Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2024, Vol. 50 ›› Issue (8): 2091-2105.doi: 10.3724/SP.J.1006.2024.34166

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Optimal allocation of sowing date and sowing rate of late-sowing rapeseed in the Yangtze River Basin

LOU Hong-Xiang1(), HUANG Xiao-Yu1, JIANG Meng2, NING Ning1, BIAN Meng-Lei1, ZHANG Lei1, LUO Dong-Xu1, QIN Meng-Qian1, KUAI Jie1, WANG Bo1, WANG Jing1, ZHAO Jie1, XU Zheng-Hua1,*(), ZHOU Guang-Sheng1   

  1. 1College of Plant Science and Technology, Huazhong Agricultural University / Hubei Hongshan Laboratory / Key Laboratory of Crop Ecophysiology and Farming System for the Middle Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Wuhan 430070, Hubei, China
    2Hubei Modern Agriculture Exhibition Center, Wuhan 430070, Hubei, China
  • Received:2023-10-14 Accepted:2024-01-12 Online:2024-08-12 Published:2024-03-09
  • Contact: * E-mail: xzh@mail.hzau.edu.cn
  • Supported by:
    Key Research and Development Program of Hubei Province(2023BBB028)

Abstract:

To solve rice-rapeseed-stubble contradiction in the Yangtze River Basin and to improve the utilization rate of wintering idle field, it is urgent to carry out the research on supporting technologies for late-sowing rapeseed (sown after October 25). In this study, the early-maturing variety ‘Huayouza 137’ was used as the material, while two one-way experiment on sowing date (S1-S8, each sowing date was delayed by three days from October 25 to November 15) and sowing rate (R1-R5, 2.5, 5.0, 7.5, 10.0, and 12.5 kg hm-2) was set in Wuhan, Hubei, in two years. The growth period, seedling dynamics, agronomic traits, the yield, and lodging related indexes were investigated. The effective accumulated temperature was counted. Linear regression and smooth curve fitting analysis were carried out. The allocation parameters of sowing date and sowing rate at late-sowing stage rapeseed were optimized, which provided technical support for the production of late-sowing rapeseed. The results showed as follows: (1) With the sowing date delaying, the growth period was shortened, the root neck diameter, the number of branches and yield was reduced, the lodging index was increased at late-sowing stage in rapeseed. Among the four growth periods of rapeseed, the effective accumulated temperature during seedling and flowering stage was positively correlated with the actual yield. (2) With the sowing rate increasing at late-sowing stage in rapeseed, the number of seedlings and the harvest density was increased, but the growth period was shortened, the total effective accumulated temperature and silique-layer thickness were decreased, lodging index was first decreased and then increased, and the yield showed a trend of the first increasing and then decreasing. (3) Regression analysis on the yield data of different sowing dates in two years was carried out. The results showed that the effective accumulated temperature before wintering and at seedling stage could be maintained above 317.1℃ and 401.1℃, respectively, when the sowing date was postponed to S3-S4, and the yield of 35 days after final flowing reached 2700.0 kg hm-2, while lodging index was above 1.5. The smooth-curve-fitting analysis on the yield data of different sowing rates in two years was carried out. The results showed that the harvest density was parabolic with yield under different sowing rates, and the average peak yield of 35 days after final flowing was 2948.5 kg hm-2 under harvest density of 64.2×104 plants hm-2, while lodging index was 1.6. In summary, the sowing rate of 7.5-10.0 kg hm-2 (harvest density of 64.2×104 plants hm-2) and sowing against the clock (the average effective accumulated temperature before wintering of 317.1℃) could improve the yield and lodging index of late-sowing rapeseed.

Key words: late-sowing rapeseed, sowing date, sowing rate, yield, lodging resistance, the effective accumulated temperature

Table 1

Raw soil conditions of experiments in two growing seasons"

年份
Year
全氮
Total nitrogen
(g kg-1)
碱解氮
Alkaline nitrogen
(mg kg-1)
速效磷
Available phosphorus
(mg kg-1)
速效钾
Available potassium
(mg kg-1)
pH
2021-2022 2.02 99.23 29.29 156.30 6.55
2022-2023 1.74 89.83 29.05 131.25 6.68

Fig. 1

Main meteorological factors in two growing seasons Ta-max, Ta-avg, Ta-min, Raintotal, and RHavg represent the monthly maximum surface air temperature, monthly average surface air temperature, monthly minimum surface air temperature, monthly total rainfall, and monthly average humidity, respectively."

Fig. 2

Effects of sowing rate and sowing date on actual plant rate in late-sowing rapeseed R1, R2, R3, R4, and R5 indicate sowing rate of 2.5, 5, 7.5, 10.0, and 12.5 kg hm-2, respectively. S1, S2, S3, S4, S5, S6, S7, and S8 indicate sowing date of Oct. 25, Oct. 28, Oct. 31, Nov. 3, Nov. 6, Nov. 9, Nov. 12, and Nov. 15, respectively. S and R indicate sowing date and sowing rate, respectively, and different lowercase letters indicate significant differences in multiple comparisons between treatments at P < 0.05. In one-way analysis of variance (ANOVA), ** indicates significant difference at the 0.01 probability level."

Fig. 3

Effect of sowing date on growth period and effective accumulated temperature dynamics The changes of effective accumulated temperature in the two growing seasons of 2021-2022 (A) and 2022-2023 (B) and the seedling condition during the wintering stage (C) under different sowing dates. Treatments are the same as those given in Fig. 2. The numbers at the top of the polyline (retaining 1 decimal place) are the effective accumulated temperature of seedling stage, bolting stage (before/after wintering stage), flowering stage, and silique development stage. The numbers in the figure (unit: days, d) are consecutive days of seedling stage, bolting stage, flowering stage, and silique development stage, and the X-axis number is the growth period."

Table 2

Effects of sowing rate on effective accumulated temperature and growth period in two whole growing seasons"

年份
Year
播种量
Sowing rate
有效积温
Effective
accumulated
temperature (℃)
苗期
Seedling stage (d)
蕾薹期
Bolting
stage (d)
花期
Flowering stage (d)
角果发育期
Silique
development stage (d)
生育期
Growth
period (d)
2021-2022 R1 1421.3 112 19 21 40 192
R2 1399.9 111 18 21 39 189
R3 1399.9 110 18 20 38 186
R4 1378.4 110 17 19 38 184
R5 1358.2 108 18 19 37 182
2022-2023 R1 1399.7 116 18 21 37 192
R2 1354.3 114 17 21 37 189
R3 1299.4 112 17 20 37 186
R4 1256.3 109 18 20 36 183
R5 1226.6 109 17 20 35 181

Fig. 4

Effect of sowing date and sowing rate on actual yield under different harvest dates Treatments are the same as those given in Fig. 2. The harvest dates are April 20, 35 days after the final flowering (35 DAF), and full maturity (FM), respectively. H, S, and R indicate harvest date, sowing date and sowing rate, respectively, and different lowercase letters indicate significant differences in multiple comparisons between treatments at the same harvest stage at P < 0.05. In the two-way ANOVA, * and ** indicate significant differences at the 0.05 and 0.01 probability levels, respectively."

Table 3

Effect of sowing date on yield-related traits in late-sowing rapeseed"

年份
Year
播种期
Sowing date
单株角果数
Siliques
per plant
千粒重
1000-seed weight (g)
每角粒数
Seeds per silique
理论产量
Theoretical yield (kg hm-2)
地上部生物量
Above-ground biomass (t hm-2)
收获指数
Harvest index
2021-2022 S1 164.3 a 4.264 a 17.4 a 3380.2 a 11.4 a 0.298 a
S2 153.5 b 4.253 a 17.0 ab 3335.7 a 11.2 a 0.297 a
S3 133.7 c 4.234 a 17.0 ab 3118.0 b 10.4 ab 0.303 a
S4 123.8 d 4.074 b 16.9 ab 2827.3 c 9.7 b 0.292 a
S5 94.5 ef 4.086 b 16.5 ab 2405.9 d 8.2 c 0.293 a
S6 99.0 e 4.064 bc 16.1 b 2408.0 d 8.2 c 0.295 a
S7 92.0 f 4.061 bc 16.2 b 2340.6 d 7.6 c 0.310 a
S8 82.7 g 3.963 c 16.2 b 2108.0 e 7.1 c 0.299 a
2022-2023 S1 167.7 a 4.488 a 15.7 a 3425.2 a 12.0 a 0.286 abc
S2 159.3 a 4.477 a 15.5 a 3343.3 ab 11.3 a 0.296 ab
S3 135.0 b 4.457 a 14.8 ab 3267.0 b 11.0 a 0.300 ab
S4 123.7 b 4.289 b 14.8 ab 2434.1 c 9.6 b 0.255 c
S5 101.7 c 4.301 b 14.8 ab 2187.4 d 7.6 c 0.288 abc
S6 85.7 d 4.024 c 14.3 ab 1513.0 e 4.8 d 0.316 a
S7 79.0 d 4.020 c 14.0 b 983.3 f 3.7 de 0.267 bc
S8 77.3 d 3.924 c 13.5 b 947.8 f 3.3 e 0.291 abc
F 年份Year (Y) 1.316 55.423** 105.813** 452.764** 43.321** 3.514
F-value 播种期Sowing date (S) 228.576** 51.011** 3.056* 566.007** 86.620** 1.304
年份×播期Y×S 3.359** 8.352** 0.536 84.606** 12.852** 1.466

Table 4

Effect of sowing rate on yield-related traits in late-sowing rapeseed"

年份
Year
播种量
Sowing rate
单株角果数
Siliques per plant
千粒重
1000-seed weight (g)
每角果粒数
Seeds per
silique
理论产量
Theoretical yield
(kg hm-2)
地上部生物量
Aboveground biomass (t hm-2)
收获指数
Harvest
index
2021-2022 R1 157.6 a 4.105 d 20.8 a 2325.1 d 7.1 d 0.329 a
R2 125.2 b 4.191 c 20.6 a 2579.0 c 8.6 c 0.300 b
R3 98.0 c 4.295 b 19.6 ab 3096.8 b 11.0 b 0.282 b
R4 66.6 d 4.387 a 18.0 bc 3452.5 a 12.3 a 0.282 b
R5 58.1 d 4.233 c 16.0 c 3226.3 b 12.9 a 0.251 c
2022-2023 R1 173.7 a 4.024 d 17.0 a 2734.8 b 8.6 b 0.321 a
R2 145.0 b 4.109 c 14.8 b 3152.2 a 10.7 a 0.295 b
R3 106.0 c 4.211 b 13.8 b 3199.6 a 11.1 a 0.290 b
R4 56.0 d 4.301 a 14.4 b 2538.9 bc 8.9 b 0.286 b
R5 47.3 d 4.150 c 14.4 b 2338.5 c 8.2 b 0.284 b
F
F-value
年Year (Y) 2.601 63.435** 97.607** 17.564** 24.121** 2.826
播种期Sowing date (S) 236.923** 81.635** 9.256** 37.097** 41.470** 25.997**
年×播种期Y×S 5.403** 0.008 3.620* 86.909** 56.428** 3.902*

Table 5

Effect of sowing date on agronomic traits of late-sowing rapeseed in silique-mature stage"

年份
Year
播种期
Sowing date
根颈粗
Root neck
diameter (mm)
有效分枝高度
Effective branch height (cm)
角果层厚度
Silique-layer
thickness (cm)
株高
Plant height (cm)
有效分枝数
Effective branch number
2021-2022 S1 11.8 ab 82.0 d 43.3 c 147.5 a 4.4 ab
S2 12.6 ab 82.7 d 48.0 a 147.0 ab 4.3 abc
S3 12.1 ab 88.0 c 48.7 a 148.5 a 4.8 a
S4 12.9 a 94.5 b 46.8 ab 148.5 a 4.5 ab
S5 11.7 ab 93.7 b 44.2 bc 143.2 bc 4.2 abc
S6 11.4 b 95.5 b 43.3 c 139.7 c 3.8 bc
S7 10.1 c 103.3 a 34.5 d 141.2 c 3.7 c
S8 8.0 d 104.8 a 31.3 e 140.7 c 2.8 d
2022-2023 S1 14.0 a 90.0 c 57.3 a 164.0 a 6.3 a
S2 12.9 b 90.3 c 54.7 ab 162.0 ab 5.7 a
S3 10.2 c 96.3 bc 52.3 bc 159.3 b 4.5 b
S4 9.9 cd 97.3 b 48.7 d 154.0 c 4.3 b
S5 9.1 d 99.3 ab 50.0 cd 145.3 d 3.8 bc
S6 6.1 ef 102.0 ab 49.0 cd 132.3 e 3.3 c
S7 6.5 e 104.7 a 43.7 e 132.0 e 3.7 bc
S8 5.6 f 104.0 a 42.7 e 130.0 e 3.3 c
F
F-value
年份Year (Y) 140.820** 26.314** 196.898** 18.343** 4.812*
播种期Sowing date (S) 80.423** 26.664** 53.309** 90.559** 16.237**
年份×播期Y×S 22.969** 1.581 7.512** 33.614** 5.173**

Table 6

Effect of sowing rate on agronomic traits of late-sowing rapeseed at silique-mature stage"

年份
Year
播种量
Sowing rate
根颈粗
Root neck
diameter (mm)
有效分枝高度
Effective branch height (cm)
角果层厚度
Silique-layer thickness (cm)
株高
Plant height
(cm)
有效分枝数
Effective branch number
2021-2022 R1 11.6 a 95.1 b 49.9 a 156.3 a 5.0 a
R2 10.7 b 95.9 b 48.1 a 155.5 a 4.2 b
R3 10.8 b 97.1 b 47.7 a 155.5 a 4.0 b
R4 9.0 c 99.3 b 42.9 b 145.1 b 3.0 c
R5 6.7 d 105.7 a 41.9 b 143.3 b 2.5 c
2022-2023 R1 12.8 a 77.0 c 59.0 a 154.0 b 5.9 a
R2 9.9 b 92.0 b 47.7 b 158.7 a 5.1 a
R3 9.3 bc 93.0 b 42.3 c 155.3 ab 4.8 a
R4 8.6 c 95.7 b 37.0 d 138.3 c 1.3 b
R5 4.7 d 103.3 a 30.0 e 137.3 c 1.0 b
F
F-value
年份Year (Y) 28.622** 62.592** 24.684** 10.526** 0.204
播种期Sowing date (S) 259.382** 53.705** 119.241** 97.089** 38.293**
年份×播期Y×S 16.290** 13.209** 36.136** 6.074** 6.680**

Fig. 5

Effects of sowing date and sowing rate on lodging traits of late-sowing rapeseed Treatments are the same as those given in Fig. 2. S and R indicate sowing date and sowing rate, respectively, and different lowercase letters indicate significant differences in multiple comparisons between treatments at P < 0.05. In one-way ANOVA, ** indicates significant difference at the 0.01 probability level; NS indicates no significant difference."

Fig. 6

Comprehensive analysis of sowing date and sowing amount optimization in late-sowing rapeseed General linear regression analysis of the indicators in the experiments of sowing date (A) and sowing rate (B), and general linear regression analysis of effective accumulated temperature and yield at each growth stage (C). Smoothing spline fitting analysis of effective accumulated temperature (D) at sowing date test and harvest density (E) in sowing rate test with actual yield. Diagram of the optimal allocation mechanism of sowing date and sowing rate in late-sowing rapeseed (F). The abbreviations in the figure are as follows: S (sowing date), R (sowing rate), RND (root neck diameter), BH (effective branch height), SLT (silique-layer thickness), PH (plant height), BN (number of branches), LI (lodging index), BS (breaking strength), SPP (siliques per plant), TSW (thousand-seed weight), SPS (seeds per siliques), YPP (yield per plant), AY (actual yield), GP (growth period), EAT (total effective accumulated temperature), HD (harvest density), EAT-S (effective accumulated temperature at seedling stage), EAT-B (effective accumulated temperature at bolting stage), EAT-F (effective accumulated temperature at flowering stage), EAT-M (effective accumulated temperature during silique development stage). The correlation coefficient cut-off value r-value, * P < 0.05, ** P < 0.01, *** P < 0.001."

[1] FAO. Statistical Databases. Food and Agriculture Organization of the United Nations, 2021, http://www.fao.org/.
[2] 甘国渝, 邹家龙, 陈曦, 朱海, 金慧芳, 李继福. 中国油菜生产格局与施肥研究现状. 湖北农业科学, 2022, 61(1): 5-11.
Gan G Y, Zou J L, Chen X, Zhu H, Jin H F, Li J F. Research status of rape production pattern and fertilization in China. Hubei Agric Sci, 2022, 61(1): 5-11 (in Chinese with English abstract).
[3] 叶鹏, 贺继奎, 何泽威, 许本波, 张学昆, 徐劲松. 不同类型甘蓝型油菜耐迟播生长能力差异分析. 中国油料作物学报, 2023, https://doi.org/10.19802/j.issn.1007-9084.2023014.
Ye P, He J K, He Z W, Xu B B, Zhang X K, Xu J S. Growth ability of rapeseed (Brassica napus L.) seedlings under late-sowing condition. Chin J Oil Crop Sci, 2023, https://doi.org/10.19802/j. issn.1007-9084.2023014 (in Chinese with English abstract).
[4] 马霓, 张春雷, 李俊, 余利平, 刘丹, 李光明. 播期和密度对免耕直播油菜生长及产量的影响. 湖北农业科学, 2010, 49: 1580-1583.
Ma N, Zhang C L, Li J, Yu L P, Liu D, Li G M. Effects of sowing date and plant density on growth and yield of direct seeding rapeseed (Brassica napus L.) under no tillage cultivation condition. Hubei Agric Sci, 2010, 49: 1580-1583 (in Chinese with English abstract).
[5] 宁宁, 莫娇, 胡冰, 李大双, 娄洪祥, 王春云, 白晨阳, 蒯婕, 汪波, 王晶, 徐正华, 李晓华, 贾才华, 周广生. 长江流域不同生态区油菜籽关键品质比较研究. 作物学报, 2023, 49: 3315-3327.
doi: 10.3724/SP.J.1006.2023.34017
Ning N, Mo J, Hu B, Li D S, Lou H X, Wang C Y, Bai C Y, Kuai J, Wang B, Wang J, Xu Z H, Li X H, Jia C H, Zhou G S. Comparative study on the processing quality of winter rape in different ecological zones of the Yangtze River valley. Acta Agron Sin, 2023, 49: 3315-3327 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2023.34017
[6] 袁圆, 汪波, 周广生, 刘芳, 黄俊生, 蒯婕. 播期和种植密度对油菜产量和茎秆抗倒性的影响. 中国农业科学, 2021, 54: 1613-1626.
doi: 10.3864/j.issn.0578-1752.2021.08.004
Yuan Y, Wang B, Zhou G S, Liu F, Huang J S, Kuai J. Effects of different sowing dates and planting densities on the yield and stem lodging resistance of rapeseed. Sci Agric Sin, 2021, 54: 1613-1626 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2021.08.004
[7] 邵科, 朋文欢. 长江流域冬闲田油菜种植的现状趋势、服务支撑和产业链拓展情况报告:基于632份农民合作社和家庭农场的数据分析. 中国农民合作社, 2023, 15(1): 10-11.
Shao K, Peng W H. Report on the current situation and trend, service support and industrial chain expansion of rapeseed planting in winter idle fields in the Yangtze River Basin:based on the data analysis of 632 farmer cooperatives and family farms. Chin Farm Coop, 2023, 15(1): 10-11 (in Chinese with English abstract).
[8] 张杏燕, 宋波, 李德富, 郭永华, 董军刚. 晚播和播量对油菜农艺性状及产量的影响. 西北农业学报, 2020, 29: 1364-1371.
Zhang X Y, Song B, Li D F, Guo Y H, Dong J G. Effect of late sowing and seeding rates on the agronomic traits and yield of rapeseed. Acta Agric Boreali-Occident Sin, 2020, 29: 1364-1371 (in Chinese with English abstract).
[9] 蒋美艳, 李秋红, 李延莉, 江建霞, 杨立勇, 周德平, 吴淑杭, 王伟荣. 播种量和播种期对上海绿肥油菜生物产量及养分积累的影响. 上海农业学报, 2021, 37(1): 35-38.
Jiang M Y, Li Q H, Li Y L, Jiang J X, Yang L Y, Zhou D P, Wu S H, Wang W R. Effects of sowing rate and sowing date on biomass and nutrient accumulation of green manure rape in Shanghai. Acta Agric Shanghai, 2021, 37(1): 35-38 (in Chinese with English abstract).
[10] Rahimitanha S, Woodcock T, Spink J, Forristal P D, Berry P M. The impact of sowing date on soil mineral nitrogen uptake efficiency and fertilizer N uptake efficiency for winter oilseed rape (Brassica napus L.) in Ireland. Agronomy (Basel), 2022, 12: 1551.
[11] Li X Y, Zuo Q S, Chang H B, Bai G P, Kuai J, Zhou G S. Higher density planting benefits mechanical harvesting of rapeseed in the Yangtze River Basin of China. Field Crops Res, 2018, 218: 97-105.
[12] 官春云, 王国槐, 赵均田. 油菜生态特性的研究: I. 甘蓝型油菜(B. napus)光温生态特性的初步研究. 作物学报, 1985, 11: 115-120.
Guan C Y, Wang G H, Zhao J T. Research on the ecological characteristics of rapeseed: I. A preliminary study on the light- temperature ecological characteristics of rapeseed (B. napus). Acta Agron Sin, 1985, 11: 115-120 (in Chinese with English abstract).
[13] 李小勇, 顾炽明, 刘康, 廖星, 黄威, 杨志远, 秦璐. 施氮量对迟播油菜氮素利用和产量品质的影响. 中国农业科学, 2021, 54: 3726-3736.
doi: 10.3864/j.issn.0578-1752.2021.17.014
Li X Y, Gu C M, Liu K, Liao X, Huang W, Yang Z Y, Qin L. Effects of nitrogen application rate on nitrogen use efficiency, yield and quality of late sowing rapeseed. Sci Agric Sin, 2021, 54: 3726-3736 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2021.17.014
[14] Ozer H. Sowing date and nitrogen rate effects on growth, yield and yield components of two summer rapeseed cultivars. Eur J Agron, 2003, 19: 453-463.
[15] Dingkuhn M, De Datta S K, Pamplona R, Javellana C, Schnier H F. Effect of late-season N fertilization on photosynthesis and yield of transplanted and direct-seeded tropical flooded rice: II. A canopy stratification study. Field Crops Res, 1992, 28: 235-249.
[16] 巩若琳, 宋波, 杨志叶, 路丽静, 董军刚. 迟播和密度对不同油菜品种抗倒伏及产量的影响. 作物学报, 2023, 49: 1-16.
Gong R L, Song B, Yang Z Y, Lu L J, Dong J G. Effects of sowing date and density on lodging resistance and yield of different rapeseed cultivars. Acta Agron Sin, 2023, 49: 1-16 (in Chinese with English abstract).
[17] 朱庆洋, 周祥宇, 冷锁虎, 陆俊瑶, 左青松, 杨光. 播种量对油菜毯苗生长的影响. 中国油料作物学报, 2020, 42: 216-222.
Zhu Q Y, Zhou X Y, Leng S H, Lu J Y, Zuo Q S, Yang G. Effect of seeding amount on rapeseed blanket seedling growth. Chin J Oil Crop Sci, 2020, 42: 216-222 (in Chinese with English abstract).
doi: 10.19802/j.issn.1007-9084.2020042
[18] 雷海霞, 陈爱武, 张长生, 罗凯世, 陈新国, 夏起昕, 周广生, 吴江生, 田新初. 共生期与播种量对水稻套播油菜生长及产量的影响. 作物学报, 2011, 37: 1449-1456.
doi: 10.3724/SP.J.1006.2011.01449
Lei H X, Chen A W, Zhang C S, Luo K S, Chen X G, Xia Q X, Zhou G S, Wu J S, Tian X C. Effect of symbiosis period and seeding amount on growth and yield of rape-seed under sowing rice. Acta Agron Sin, 2011, 37: 1449-1456 (in Chinese with English abstract).
[19] 蒯婕, 李真, 汪波, 刘芳, 叶俊, 周广生. 密度和行距配置对油菜苗期性状及产量形成的影响. 中国农业科学, 2021, 54: 2319-2332.
doi: 10.3864/j.issn.0578-1752.2021.11.006
Kuai J, Li Z, Wang B, Liu F, Ye J, Zhou G S. Effects of density and row spacing on seedling traits of rapeseed and seed yield. Sci Agric Sin, 2021, 54: 2319-2332 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2021.11.006
[20] Wang C Y, Yan Z K, Wang Z K, Batool M, El-Badri A M, Bai F, Li Z, Wang B, Zhou G S, Kuai J. Subsoil tillage promotes root and shoot growth of rapeseed in paddy fields and dryland in Yangtze River Basin soils. Eur J Agron, 2021, 130: 126351.
[21] 陈杨, 王磊, 白由路, 卢艳丽, 倪露, 王玉红, 徐孟泽. 有效积温与不同氮磷钾处理夏玉米株高和叶面积指数定量化关系. 中国农业科学, 2021, 54: 4761-4777.
doi: 10.3864/j.issn.0578-1752.2021.22.005
Chen Y, Wang L, Bai Y L, Lu Y L, Ni L, Wang Y H, Xu M Z. Quantitative relationship between effective accumulated temperature and plant height & leaf area index of summer maize under different nitrogen, phosphorus and potassium levels. Sci Agric Sin, 2021, 54: 4761-4777 (in Chinese with English abstract).
[22] Ookawa T, Ishihara K. Varietal difference of physical characteristics of the culm related to lodging resistance in paddy rice. Jpn J Crop Sci, 1992, 61: 419-425.
[23] 余新颖, 王春云, 李大双, 王宗铠, 蒯婕, 汪波, 王晶, 徐正华, 周广生. 高产油菜品种稳产性形成机制. 作物学报, 2023, 49: 1601-1615.
doi: 10.3724/SP.J.1006.2023.24115
Yu X Y, Wang C Y, Li D S, Wang Z K, Kuai J, Wang B, Wang J, Xu Z H, Zhou G S. Formation mechanism of yield stability in high-yielding rapeseed varieties. Acta Agron Sin, 2023, 49: 1601-1615 (in Chinese with English abstract).
[24] 赵佩欧, 郑可助, 王春猜. 迟播对机收油菜浙油18生育期和产量的影响. 浙江农业科学, 2011, 48: 333-334.
Zhao P O, Zheng K Z, Wang C C. Effects of late sowing on growth period and yield of machine-harvested rapeseed Zheyou 18. J Zhejiang Agric Sci, 2011, 48: 333-334 (in Chinese with English abstract).
[25] 袁嘉琦, 刘艳阳, 许轲, 李国辉, 陈天晔, 周虎毅, 郭保卫, 霍中洋, 戴其根, 张洪程. 氮密处理提高迟播栽粳稻资源利用和产量. 作物学报, 2022, 48: 667-681.
Yuan J Q, Liu Y Y, Xu K, Li G H, Chen T Y, Zhou H Y, Guo B W, Huo Z Y, Dai Q G, Zhang H C. Nitrogen and density treatment to improve resource utilization and yield in late sowing japonica rice. Acta Agron Sin, 2022, 48: 667-681 (in Chinese with English abstract).
[26] 董明辉, 陈培峰, 江贻, 曹鹏辉, 宋云生, 顾俊荣, 谢裕林, 乔中英, 张文地, 黄丽芬. 江苏太湖地区不同生育类型粳稻品种产量对不同播期气候因子的响应. 作物学报, 2021, 47: 952-963.
doi: 10.3724/SP.J.1006.2021.02031
Dong M H, Chen P F, Jiang Y, Cao P H, Song Y S, Gu J R, Xie Y L, Qiao Z Y, Zhang W D, Huang L F. Response of yield of different growth types of japonica rice varieties to climatic factors at different sowing dates in Taihu of Jiangsu province. Acta Agron Sin, 2021, 47: 952-963 (in Chinese with English abstract).
[27] 姜海杨, 孙万仓, 曾秀存, 方彦, 陈姣荣, 史鹏辉, 赵彩霞, 何丽. 播期对北方白菜型冬油菜生长发育及产量的影响. 中国油料作物学报, 2012, 34: 620-626.
Jiang H Y, Sun W C, Zeng X C, Fang Y, Chen J R, Shi P H, Zhao C X, He L. Effect of sowing date on Brassica rapa growth and yield in northern China. Chin J Oil Crop Sci, 2012, 34: 620-626 (in Chinese with English abstract).
[28] Kuai J, Sun Y Y, Zuo Q S, Huang H D, Liao Q X, Wu C Y, Lu J W, Wu J S, Zhou G S. The yield of mechanically harvested rapeseed (Brassica napus L.) can be increased by optimum plant density and row spacing. Sci Rep, 2015, 5: 18835.
doi: 10.1038/srep18835 pmid: 26686007
[29] 娄洪祥, 姬建利, 蒯婕, 汪波, 徐亮, 李真, 刘芳, 黄威, 刘暑艳, 尹羽丰, 王晶, 周广生. 种植密度对油菜正反交组合产量与倒伏相关性状的影响. 作物学报, 2021, 47: 1724-1740.
doi: 10.3724/SP.J.1006.2021.04253
Lou H X, Ji J L, Kuai J, Wang B, Xu L, Li Z, Liu F, Huang W, Liu S Y, Yin Y F, Wang J, Zhou G S. Effects of planting density on yield and lodging related characters of reciprocal hybrids in Brassica napus L. Acta Agron Sin, 2021, 47: 1724-1740 (in Chinese with English abstract).
[30] 胡敏, 鲁剑巍, 王振, 游秋香. 晚播油菜绿肥适宜播种量研究. 作物杂志, 2016, (6): 120-123.
Hu M, Lu J W, Wang Z, You Q X. Study on the appropriate seeding rate of late sowing oilseed rape as green manure. Crops, 2016, (6): 120-123 (in Chinese with English abstract).
[31] 蒋小宏. 播种量与播种方式对免耕直播油菜产量和抗性的影响分析. 农业与技术, 2019, 39(4): 8-9.
Jiang X H. Analysis of effects of sowing rate and sowing method on yield and resistance of no-tillage direct-sowing rapeseed. Agric Technol, 2019, 39(4): 8-9 (in Chinese with English abstract).
[32] 郑伟, 肖国滨, 吕伟生, 李亚贞, 陈明, 黄天宝, 肖小军, 吴艳, 叶川. 播种量对双季稻套播油菜群体生长的影响. 中国油料作物学报, 2018, 40: 227-232.
doi: 10.7505/j.issn.1007-9084.2018.02.008
Zheng W, Xiao G B, Lyu W S, Li Y Z, Chen M, Huang T B, Xiao X J, Wu Y, Ye C. Effects of sowing rate on population growth of interplanting rapeseed in double-cropping rice. Chin J Oil Crop Sci, 2018, 40: 227-232 (in Chinese with English abstract).
[33] 章卓梁, 朱满庭, 华丰, 徐力恒. 播种量与播种方式对免耕直播油菜产量和抗性的影响. 浙江农业科学, 2016, 57: 20-21.
Zhang Z L, Zhu M T, Hua F, Xu L H. Effects of sowing rate and sowing method on yield and resistance of no-tillage direct broadcast rape. J Zhejiang Agric Sci, 2016, 57: 20-21 (in Chinese with English abstract).
[34] Li Y S, Yu C B, Zhu S, Xie L H, Hu X J, Liao X, Liao X S, Che Z. High planting density benefits to mechanized harvest and nitrogen application rates of oilseed rape (Brassica napus L.). Soil Sci Plant Nutr, 2014, 60: 384-392.
[35] 王晗, 向友珍, 李汪洋, 史鸿棹, 王辛, 赵笑. 基于无人机多光谱遥感的冬油菜地上部生物量估算. 农业机械学报, 2023, 54(8): 218-229.
Wang H, Xiang Y Z, Li W Y, Shi H Z, Wang X, Zhao X. Estimation of winter rapeseed above-ground biomass based on UAV multispectral remote sensing. Trans CSAM, 2023, 54(8): 218-229 (in Chinese with English abstract).
[36] 翟丙年, 孙春梅, 王俊儒, 李生秀. 氮素亏缺对冬小麦根系生长发育的影响. 作物学报, 2003, 30: 913-918.
Zhai B N, Sun C M, Wang J R, Li S X. Effects of nitrogen deficiency on the growth and development of winter wheat roots. Acta Agron Sin, 2003, 30: 913-918 (in Chinese with English abstract).
[37] 付永强, 张永霞, 龙再俊, 冉辉, 艾麦尔艾力·吐合提. 果园套种油菜绿肥适宜播期播量分析. 新疆农业科学, 2022, 59: 1864-1870.
doi: 10.6048/j.issn.1001-4330.2022.08.006
Fu Y Q, Zhang Y X, Long Z J, Ran H, Aimaieraili T. Study on suitable sowing date and rate of interplanting rape with green manure in orchards. Xinjiang Agric Sci, 2022, 59: 1864-1870 (in Chinese with English abstract).
doi: 10.6048/j.issn.1001-4330.2022.08.006
[1] ZHANG Gui-Qin, WANG Hong-Zhang, GUO Xin-Song, ZHU Fu-Jun, GAO Han, ZHANG Ji-Wang, ZHAO Bin, REN Bai-Zhao, LIU Peng, REN Hao. Effects of organic material inputs on soil physicochemical properties and summer maize yield formation in coastal saline-alkali land [J]. Acta Agronomica Sinica, 2024, 50(9): 2323-2334.
[2] ZHANG Zhen, HE Jian-Ning, SHI Yu, YU Zhen-Wen, ZHANG Yong-Li. Effects of row spacing and planting patterns on photosynthetic characteristics and yield of wheat [J]. Acta Agronomica Sinica, 2024, 50(9): 2396-2407.
[3] XU Yi-Fan, XU Cai-Long, LI Rui-Dong, WU Zong-Sheng, HUA Jian-Xin, YANG Lin, SONG Wen-Wen, WU Cun-Xiang. Deep side fertilization improved soybean yield by optimizing leaf function and nitrogen accumulation [J]. Acta Agronomica Sinica, 2024, 50(9): 2335-2346.
[4] YANG Yu-Chen, JIN Ya-Rong, LUO Jin-Chan, ZHU Xin, LI Wei-Hang, JIA Ji-Yuan, WANG Xiao-Shan, HUANG De-Jun, HUANG Lin-Kai. Identification and expression analysis of the WD40 gene family in pearl millet [J]. Acta Agronomica Sinica, 2024, 50(9): 2219-2236.
[5] LIU Zhi-Peng, GOU Zhi-Wen, CHAI Qiang, YIN Wen, FAN Zhi-Long, HU Fa-Long, FAN Hong, WANG Qi-Ming. Effect of green manure on wheat and maize yields in diversified cropping patterns in an arid irrigated agricultural area [J]. Acta Agronomica Sinica, 2024, 50(9): 2415-2424.
[6] SUN Zhao-Hua, REN Hao, WANG Hong-Zhang, WANG Zi-Qiang, YAO Hai-Yan, XIN Ai-Mei, ZHAO Bin, ZHANG Ji-Wang, REN Bai-Zhao, LIU Peng. Effects of foliar silicon sprays on leaf photosynthetic performance and grain yield of summer maize in coastal saline-alkali soil [J]. Acta Agronomica Sinica, 2024, 50(9): 2383-2395.
[7] PENG Jie, XIE Xiao-Qi, ZHANG Zhao, YAO Xiao-Fen, QIU Shen, CHEN Dan-Dan, GU Xiao-Na, WANG Yu-Jie, WANG Chen-Chen, YANG Guo-Zheng. Relationship between cotton yield and canopy microenvironment under summer direct seeding  [J]. Acta Agronomica Sinica, 2024, 50(9): 2371-2382.
[8] LIU Chen, WANG Kun-Kun, LIAO Shi-Peng, YANG Jia-Qun, CONG Ri-Huan, REN Tao, LI Xiao-Kun, LU Jian-Wei. Effects of nitrogen fertilizer application levels on yield and nitrogen absorption and utilization of oilseed rape under maize-oilseed rape and rice-oilseed rape rotation fields [J]. Acta Agronomica Sinica, 2024, 50(8): 2067-2077.
[9] CAO Zi-Qi, ZHAO Xiao-Qing, ZHANG Xiang-Qian, WANG Jian-Guo, LI Juan, HAN Yun-Fei, LIU Dan, GAO Yan-Hua, LU Zhan-Yuan, REN Yong-Feng. Effects of nitrogen application levels on the accumulation, distribution of nitrogen, phosphorus and potassium, and the corresponding yield of Cyperus esculentus in sandy soil [J]. Acta Agronomica Sinica, 2024, 50(7): 1805-1817.
[10] HAN Xiao-Chen, ZHANG Gui-Qin, WANG Ya-Hui, REN Hao, WANG Hong-Zhang, LIU Guo-Li, LIN Dian-Xu, WANG Zi-Qiang, ZHANG Ji-Wang, ZHAO Bin, REN Bao-Zhao, LIU Peng. Effects of soil conditioners on soil salinity content and maize yield in coastal saline-alkali land [J]. Acta Agronomica Sinica, 2024, 50(7): 1776-1786.
[11] YANG Qi-Rui, LI Lan-Tao, ZHANG Duo, WANG Ya-Xian, SHENG Kai, WANG Yi-Lun. Effect of phosphorus application on yield, quality, light temperature physiological characteristics, and root morphology in summer peanut [J]. Acta Agronomica Sinica, 2024, 50(7): 1841-1854.
[12] LI Chang-Xi, DONG Zhan-Peng, GUAN Yong-Hu, LIU Jin-Wei, LI Hang, MEI Yong-Jun. Genetic contribution and decision coefficient analysis of agronomic characters and lint yield traits of upland cotton in southern Xinjiang [J]. Acta Agronomica Sinica, 2024, 50(6): 1486-1502.
[13] NING Ning, YU Xin-Ying, QIN Meng-Qian, LOU Hong-Xiang, WANG Zong-Kai, WANG Chun-Yun, JIA Cai-Hua, XU Zheng-Hua, WANG Jing, KUAI Jie, WANG Bo, ZHAO Jie, ZHOU Guang-Sheng. Effect of key cultivated measures on rapeseed oil comprehensive quality [J]. Acta Agronomica Sinica, 2024, 50(6): 1554-1567.
[14] WANG Fei-Er, GUO Yao, LI Pan, WEI Jin-Gui, FAN Zhi-Long, HU Fa-Long, FAN Hong, HE Wei, YIN Wen, CHEN Gui-Ping. Compensation mechanism of increased maize density on yield with water and nitrogen reduction supply in oasis irrigation areas [J]. Acta Agronomica Sinica, 2024, 50(6): 1616-1627.
[15] ZHANG Zhi-Yuan, ZHOU Jie-Guang, LIU Jia-Jun, WANG Su-Rong, WANG Tong-Zhu, ZHAO Cong-Hao, YOU Jia-Ning, DING Pu-Yang, TANG Hua-Ping, LIU Yan-Lin, JIANG Qian-Tao, CHEN Guo-Yue, WEI Yu-Ming, MA Jian. Identification and verification of low-tillering QTL based on a new model of genetic analysis in wheat [J]. Acta Agronomica Sinica, 2024, 50(6): 1373-1383.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[2] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[3] Hu Yuqi;Liao Xiaohai. A STUDY ON THE COEFFICIENT OF LEAVES SHAPE OF MAIZE[J]. Acta Agron Sin, 1986, (01): 71 -72 .
[4] LIANG Tai-Bo;YIN Yan-Ping;CAI Rui-Guo;YAN Su-Hui;LI Wen-Yang;GENG Qing-Hui;WANG Ping;WANG Zhen-Lin. Starch Accumulation and Related Enzyme Activities in Superior and Inferior Grains of Large Spike Wheat[J]. Acta Agron Sin, 2008, 34(01): 150 -156 .
[5] WANG Cheng-Zhang;HAN Jin-Feng;SHI Ying-Hua;LI Zhen-Tian;LI De-Feng. Production Performance in Alfalfa with Different Classes of Fall Dormancy[J]. Acta Agron Sin, 2008, 34(01): 133 -141 .
[6] TIAN Zhi-Jian;Yi Rong;CHEN Jian-Rong;GUO Qing-Quan;ZHANG Xue-Wen;. Cloning and Expression of Cellulose Synthase Gene in Ramie [Boehme- ria nivea (Linn.) Gaud.][J]. Acta Agron Sin, 2008, 34(01): 76 -83 .
[7] ZHAO Xiu-Qin;ZHU Ling-Hua;XU Jian-Long;LI Zhi-Kang. QTL Mapping of Yield under Irrigation and Rainfed Field Conditions for Advanced Backcrossing Introgression Lines in Rice[J]. Acta Agron Sin, 2007, 33(09): 1536 -1542 .
[8] WU Ying ; SONG Feng-Sun ; LU Xu-Zhong; ZHAO Wei; YANG Jian-Bo; LI Li ;. Detecting Genetically Modified Soybean by Real-time Quantitative PCR Technique[J]. Acta Agron Sin, 2007, 33(10): 1733 -1737 .
[9] GOU Ling ; HUANG Jian-Jun; ZHANG Bin; LI Tao; SUN Rui; ZHAO Ming ;. Effects of Population Density on Stalk Lodging Resistant Mechanism and Agronomic Characteristics of Maize[J]. Acta Agron Sin, 2007, 33(10): 1688 -1695 .
[10] YU Jing;ZHANG Lin;CUI Hong;ZHANG Yong-Xia;CANG Jing;HAO Zai-Bin;LI Zhuo-Fu. Physiological and Biochemical Characteristics of Dongnongdongmai 1 before Wintering in High-Cold Area[J]. Acta Agron Sin, 2008, 34(11): 2019 -2025 .