Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2024, Vol. 50 ›› Issue (8): 1920-1933.doi: 10.3724/SP.J.1006.2024.33070

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Functional study on the regulation of root growth and development and stress tolerance by maize transcription factor ZmEREB180

LIU Chen-Ming1,2(), ZHAO Ke-Yong2(), YUE Man-Fang2, ZHAO Yan-Ming1,*(), WU Zhong-Yi2,*(), ZHANG Chun2,*()   

  1. 1College of Agriculture, Qingdao Agricultural University, Qingdao 266109, Shandong, China
    2Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences / Beijing Key Laboratory of Agricultural Gene Resources and Biotechnology, Beijing 100097, China
  • Received:2023-11-24 Accepted:2024-04-01 Online:2024-08-12 Published:2024-04-19
  • Contact: * E-mail: zhangchun@babrc.ac.cn;E-mail: zwu22@126.com;E-mail: zhaoym796@sina.com
  • About author:** Contributed equally to this work
  • Supported by:
    National Natural Science Foundation of China(32001430);National Natural Science Foundation of China(32372053)

Abstract:

The AP2/ERF (APETALA2/ethylene-responsive factor) family is one of the largest families of transcription factors in plants, and plays an important role in regulating a variety of biological processes such as plant growth and development, respond-ing to adversity stress, and regulating hormone signaling and substance metabolism. The biological functions of AP2/ERF family genes in many plant species have been validated, but fewer studies have been reported in maize (Zea mays L.). In the previous work, there was significant difference in the relative expression level of the ZmEREB180 transcription factor in root system between the identified critical developmental stages of maize at the six-leaf (V6), the twelve-leaf (V12), and tasseling (VT) stages, the tissue expression analysis revealed that this gene was mainly expressed in maize root system and was significantly higher in young roots than in mature roots, and it was hypothesized that this gene might be involved in the regulation of maize root growth and development. In this study, we cloned the ZmEREB180 (Gene ID: 100192457) transcription factor gene, and preliminarily analyzed the relative expression pattern and biological functions of ZmEREB180 by bioinformatics, RT-qPCR, subcellular localization, and stress-resistant phenotype identification of transgenic Arabidopsis (Arabidopsis thaliana L.) lines. This gene contained two exons and the full-length cDNA was 1023 bp, encoding 340 amino acids. The gene had a conserved domain unique to the AP2/ERF family, which expressed most highly in root system of maize; and the gene had different degrees of induced expression under high salt, drought, high nitrogen, and low nitrogen treatment conditions, with a more rapid and higher expression in response to low nitrogen than high nitrogen; root length of ZmEREB180 transgenic Arabidopsis lines were all significantly longer than the wild type (WT) on 1/2 MS medium containing 0.10 mol L-1, 0.15 mol L-1 NaCl, and 0.15 mol L-1, 0.20 mol L-1, 0.30 mol L-1 mannitol (MNT). Under high salt and drought stress conditions in soil environments, transgenic Arabidopsis lines had healthier growth status, higher green leaf percentage, lower malondialdehyde (MDA) content, and higher peroxidase (POD) activity than WT. The transcription factor ZmEREB180 may play a positive and promotional role in regulating the growth and development of maize root system and enhance the tolerance of maize plants under high salt, drought, osmosis, low nitrogen, and other adversity stresses. This study lays a good foundation for further identification of the biological function and molecular mechanism of transcription factor ZmEREB180 in maize.

Key words: maize (Zea mays L.), ZmEREB180, transcription factor, root system, abiotic stress, nitrogen use efficiency

Table 1

Primers used in this study"

引物名称Primer name 引物序列Primer sequence (5'-3')
pZmEREB180 OE-F CTGAAATCACCAGTCGGTACCATGTGCGGAGGCGCCATCC (Kpn I)
pZmEREB180 OE-R gcccttgctcaccatgGTACCTCAGAAAACAGAACCGTCG (Kpn I)
pZmEREB180RT-F CTGACGAGCTGGCGTTC
pZmEREB180RT-R TCAGAAAACAGAACCGTCG
pGAPDHRT-F CCCTTCATCACCACGGACTAC
pGAPDHRT-R AACCTTCTTGGCACCACCCT
pActinRT-F CCGTGAAGCCAGAAGCTACG
pActinRT-R AACTTGTGGCCGTTTACGTCG
pZmEREB180-F CTGACGAGCTGGCGTTC
pZmEREB180-R TCAGAAAACAGAACCGTCG

Fig. 1

Bioinformatics analysis of ZmEREB180 gene and its protein A: protein spatial structure domain analysis; B: protein transmembrane prediction C: protein tertiary structure prediction; D: promoter sequence analysis."

Fig. 2

Relative expression level of ZmEREB180 in different maize tissues Different lowercase letters indicate significant differences at the 0.05 probability level."

Fig. 3

Relative expression level of ZmEREB180 in different abiotic stress A–D: the relative expression level of ZmEREB180 after treatments with osmotic stress, dehydration, low temperature, and high salt; *: P < 0.05; **: P < 0.01."

Fig. 4

Relative expression level of ZmEREB180 in high nitrogen (HN) and low nitrogen (LN) treatments A-B: the relative expression level of ZmEREB180 after high nitrogen (HN) and low nitrogen (LN) treatments; *: P < 0.05; **: P < 0.01."

Fig. 5

Relative expression level of ZmEREB180 under different phytohormone treatments A-E: the relative expression level of ZmEREB180 after treatments with JA, ABA, SA, 2,4-D, and GA; *: P < 0.05; **: P < 0.01. JA: jasmonic acid; ABA: abscisic acid; SA: salicylic acid; 2,4-D: 2,4-dichlorophenoxyacetic acid; GA: gibberellins."

Fig. 6

Subcellular localisation of ZmEREB180 protein in Nicotiana benthamiana leaves GFP: green fluorescent protein map; Merged: overlay diagram; Bright field: bright field map; CK: nicotiana benthamiana leaf transfected with empty vector; ZmEREB180-EGFP: nicotiana benthamiana leaf transfected with the target gene vector; Bar: 20 μm."

Fig. 7

PCR detection and relative expression level of Arabidopsis thaliana (T3) A: PCR assay of transgenic Arabidopsis thaliana plants (T3); B: RT-qPCR detection of Arabidopsis thaliana plants (T3); M: DL2000 marker; N: negative control; W: water control; WT: wild-type Arabidopsis thaliana; L-1-L-6: T3 transgenic Arabidopsis thaliana lines; **: P < 0.01; ***: P < 0.001."

Fig. 8

Phenotypic analysis of WT and transgenic Arabidopsis thaliana lines under gradient NaCl concentrations A-D: growth of transgenic Arabidopsis thaliana plants and WT plants on 1/2 MS medium treated with 0, 0.10, 0.15, and 0.18 mol L- 1 NaCl, respectively. E: mean data on the length of primary roots of plants on 1/2 MS medium; WT: wild type; L-3, L-5, and L-6: ZmEREB180 transgenic Arabidopsis thaliana lines; Bar: 1.5 cm; *: P < 0.05; **: P < 0.01."

Fig. 9

Phenotypic analysis of WT and transgenic Arabidopsis thaliana lines under gradient mannitol concentrations A-D: growth of transgenic Arabidopsis thaliana plants and WT plants on 1/2 MS medium treated with 0, 0.15, 0.20, and 0.30 mol L-1 mannitol, respectively. E: mean data on the length of primary roots of plants on 1/2 MS medium. Abbreviations are the same as those given in Fig. 8; Bar: 1.5 cm; *: P < 0.05; **: P < 0.01."

Fig. 10

Phenotypic analysis of Arabidopsis thaliana lines under drought treatment in soil A: the phenotype of transgenic and WT Arabidopsis thaliana plants; B: the rate of green leaves under drought treatment; C: MDA content; D: POD activity; E: the rate of green leaves under re-water treatment. Abbreviations are the same as those given in Fig. 8; *: P < 0.05; **: P < 0.01."

Fig. 11

Phenotypic analysis of transgenic lines and WT plants of Arabidopsis thaliana under high salt treatment in soil A: phenotype of transgenic and WT Arabidopsis thaliana plants; B: the rate of green leaves under high salt treatment; C: MDA content; D: POD activity. Abbreviations are the same as those given in Fig. 8; *: P < 0.05; **: P < 0.01."

[1] 戴景瑞, 鄂立柱. 百年玉米,再铸辉煌——中国玉米产业百年回顾与展望. 农学学报, 2018, 8(1): 83-88.
doi: 10.11923/j.issn.2095-4050.cjas2018-1-083
Dai J R, E L Z. From the past centennial progress to more brilliant achievements in the future: the history and prospects of maize industrialization in China. J Agric, 2018, 8(1): 83-88 (in Chinese with English abstract).
[2] 仇焕广, 李新海, 余嘉玲. 中国玉米产业:发展趋势与政策建议. 农业经济问题, 2021, 42(7): 4-16.
Qiu H G, Li X H, Yu J L. China maize industry: development trends and policy suggestions. Issue Agric Econ, 2021, 42(7): 4-16 (in Chinese with English abstract).
[3] 张静. 逆境胁迫下玉米DNA去甲基化酶和AP2/ERF基因家族的全基因组鉴定与分析. 安徽师范大学硕士学位论文, 安徽芜湖, 2020.
Zhang J. Genome-wide Identification and Analysis of Maize DNA Demethylase and AP2/ERF Gene Family under Abiotic Stress. MS Thesis of Anhui Normal University, Wuhu, Anhui, China, 2020 (in Chinese with English abstract).
[4] Baillo E H, Kimotho R N, Zhang Z B, Xu P. Transcription factors associated with abiotic and biotic stress tolerance and their potential for crops improvement. Genes, 2019, 10: 771.
[5] Allen M D, Yamasaki K, Ohme-Takagi M, Tateno M, Suzuki M. A novel mode of DNA recognition by a beta-sheet revealed by the solution structure of the GCC-box binding domain in complex with DNA. EMBO J, 1998, 17: 5484-5496.
doi: 10.1093/emboj/17.18.5484 pmid: 9736626
[6] 张麒, 陈静, 李俐, 赵明珠, 张美萍, 王义. 植物AP2/ERF转录因子家族的研究进展. 生物技术通报, 2018, 34(8): 1-7.
doi: 10.13560/j.cnki.biotech.bull.1985.2017-1142
Zhang Q, Chen J, Li L, Zhao M Z, Zhang M P, Wang Y. Research progress on plant AP2/ERF transcription factor family. Biotechnol Bull, 2018, 34(8): 1-7 (in Chinese with English abstract).
doi: 10.13560/j.cnki.biotech.bull.1985.2017-1142
[7] Zhu Y Q, Liu Y, Zhou K M, Tian C Y, Aslam M, Zhang B L, Liu W J, Zou H W. Overexpression of ZmEREBP60 enhances drought tolerance in maize. J Plant Physiol, 2022, 275: 153763.
[8] Fu J Y, Zhu C Y, Wang C, Liu L J, Shen Q Q, Xu D B, Wang Q. Maize transcription factor ZmEREB20 enhanced salt tolerance in transgenic Arabidopsis. Plant Physiol Bioch, 2021, 159: 257-267.
[9] Yu Y, Yu M, Zhang S X, Song T Q, Zhang M, Zhou H W, Wang Y K, Xiang J S, Zhang X K. Transcriptomic identification of wheat AP2/ERF transcription factors and functional characterization of TaERF-6-3A in response to drought and salinity stresses. Int J Mol Sci, 2022, 23: 3272.
[10] 艾蓉, 张春, 悦曼芳, 邹华文, 吴忠义. 玉米转录因子ZmEREB211对非生物逆境胁迫的应答. 作物学报, 2023, 49: 2433-2445.
doi: 10.3724/SP.J.1006.2023.23071
Ai R, Zhang C, Yue M F, Zou H W, Wu Z Y. Response of maize transcriptional factor ZmEREB211 to abiotic stress. Acta Agron Sin, 2023, 49: 2433-2445 (in Chinese with English abstract).
[11] Chen K, Tang W S, Zhou Y B, Chen J, Xu Z S, Ma R, Dong Y S, Ma Y Z, Chen M. AP2/ERF transcription factor GmDREB1 confers drought tolerance in transgenic soybean by interacting with GmERFs. Plant Physiol Bioch, 2022: 170: 287-295.
[12] Oliveira P N, Matias F, Martinez-Andujar C, Martinez-Melgarejo P A, Prudencio A S, Galeano E, Perez-Alfocea F, Carrer H. Overexpression of TgERF1, a transcription factor from tectona grandis, increases tolerance to drought and salt stress in tobacco. Int J Mol Sci, 2023, 24: 4149
[13] Cai X X, Chen Y, Wang Y, Shen Y, Yang J K, Jia B W, Sun X L, Sun M Z. A comprehensive investigation of the regulatory roles of OsERF096, an AP2/ERF transcription factor, in rice cold stress response. Plant Cell Rep, 2023, 42: 2011-2022.
[14] Seok H Y, Tran H T, Lee S Y, Moon Y H. AtERF71/HRE2, an Arabidopsis AP2/ERF transcription factor gene, contains both positive and negative cis-regulatory elements in its promoter region involved in hypoxia and salt stress responses. Int J Mol Sci, 2022, 23: 5310.
[15] Yu F, Liang K, Fang T, Zhao H, Han X, Cai M, Qiu F. A group VII ethylene response factor gene, ZmEREB180, coordinates waterlogging tolerance in maize seedlings. Plant Biotechnol J, 2019, 17: 2286-2298.
[16] Xiao Y Y, Chen J Y, Kuang J F, Shan W, Xie H, Jiang Y M, Lu W J. Banana ethylene response factors are involved in fruit ripening through their interactions with ethylene biosynthesis genes. J Exp Bot, 2013, 64: 2499-2510.
[17] Shi Q, Dong Y B, Zhou Q, Qiao D H, Ma Z Y, Zhang L, Li Y L. Characterization of a maize ERF gene, ZmERF1, in hormone and stress responses. Acta Physiol Plant, 2016, 38: 1-9.
[18] El-Sharkawy I, Kim W S, El-Kereamy A, Jayasankar S, Svircev A M, Brown D C. Isolation and characterization of four ethylene signal transduction elements in plums (Prunus salicina L.). J Exp Bot, 2007, 58: 3631-3643.
pmid: 18057041
[19] Zang Z L, Lv Y, Liu S, Yang W, Ci J B, Ren X J, Wang Z, Wu H, Ma W Y, Jiang L Y, Yang W G. A Novel ERF Transcription factor, ZmERF105, positively regulates maize resistance to Exserohilum turcicum. Front Plant Sci, 2020, 11: 850.
[20] Huang Y, Zhang B L, Sun S, Xing G M, Wang F, Li M Y, Tian Y S, Xiong A S. AP2/ERF Transcription factors involved in response to tomato yellow leaf curly virus in tomato. Plant Genome, 2016, 9: 1-15.
[21] Liu J X, Li J Y, Wang H N, Fu Z D, Liu J, Yu Y X. Identification and expression analysis of ERF transcription factor genes in petunia during flower senescence and in response to hormone treatments. J Exp Bot, 2011, 62: 825-840.
doi: 10.1093/jxb/erq324 pmid: 20974735
[22] Zang Z Y, Wang Z, Zhao F X, Yang W, Ci J B, Ren X J, Jiang L Y, Yang W G. Maize ethylene response factor ZmERF061 is required for resistance to Exserohilum turcicum. Front Plant Sci, 2021, 12: 630413.
[23] Gao T, Li G Z, Wang C R, Dong J, Yuan S S, Wang Y H, Kang G Z. Function of the ERFL1a transcription factor in wheat responses to water deficiency. Int J Mol Sci, 2018, 19: 1465.
[24] Liu D F, Chen X J, Liu J Q, Ye J C, Guo Z J. The rice ERF transcription factor OsERF922 negatively regulates resistance to Magnaporthe oryzae and salt tolerance. J Exp Bot, 2012, 63: 3899-3911.
[25] Zhu J T, Wei X N, Yin C S, Zhou H, Yan J H, He W X, Yan J B, Li H. ZmEREB57 regulates OPDA synthesis and enhances salt stress tolerance through two distinct signalling pathways in Zea mays. Plant Cell Environ, 2023, 46: 2867-2883.
[26] Hu Z Y, Wang X J, Wei L, Wansee S, Rabbani N H, Chen L, Kang Z S, Wang J F. TaAP2-10, an AP2/ERF transcription factor, contributes to wheat resistance against stripe rust. J Plant Physiol, 2023, 288: 154078.
[27] Li H, Xiao Q L, Zhang C X, Du J, Li X, Huang H H, Wei B, Li Y P, Yu G W, Liu H M, Hu Y F, Liu Y H, Zhang J J, Huang Y B. Identification and characterization of transcription factor ZmEREB94 involved in starch synthesis in maize. J Plant Physiol, 2017, 216: 11-16.
[28] Zhang Y, Ji A J, Xu Z C, Luo H M, Song J Y. The AP2/ERF transcription factor SmERF128 positively regulates diterpenoid biosynthesis in Salvia miltiorrhiza. Plant Mol Biol, 2019, 100: 83-93.
doi: 10.1007/s11103-019-00845-7 pmid: 30847712
[29] Wang M Y, Gao M, Zhao Y X, Chen Y C, Wu L W, Yin H F, Yang J H, Xiong S F, Wang S Q, Wang J, Yang Y, Wang J, Wang Y D. LcERF19, an AP2/ERF transcription factor from Litsea cubeba, positively regulates geranial and neral biosynthesis. Hortic Res, 2022, 9: uhac093.
[30] Wei S B, Li X, Lu Z F, Zhang H, Ye X Y, Zhou Y J, Li J, Yan Y Y, Pei H C, Duan F Y, Wang D Y, Chen S, Wang P, Zhang C, Shang L G, Zhou Y, Yan P, Zhao M, Huang J R, Bock R, Qian Q, Zhou W B. A transcriptional regulator that boosts grain yields and shortens the growth duration of rice. Science, 2022, 377: eabi8455.
[31] Srivastava R, Kumar R. The expanding roles of APETALA2/ Ethylene Responsive Factors and their potential applications in crop improvement. Brief Funct Genomics, 2019, 18: 240-254.
doi: 10.1093/bfgp/elz001
[32] Zhang C, Li X L, Wang Z P, Zhang Z B, Wu Z Y. Identifying key regulatory genes of maize root growth and development by RNA sequencing. Genomics, 2020, 112: 5157-5169.
doi: 10.1016/j.ygeno.2020.09.030 pmid: 32961281
[33] 高建强, 梁华, 赵军. 植物遗传转化农杆菌浸花法研究进展. 中国农学通报, 2010, 26(16): 22-25.
Gao J Q, Liang H, Zhao J. Progress on the floral-dip method of Agribacterium-mediated plant transformation. Chin Agric Sci Bull, 2010, 26(16): 22-25 (in Chinese with English abstract).
[34] 悦曼芳, 张春, 郑登俞, 邹华文, 吴忠义. 玉米转录因子ZmbHLH91对非生物逆境胁迫的应答. 作物学报, 2022, 48: 3004-3017.
doi: 10.3724/SP.J.1006.2022.13060
Yue M F, Zhang C, Zheng D Y, Zou H W, Wu Z Y. Response of maize transcriptional factor ZmbHLH91 to abiotic stress. Acta Agron Sin, 2022, 48: 3004-3017 (in Chinese with English abstract).
[35] Zhang H M, Zhu J H, Gong Z Z, Zhu J K. Abiotic stress responses in plants. Nat Rev Genet, 2022, 23: 104-119.
[36] 王畅. 玉米转录因子ZmEREB20盐胁下的响应及调控机制初步分析. 四川农业大学硕士学位论文, 四川雅安, 2019.
Wang C. Functional Identification of Maize Transcription Factor ZmEREB20 under Salt Stress. MS Thesis of Sichuan Agricultural University, Ya’an, Sichuan, China, 2019 (in Chinese with English abstract).
[1] QI Jia-Min, XU Chun-Miao, XIAO Bin. Genome-wide identification and expression analysis of TIFY gene family in potato (Solanum tuberosum L.)  [J]. Acta Agronomica Sinica, 2024, 50(9): 2297-2309.
[2] GUO Si-Yu, ZHAO Ke-Yong, DAI Zheng-Gang, ZOU Hua-Wen, WU Zhong-Yi, ZHANG Chun. Functional analysis of maize N-acetyltransferase ZmNAT1 gene in response to abiotic stress [J]. Acta Agronomica Sinica, 2024, 50(8): 2001-2013.
[3] YAN Fei-Long, ZHANG Zhen, ZHAO Jun-Ye, SHI Yu, YU Zhen-Wen. Effect of nitrogen application on water consumption characteristics and grain yield of winter wheat under wide width sowing [J]. Acta Agronomica Sinica, 2024, 50(8): 2014-2024.
[4] LIU Zhen, CHEN Li-Min, LI Zhi-Tao, ZHU Jin-Yong, WANG Wei-Lu, QI Zhe-Ying, YAO Pan-Feng, BI Zhen-Zhen, SUN Chao, BAI Jiang-Ping, LIU Yu-Hui. Genome-wide identification and expression analysis of ARM gene family in potato (Solanum tuberosum L.) [J]. Acta Agronomica Sinica, 2024, 50(6): 1451-1466.
[5] SHE Meng, ZHENG Deng-Yu, KE Zhao, WU Zhong-Yi, ZOU Hua-Wen, ZHANG Zhong-Bao. Cloning and functional analysis of ZmGRAS13 gene in maize [J]. Acta Agronomica Sinica, 2024, 50(6): 1420-1434.
[6] XIAO Sheng-Hua, LU Yan, LI An-Zi, QIN Yao-Bin, LIAO Ming-Jing, BI Zhao-Fu, ZHUO Gan-Feng, ZHU Yong-Hong, ZHU Long-Fu. Function analysis of an AP2/ERF transcription factor GhTINY2 in cotton negatively regulating salt tolerance [J]. Acta Agronomica Sinica, 2024, 50(1): 126-137.
[7] SHANG-GUAN Xiao-Xia, YANG Qin-Li, LI Huan-Li. Analysis of mutants developed by CRISPR/Cas9-based GhbHLH71 gene editing in cotton [J]. Acta Agronomica Sinica, 2024, 50(1): 138-148.
[8] MO Guang-Ling, YU Chen-Jing, LIANG Yan-Lan, ZHOU Ding-Gang, LUO Jun, WANG Mo, QUE You-Xiong, HUANG Ning, LING Hui. RT-PCR cloning and functional analysis of ScbHLH13 in sugarcane [J]. Acta Agronomica Sinica, 2023, 49(9): 2485-2497.
[9] LIU Jie, CAI Cheng-Cheng, LIU Shi-Feng, DENG Meng-Sheng, WANG Xue-Feng, WEN He, LI Luo-Pin, YAN Feng-Jun, WANG Xi-Yao. Function analysis of potato StCYP85A3 in promoting germination and root elongation [J]. Acta Agronomica Sinica, 2023, 49(9): 2462-2471.
[10] AI Rong, ZHANG Chun, YUE Man-Fang, ZOU Hua-Wen, WU Zhong-Yi. Response of maize transcriptional factor ZmEREB211 to abiotic stress [J]. Acta Agronomica Sinica, 2023, 49(9): 2433-2445.
[11] WEN Li-Chao, XIONG Tao, DENG Zhi-Chao, LIU Tao, GUO Cun, LI Wei, GUO Yong-Feng. Expression and functional characterization of NtNAC080 transcription factor gene from Nicotiana tabacumin under abiotic stress [J]. Acta Agronomica Sinica, 2023, 49(8): 2171-2182.
[12] LIU Shi-Jie, YANG Xi-Wen, MA Geng, FENG Hao-Xiang, HAN Zhi-Dong, HAN Xiao-Jie, ZHANG Xiao-Yan, HE De-Xian, MA Dong-Yun, XIE Ying-Xin, WANG Li-Fang, WANG Chen-Yang. Effects of water and nitrogen application on root characteristics and nitrogen utilization in winter wheat [J]. Acta Agronomica Sinica, 2023, 49(8): 2296-2307.
[13] MEI Xiu-Peng, ZHAO Zi-Kun, JIA Xin-Yao, BAI Yang, LI Mei, GAN Yu-Ling, YANG Qiu-Yue, CAI Yi-Lin. Heat-inducible transcription factor ZmNF-YC13 regulates heat stress response genes to improve heat tolerance in maize [J]. Acta Agronomica Sinica, 2023, 49(7): 1747-1757.
[14] XU Ran, CHEN Song, XU Chun-Mei, LIU Yuan-Hui, ZHANG Xiu-Fu, WANG Dan-Ying, CHU Guang. Effects of nitrogen fertilizer rates on grain yield and nitrogen use efficiency of japonica-indica hybrid rice cultivar Yongyou 1540 and its physiological bases [J]. Acta Agronomica Sinica, 2023, 49(6): 1630-1642.
[15] LI Hui, WANG Xu-Min, LIU Miao, LIU Peng-Zhao, LI Qiao-Li, WANG Xiao-Li, WANG Rui, LI Jun. Water and nitrogen reduction scheme optimization based on yield and nitrogen utilization of summer maize [J]. Acta Agronomica Sinica, 2023, 49(5): 1292-1304.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[2] XING Guang-Nan, ZHOU Bin, ZHAO Tuan-Jie, YU De-Yue, XING Han, HEN Shou-Yi, GAI Jun-Yi. Mapping QTLs of Resistance to Megacota cribraria (Fabricius) in Soybean[J]. Acta Agronomica Sinica, 2008, 34(03): 361 -368 .
[3] ZHENG Yong-Mei;DING Yan-Feng;WANG Qiang-Sheng;LI Gang-Hua;WANG Hui-Zhi;WANG Shao-Hua. Effect of Nitrogen Applied before Transplanting on Tillering and Nitrogen Utilization in Rice[J]. Acta Agron Sin, 2008, 34(03): 513 -519 .
[4] QIN En-Hua;YANG Lan-Fang;. Selenium Content in Seedling and Selenium Forms in Rhizospheric Soil of Nicotiana tabacum L.[J]. Acta Agron Sin, 2008, 34(03): 506 -512 .
[5] LÜ Li-Hua;TAO Hong-Bin;XIA Lai-Kun; HANG Ya-Jie;ZHAO Ming;ZHAO Jiu-Ran;WANG Pu;. Canopy Structure and Photosynthesis Traits of Summer Maize under Different Planting Densities[J]. Acta Agron Sin, 2008, 34(03): 447 -455 .
[6] Zhang Shubiao;Yang Rencui. Some Biological Character of eui-hybrid Rice[J]. Acta Agron Sin, 2003, 29(06): 919 -924 .
[7] SHAO Rui-Xin;SHANG-GUAN Zhou-Ping. Effects of Exogenous Nitric Oxide Donor Sodium Nitroprusside on Photosynthetic Pigment Content and Light Use Capability of PS II in Wheat under Water Stress[J]. Acta Agron Sin, 2008, 34(05): 818 -822 .
[8] Qui Chongli. STUDIES ON THE INCOMPATIBILITY OF HYBRIDIZATION BETWEEN TRITICUM AESTIVUM L.AND HEXAPLOID TRITICALE Ⅰ.THE DEVELOPMENT OF HYBRID EMBRYO[J]. Acta Agron Sin, 1986, (01): 49 -56 .
[9] Huang Ce;Wang Tian-duo. COMPUTER SIMULATION OF BIOMASS PRODUCTION IN RICE COMMUNITY[J]. Acta Agron Sin, 1986, (01): 1 -8 .
[10] CHEN Ji-Bao;JING Rui-Lian;MAO Xin-Guo;CHANG Xiao-Ping;WANG Shu-Min. A Response of PvP5CS2 Gene to Abiotic Stresses in Common Bean[J]. Acta Agron Sin, 2008, 34(07): 1121 -1127 .