZHAO Ke-Yong, YUE Man-Fang, ZHAO Yan-Ming, WU Zhong-Yi, ZHANG Chun. Functional study on the regulation of root growth and development and stress tolerance by maize transcription factor ZmEREB180 [J]. Acta Agronomica Sinica, 2024, 50(8): 1920-1933.
[3] AI Rong, ZHANG Chun, YUE Man-Fang, ZOU Hua-Wen, WU Zhong-Yi. Response of maize transcriptional factor ZmEREB211 to abiotic stress [J]. Acta Agronomica Sinica, 2023, 49(9): 2433-2445.
[4] LIU Jie, CAI Cheng-Cheng, LIU Shi-Feng, DENG Meng-Sheng, WANG Xue-Feng, WEN He, LI Luo-Pin, YAN Feng-Jun, WANG Xi-Yao. Function analysis of potato StCYP85A3 in promoting germination and root elongation [J]. Acta Agronomica Sinica, 2023, 49(9): 2462-2471.
[5] JIA Yu-Ku, GAO Hong-Huan, FENG Jian-Chao, HAO Zi-Rui, WANG Chen-Yang, XIE Ying-Xin, GUO Tian-Cai, MA Dong-Yun. Genome-wide identification and expression analysis of G2-like transcription factors family genes in wheat [J]. Acta Agronomica Sinica, 2023, 49(5): 1410-1425.
[6] SUN Si-Min, HAN Bei, CHEN Lin, SUN Wei-Nan, ZHANG Xian-Long, YANG Xi-Yan. Root system architecture analysis and genome-wide association study of root system architecture related traits in cotton [J]. Acta Agronomica Sinica, 2022, 48(5): 1081-1090.
[7] YUAN Da-Shuang, DENG Wan-Yu, WANG Zhen, PENG Qian, ZHANG Xiao-Li, YAO Meng-Nan, MIAO Wen-Jie, ZHU Dong-Ming, LI Jia-Na, LIANG Ying. Cloning and functional analysis of BnMAPK2 gene in Brassica napus [J]. Acta Agronomica Sinica, 2022, 48(4): 840-850.
[8] ZHANG Ming-Cong, HE Song-Yu, QIN Bin, WANG Meng-Xue, JIN Xi-Jun, REN Chun-Yuan, WU Yao-Kun, ZHANG Yu-Xian. Effects of exogenous melatonin on morphology, photosynthetic physiology, and yield of spring soybean variety Suinong 26 under drought stress [J]. Acta Agronomica Sinica, 2021, 47(9): 1791-1805.
[9] LI Wen-Lan, LI Wen-Cai, SUN Qi, YU Yan-Li, ZHAO Meng, LU Shou-Ping, LI Yan-Jiao, MENG Zhao-Dong. A study of expression pattern of auxin response factor family genes in maize (Zea mays L.) [J]. Acta Agronomica Sinica, 2021, 47(6): 1138-1148.
[10] ZHAO Jia-Jia, QIAO Ling, WU Bang-Bang, GE Chuan, QIAO Lin-Yi, ZHANG Shu-Wei, YAN Su-Xian, ZHENG Xing-Wei, ZHENG Jun. Seedling root characteristics and drought resistance of wheat in Shanxi province [J]. Acta Agronomica Sinica, 2021, 47(4): 714-727.
[11] LU He-Quan, TANG Wei, LUO Zhen, KONG Xiang-Qiang, LI Zhen-Huai, XU Shi-Zhen, XIN Cheng-Song. Effects of commercial organic fertilizer substituting chemical fertilizer partially on soil nutrients, plant development, and yield in cotton [J]. Acta Agronomica Sinica, 2021, 47(12): 2511-2521.
[12] WANG Dan-Dan, LIU Hong-Juan, WANG Hong-Xia, ZHANG Peng, SHI Chun-Yu. Cloning and functional analysis of the sweet potato sucrose transporter IbSUT3 [J]. Acta Agronomica Sinica, 2020, 46(7): 1120-1127.
[13] ZHAO Xiao-Hong,BAI Yi-Xiong,WANG Kai,YAO You-Hua,YAO Xiao-Hua,WU Kun-Lun. Effects of planting density on lodging resistance and straw forage characteristics in two hulless barley varieties [J]. Acta Agronomica Sinica, 2020, 46(4): 586-595.
[14] Yun-Fu LI,Jing-Xian WANG,Yan-Fang DU,Hua-Wen ZOU,Zu-Xin ZHANG. Identification of indeterminate domain protein family genes associated with flowering time in maize [J]. Acta Agronomica Sinica, 2019, 45(4): 499-507.
[15] ZHANG Chun-Xiao,LI Shu-Fang,JIN Feng-Xue,LIU Wen-Ping,LI Wan-Jun,LIU Jie,LI Xiao-Hui. QTL mapping of salt and alkaline tolerance-related traits at the germination and seedling stage in maize (Zea mays L.) using three analytical methods [J]. Acta Agronomica Sinica, 2019, 45(4): 508-521.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[2] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[3] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .
[4] XING Guang-Nan, ZHOU Bin, ZHAO Tuan-Jie, YU De-Yue, XING Han, HEN Shou-Yi, GAI Jun-Yi. Mapping QTLs of Resistance to Megacota cribraria (Fabricius) in Soybean[J]. Acta Agronomica Sinica, 2008, 34(03): 361 -368 .
[5] ZHENG Yong-Mei;DING Yan-Feng;WANG Qiang-Sheng;LI Gang-Hua;WANG Hui-Zhi;WANG Shao-Hua. Effect of Nitrogen Applied before Transplanting on Tillering and Nitrogen Utilization in Rice[J]. Acta Agron Sin, 2008, 34(03): 513 -519 .
[6] QIN En-Hua;YANG Lan-Fang;. Selenium Content in Seedling and Selenium Forms in Rhizospheric Soil of Nicotiana tabacum L.[J]. Acta Agron Sin, 2008, 34(03): 506 -512 .
[7] LÜ Li-Hua;TAO Hong-Bin;XIA Lai-Kun; HANG Ya-Jie;ZHAO Ming;ZHAO Jiu-Ran;WANG Pu;. Canopy Structure and Photosynthesis Traits of Summer Maize under Different Planting Densities[J]. Acta Agron Sin, 2008, 34(03): 447 -455 .
[8] Zhang Shubiao;Yang Rencui. Some Biological Character of eui-hybrid Rice[J]. Acta Agron Sin, 2003, 29(06): 919 -924 .
[9] SHAO Rui-Xin;SHANG-GUAN Zhou-Ping. Effects of Exogenous Nitric Oxide Donor Sodium Nitroprusside on Photosynthetic Pigment Content and Light Use Capability of PS II in Wheat under Water Stress[J]. Acta Agron Sin, 2008, 34(05): 818 -822 .
[10] Qui Chongli. STUDIES ON THE INCOMPATIBILITY OF HYBRIDIZATION BETWEEN TRITICUM AESTIVUM L.AND HEXAPLOID TRITICALE Ⅰ.THE DEVELOPMENT OF HYBRID EMBRYO[J]. Acta Agron Sin, 1986, (01): 49 -56 .