Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2024, Vol. 50 ›› Issue (9): 2358-2370.doi: 10.3724/SP.J.1006.2024.34210

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Effect of high density planting on the quality of cold pressed rapeseed oil

ZHANG Qi-Qi1(), CHEN Jie-Chang1, KUAI Jie2, WANG Bo2, WANG Jing2, XU Zheng-Hua2, ZHAO Jie2, ZHAO Si-Ming1, JIA Cai-Hua1,*(), ZHOU Guang-Sheng2   

  1. 1College of Food Science and Technology, Huazhong Agricultural University / Key Laboratory of Environmental Food Science, Ministry of Education, Wuhan 430070, Hubei, China
    2College of Plant Science and Technology, Huazhong Agricultural University / Key Laboratory of Crop Ecophysiology and Farming System for the Middle Yangtze River, Ministry of Agriculture and Rural Affairs, Wuhan 430070, Hubei, China
  • Received:2023-12-12 Accepted:2024-04-01 Online:2024-09-12 Published:2024-05-27
  • Contact: *E-mail: chjia@mail.hzau.edu.cn
  • Supported by:
    Hubei Provincial Natural Science Foundation of China(2024AFB732);National Key Research and Development Program of China(2021YFD1600502)

Abstract:

In order to determine the effect of high density planting on the quality of cold-pressed rapeseed oil, six rapeseed varieties with significantly different plant architectures were selected and planted with 450,000 plants hm-2 and 750,000 plants hm-2. The mature seeds were harvested and cold-pressed, and the physicochemical indexes, fatty acid composition, and typical lipid concomitants contents of rapeseed oil were analyzed. The results showed that compared with 450,000 plants hm-2, the oil content, chlorophyll, red value, peroxide value, and acid value under the density of 750,000 plants hm-2 increased on average by 4.67%, 65.28%, 22.16%, 30.36%, and 7.23%, respectively. But all of them met the national standard grade Ⅰ rapeseed oil quality standard. Under the density of 750,000 plants hm-2, the contents of unsaturated fatty acids increased by 0.02%-4.26%, and the contents of carotenoid and polar total phenol increased by 0.52-4.54 mg kg-1 and 1.18-12.06 mg 100 g-1, respectively. At the same time, the contents of tocopherol and phytosterol of ‘Chuanyou 20’and ‘Huayouza 62’ were increased. Comprehensive evaluation results showed that the quality of cold-pressed oil obtained from different plant architectures of rapeseed was different in response to the two planting densities. The quality of cold-pressed oil obtained from different heights and leaf types of rapeseed was better than 450,000 plants hm-2 under the density of 750,000 plants hm-2, among which the comprehensive quality of “Chuanyou 20” and “Huayouza 62” was superior under the density of 750,000 plants hm-2. Thus, the results of this study can provide a reference for the density planting, variety breeding, and the production of high-quality rapeseed oil raw materials.

Key words: rapeseed, planting density, rapeseed oil, lipid concomitants, quality

Table 1

1000-seed weight and oil content of rapeseed under different planting densities"

品种
Variety
密度
Density
千粒重
1000-seed weight (g)
含油量
Oil content (%)
CY20 D1 4.15±0.00 dB 35.00±0.55 dB
D2 4.26±0.04 cA 37.44±1.11 dA
N91 D1 4.33±0.06 bA 39.73±0.10 cA
D2 4.05±0.05 dB 41.23±1.00 cA
ERAKE D1 4.23±0.05 cB 45.60±0.19 aA
D2 4.33±0.04 bA 46.14±1.13 aA
11-9-704 D1 5.83±0.02 aA 46.08±0.83 aA
D2 5.60±0.04 aB 46.85±0.29 aA
TLHY D1 4.21±0.04 cB 39.96±0.28 cB
D2 4.36±0.03 bA 43.92±0.21 bA
HZ62 D1 4.08±0.02 eA 42.69±0.29 bB
D2 3.99±0.03 dB 44.61±0.17 bA

Table 2

Lovibond color values (red and yellow values) and chlorophyll content of rapeseed oil under different planting densities"

品种
Variety
密度
Density
红值
Red-value
黄值
Yellow-value
叶绿素
Chlorophyll (mg kg-1)
CY20 D1 3.35±0.07 bA 30.05±0.07 abA 0.43±0.03 eB
D2 3.10±0.14 cA 30.40±0.28 cdA 0.75±0.02 fA
N91 D1 2.95±0.07 cB 28.00±1.41 cB 0.51±0.02 dB
D2 4.00±0.00 aA 39.50±0.71 aA 1.25±0.01 eA
ERAKE D1 2.85±0.07 cB 28.20±1.27 bcB 0.98±0.02 cB
D2 4.15±0.07 aA 39.50±0.71 aA 1.40±0.00 dA
11-9-704 D1 3.60±0.14 aA 30.25±0.07 aB 1.19±0.00 bB
D2 3.50±0.14 bA 32.10±0.14 bA 1.56±0.00 cA
TLHY D1 2.05±0.07 dB 20.65±0.49 dB 0.26±0.00 fB
D2 3.00±0.14 cA 30.15±0.07 dA 2.10±0.00 aA
HZ62 D1 3.20±0.14 bB 30.10±0.14 abA 1.93±0.01 aA
D2 3.70±0.14 bA 31.50±0.71 bcA 1.70±0.00 bB

Fig. 1

Peroxide value (A) and acid value (B) of rapeseed oil under different planting densities Different lowercase letters in the graphs mean significant differences among varieties under the same planting density at P < 0.05 while uppercase letters indicate significant differences between different planting densities of the same variety at P < 0.05. Abbreviations are the same as those given in Table 1."

Table 3

Analysis of fatty acid composition of rapeseed oil under different planting densities"

品种
Variety
密度
Density
脂肪酸组成Fatty acids composition 不饱和脂肪酸
Unsaturated fatty acids (%)
ω-6/
ω-3
棕榈酸
Palmitic acid (%)
硬脂酸
Stearic acid (%)
油酸
Oleic acid (%)
亚油酸
Linoleic acid (%)
亚麻酸
Linolenic acid (%)
花生一烯酸
Eicosenoic acid (%)
芥酸
Erucic acid (%)
CY20 D1 3.85 dB 1.71 dA 65.10 bB 19.32 bA 8.72 dA 1.31 dA ND 94.44 aA 2.21
D2 3.86 dA 1.68 cA 65.36 aA 19.35 bA 8.46 eB 1.28 fB ND 94.46 aA 2.29
N91 D1 4.01 bB 1.60 eA 57.18 eB 19.54 aB 10.99 aB 2.02 bA 4.65 bA 89.73 eB 1.78
D2 4.15 cA 1.67 cA 58.43 eA 20.84 aA 11.44 aA 1.94 cB 1.52 B 92.66 eA 1.82
ERAKE D1 2.99 eA 2.06 bA 64.42 cA 19.02 cA 9.24 cB 1.24 fB ND 93.92 cA 2.06
D2 4.47 aA 1.83 bB 64.06 cB 16.96 eB 10.06 bA 2.62 bA ND 93.70 cA 1.69
11-9-704 D1 3.92 cA 1.87 cA 65.53 aA 17.78 eB 9.64 bB 1.26 eB ND 94.21 bB 1.84
D2 3.86 dB 1.83 bB 64.76 bB 18.00 dA 10.05 bA 1.49 dA ND 94.31 bA 1.79
TLHY D1 2.96 eB 0.97 fB 14.22 fB 13.32 fA 9.24 cA 7.40 aA 51.89 aA 44.18 fB 1.44
D2 2.99 eA 0.99 dA 19.81 fA 13.00 fB 9.00 dB 6.64 aB 47.58 B 48.44 fA 1.44
HZ62 D1 3.92 cB 2.25 aB 62.45 dB 18.69 dB 9.25 cA 1.79 cA 1.37 c 92.19 dB 2.02
D2 3.86 dA 2.31 aA 63.73 dA 19.20 cA 9.13 cB 1.31 eB ND 93.36 dA 2.10

Table 4

Carotenoid and polar total phenolic content of rapeseed oil under different planting densities"

品种
Variety
密度
Density
类胡萝卜素
Carotenoid (mg kg-1)
极性总酚
Polar total phenols (mg 100 g-1)
CY20
D1 4.77±0.16 bA 62.82±0.29 cB
D2 4.45±0.12 dA 70.47±0.29 bA
N91 D1 4.19±0.06 cB 46.65±1.18 dB
D2 5.76±0.15 bA 58.71±0.88 dA
ERAKE
D1 3.23±0.07 dB 62.53±2.35 cB
D2 7.77±0.15 aA 63.71±2.35 cA
11-9-704 D1 5.31±0.42 aB 66.35±0.29 bA
D2 5.83±0.29 bA 64.29±1.18 cA
TLHY D1 1.99±0.03 eB 33.12±1.76 eB
D2 4.72±0.29 cA 41.35±1.76 eA
HZ62
D1 4.94±0.09 abB 76.65±0.59 aB
D2 5.66±0.03 bA 79.59±1.18 aA

Table 5

Tocopherol content of rapeseed oil under different planting densities"

品种
Variety
密度
Density
α-生育酚
α-tocopherol
(mg kg-1)
γ-生育酚
γ-tocopherol
(mg kg-1)
总生育酚
Total tocopherol
(mg kg-1)
CY20
D1 147.12±2.95 bA 260.53±4.45 cB 407.65±7.40 bB
D2 143.90±0.06 bA 287.66±0.53 aA 431.56±0.58 bA
N91 D1 135.86±1.79 cA 241.22±1.05 dA 377.09±2.84 cA
D2 134.97±0.21 cA 231.70±1.15 dB 366.67±0.95 cB
ERAKE
D1 152.68±0.51 aA 270.31±0.05 bA 423.00±0.46 aA
D2 103.19±1.70 fB 179.51±0.00 fB 282.69±1.70 fB
11-9-704 D1 119.01±0.12 eA 263.47±2.09 cA 382.48±1.97 cA
D2 117.93±0.46 dA 241.11±1.27 cB 359.04±0.81 dB
TLHY D1 130.00±0.30 dA 283.07±0.01 aA 413.07±0.31 bA
D2 116.71±0.00 eB 200.57±0.54 eB 317.28±0.54 eB
HZ62
D1 134.85±0.39 cB 274.14±0.44 bB 408.99±0.05 bB
D2 150.76±0.76 aA 284.02±0.51 bA 434.78±0.25 aA

Table 6

Phytosterol content of rapeseed oil under different planting densities"

品种
Variety
密度
Density
菜籽甾醇
Brassicastero
(mg kg-1)
菜油甾醇
Campesterol
(mg kg-1)
β-谷甾醇
β-sitosterol
(mg kg-1)
植物甾醇
Phytosterol
(mg kg-1)
CY20
D1 685.69±4.34 bcB 1259.64±1.07 cB 2855.77±8.37 bcB 4801.10±13.77 bB
D2 755.52±11.28 bA 1327.25±14.25 bA 3071.87±35.36 bcA 5154.65±431.43 abA
N91 D1 633.87±61.99 cA 1005.86±105.39 dA 2580.01±264.05 cA 4219.74±8.58 cB
D2 862.25±66.21 aA 1320.33±104.25 bA 3326.59±266.72 cA 5509.17±111.93 aA
ERAKE
D1 757.56±12.97 aA 1885.68±34.66 aB 3441.89±64.30 aA 6085.14±60.89 aA
D2 243.04±16.37 dB 2458.14±145.17 aA 2754.71±159.90 aB 5455.89±437.18 aA
11-9-704 D1 712.87±41.51 abA 1617.89±95.83 bA 2919.94±191.64 bA 5250.70±160.07 bA
D2 716.13±7.20 bA 1451.86±4.68 bA 2773.96±28.93 bA 4941.95±321.44 bA
TLHY D1 432.17±0.51 dB 465.05±1.56 eB 1722.13±7.53 dB 2619.35±328.98 dB
D2 501.81±25.25 cA 786.85±34.14 cA 2090.09±100.68 dA 3378.75±230.33 cA
HZ62
D1 684.99±34.00 bcA 1334.91±61.42 cA 2878.39±134.91 bA 4898.29±40.81 bA
D2 728.86±30.60 bA 1419.67±56.89 bA 3099.74±114.54 bA 5248.27±202.04 abA

Fig. 2

Correlation analysis between plant density and rapeseed oil quality D: density; SW: 1000-seed weight; OC: oil content; R: red value; Y: yellow value; CHL: chlorophyll; POV: peroxide value; AV: acid value; OA: oleic acid; LA: linoleic acid; LNA: linolenic acid; CAR: carotenoid; PTP: polar total phenol; TT: total tocopherol; TP: total phytosterol. *: P < 0.05; **: P < 0.01."

Fig. 3

Score chart (a) and load chart (b) of principal component analysis of planting density and rapeseed oil quality Abbreviations are the same as those given in Fig. 2."

Table 7

Comprehensive index, membership function, and comprehensive evaluation value of rapeseed oil under different planting densities"

品种
Variety
密度
Density
主成分Comprehensive index 隶属函数Membership function 综合评价值
Comprehensive
valuation value
排名
Rank
F1 F2 F3 F4 F5 R1 R2 R3 R4 R5
CY20 D1 -1.00 2.01 0.54 1.80 0.23 0.56 0.98 0.83 0.00 0.47 0.62 9
D2 -0.35 2.10 1.03 0.65 0.18 0.63 1.00 0.95 0.27 0.34 0.69 5
N91 D1 -1.15 0.29 1.38 1.26 1.01 0.55 0.68 0.36 0.13 0.71 0.52 10
D2 2.63 -0.05 2.87 0.32 0.75 0.95 0.62 0.00 0.35 0.17 0.63 8
ERAKE D1 -0.19 1.57 1.15 2.45 0.60 0.65 0.91 0.42 1.00 0.21 0.68 6
D2 3.12 -1.96 0.05 1.31 0.09 1.00 0.28 0.71 0.12 0.37 0.66 7
11-9-704 D1 1.26 -0.40 0.79 1.02 1.96 0.80 0.56 0.89 0.66 1.00 0.76 1
D2 1.50 -1.03 0.37 0.91 1.53 0.83 0.45 0.79 0.64 0.87 0.73 3
TLHY D1 -6.35 -0.70 0.59 0.22 0.18 0.00 0.51 0.56 0.48 0.45 0.26 12
D2 -1.49 -3.56 0.80 0.06 1.29 0.51 0.00 0.90 0.44 0.00 0.40 11
HZ62 D1 0.56 0.68 1.23 0.28 0.93 0.73 0.75 1.00 0.49 0.11 0.69 4
D2 1.47 1.06 1.17 0.41 1.05 0.83 0.82 0.99 0.52 0.07 0.75 2
[1] 马云倩, 李淞淋. 营养视角下中国近60年来居民食用植物油消费状况研究. 中国油脂, 2020, 45(2): 3-9.
Ma Y Q, Li S L. Consumption status of edible vegetable oil in China in the past six decades in the view of nutrition. China Oils Fats, 2020, 45(2): 3-9 (in Chinese with English abstract).
[2] Borg K. Physiopathological effects of rapeseed oil: a review. Acta Med Scand, 2009, 198: 5-13.
[3] 王瑞元. 2022年我国粮油产销和进出口情况. 中国油脂, 2023, 48(6): 1-7.
Wang R Y. Production, marketing, import and export of grain and oil in China in 2022. China Oils Fats, 2023, 48(6): 1-7 (in Chinese).
[4] 黄萌, 眭彬彬, 张建栋, 陈培峰, 宋英, 孙华. 移栽密度对高含油量双低油菜苏油5号产量、产油量及品质的影响. 江西农业学报, 2015, 27(10): 54-57.
Huang M, Sui B B, Zhang J D, Chen P F, Song Y, Sun H. Effects of transplanting density on rapeseed yield, oil yield and quality of high-oil double-low rape variety Suyou No. 5. Acta Agric Jiangxi, 2015, 27(10): 54-57 (in Chinese with English abstract).
[5] 李小勇, 周敏, 王涛, 张兰, 周广生, 蒯婕. 种植密度对油菜机械收获关键性状的影响. 作物学报, 2018, 44: 278-287.
doi: 10.3724/SP.J.1006.2018.00278
Li X Y, Zhou M, Wang T, Zhang L, Zhou G S, Kuai J. Effects of planting density on the mechanical harvesting characteristics of semi-winter rapeseed. Acta Agron Sin, 2018, 44: 278-287 (in Chinese with English abstract).
[6] Kuai J, Sun Y Y, Zhou M, Zhang P P, Zuo Q S, Wu J S, Zhou G S. The effect of nitrogen application and planting density on the radiation use efficiency and the stem lignin metabolism in rapeseed (Brassica napus L.). Field Crops Res, 2016, 199: 89-98.
[7] Li X Y, Zuo Q S, Chang H B, Bai G P, Kuai J, Zhou G S. Higher density planting benefits mechanical harvesting of rapeseed in the Yangtze River Basin of China. Field Crops Res, 2018, 218: 97-105.
[8] 蒯婕, 王积军, 左青松, 陈红琳, 高建芹, 汪波, 周广生, 傅廷栋. 长江流域直播油菜密植效应及其机理研究进展. 中国农业科学, 2018, 51: 4625-4632.
doi: 10.3864/j.issn.0578-1752.2018.24.004
Kuai J, Wang J J, Zuo Q S, Chen H L, Gao J Q, Wang B, Zhou G S, Fu T D. Effects and mechanism of higher plant density on directly-sown rapeseed in the Yangtze River Basin of China. Sci Agric Sin, 2018, 51: 4625-4632 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2018.24.004
[9] Rathke G W, Behrens T, Diepenbrock W. Integrated nitrogen management strategies to improve seed yield, oil content and nitrogen efficiency of winter oilseed rape (Brassica napus L.): a review. Agric Ecol Env, 2006, 117: 80-108.
[10] Al-Barzinjy M, Stølen O, Christiansen J L, Jensen J E. Relationship between plant density and yield for two spring cultivars of oilseed rape (Brassica napus L.). Acta Agric Scand (Sect B), 1999, 49: 129-133.
[11] Zhang S, Liao X, Zhang C, Xu H. Influences of plant density on the seed yield and oil content of winter oilseed rape (Brassica napus L.). Ind Crops Prod, 2012, 40: 27-32.
[12] 宋小林, 刘强, 宋海星, 官春云, 荣湘民, 王纪玥, 王署娟. 不同处理条件下油菜茎叶可溶性糖和游离氨基酸总量及其对籽粒产量的影响. 西北农业学报, 2010, 19(6): 187-191.
Song X L, Liu Q, Song H X, Guan C Y, Rong X M, Wang J Y, Wang S J. Changes of soluble sugar and free amino acids in stem and leaf and their effects on yield of rapeseed. Acta Agric Boreali-Occident Sin, 2010, 19(6): 187-191 (in Chinese with English abstract).
[13] 张子龙, 王瑞, 李加纳, 唐章林, 谌利. 密度和氮素与甘蓝型黄籽油菜主要品质的关系. 西南农业大学学报(自然科学版), 2006, 28: 349-352.
Zhang Z L, Wang R, Li J N, Tang Z L, Chen L. Effects of planting density and fertilization on seed colour and related quality characters of yellow seeded rapeseed (Brassica napus L.). J Southwest Agric Univ (Nat Sci), 2006, 28: 349-352 (in Chinese with English abstract).
[14] 郑本川, 张锦芳, 李浩杰, 柴靓, 崔成, 蒋俊, 蒋梁材. 种植密度对不同甘蓝型油菜农艺性状和产量品质性状的影响. 安徽农业科学, 2018, 46(30): 38-40.
Zheng B C, Zhang J F, Li H J, Chai L, Cui C, Jiang J, Jiang J C. Effects of planting density on agronomic characters, yield and quality of different varieties of Brassica napus L. J Anhui Agric Sci, 2018, 46(30): 38-40 (in Chinese with English abstract).
[15] Shantha N C, Decker E A. Rapid, Sensitive, iron-based spectrophotometric methods for determination of peroxide values of food lipids. J AOAC Int, 1994, 77: 421-424.
pmid: 8199478
[16] 杨万政, 曹秀君, 李金淑, 曾鸣, 周珊珊, 魏小刚. 紫外分光光度法测定沙棘油中总类胡萝卜素方法改进. 中央民族大学学报(自然科学版), 2009, 18(3): 5-8.
Yang W Z, Cao X J, Li J S, Zeng M, Zhou S S, Wei X G. Improvements on the method for determining total carotenoids in saffron oil by UV-spectrophotometry. J Minzu Univ China (Nat Sci Edn), 2009, 18(3): 5-8 (in Chinese).
[17] 于坤, 禹晓, 程晨, 陈鹏, 郑畅, 黄庆德, 邓乾春. 制油工艺对亚麻籽油品质及脂质伴随物含量的影响. 食品科学, 2020, 41(16): 233-243.
Yu K, Yu X, Cheng C, Chen P, Zheng C, Huang Q D, Deng Q C. Effects of processing techniques on the quality properties and lipid concomitants of flaxseed oil. Food Sci, 2020, 41(16): 233-243 (in Chinese with English abstract).
[18] Damirchi S A, Savage G P, Dutta P C. Sterol fractions in hazelnut and virgin olive oils and 4,4′-dimethylsterols as possible markers for detection of adulteration of virgin olive oil. J Am Oil Chem Soc, 2005, 82: 717-725.
[19] 纪龙, 申红芳, 徐春春, 陈中督, 方福平. 基于非线性主成分分析的绿色超级稻品种综合评价. 作物学报, 2019, 45: 982-992.
doi: 10.3724/SP.J.1006.2019.82057
Ji L, Shen H F, Xu C C, Chen Z D, Fang F P. Comprehensive evaluation of green super rice varieties based on nonlinear principal component analysis. Acta Agron Sin, 2019, 45: 982-992 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2019.82057
[20] 李继军, 陈雅慧, 王艺瑾, 周志华, 郭子越, 张建, 涂金星, 姚璇, 郭亮. 甘蓝型油菜种质资源田间耐渍性评价和耐渍种质资源筛选. 作物学报, 2023, 49: 3162-3175.
doi: 10.3724/SP.J.1006.2023.34034
Li J J, Chen Y H, Wang Y J, Zhou Z H, Guo Z Y, Zhang J, Tu J X, Yao X, Guo L. Evaluation of field waterlogging tolerance and selection of waterlogging-resistant germplasm resources of Brassica napus L. Acta Agron Sin, 2023, 49: 3162-3175 (in Chinese with English abstract).
[21] 巩若琳, 宋波, 杨志叶, 路丽静, 董军刚. 迟播和密度对不同油菜品种抗倒伏及产量的影响. 作物学报, 2023, 49: 2777-2792.
Gong R L, Song B, Yang Z Y, Lu L J, Dong J G. Effects of sowing date and density on lodging resistance and yield of different rapeseed cultivars. Acta Agron Sin, 2023, 49: 2777-2792 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2023.24248
[22] 余新颖, 王春云, 李大双, 王宗铠, 蒯婕, 汪波, 王晶, 徐正华, 周广生. 高产油菜品种稳产性形成机制. 作物学报, 2023, 49: 1601-1615.
doi: 10.3724/SP.J.1006.2023.24115
Yu X Y, Wang C Y, Li D S, Wang Z K, Kuai J, Wang B, Wang J, Xu Z H, Zhou G S. Formation mechanism of yield stability in high-yielding rapeseed varieties. Acta Agron Sin, 2023, 49: 1601-1615 (in Chinese with English abstract).
[23] 张海鹏, 刘强, 宋海星, 官春云, 杨艳菊. 种植密度和施肥量对‘湘杂油763’叶绿素、干物质积累和产量的影响. 中国农学通报, 2011, 27(21): 112-116.
Zhang H P, Liu Q, Song H X, Guan C Y, Yang Y J. The effects of different planting densities and fertilizer rates on chlorophyll, dry matter accumulation and yield of oilseed rape. Chin Agric Sci Bull, 2011, 27(21): 112-116 (in Chinese with English abstract).
doi: 10.11924/j.issn.1000-6850.2011-1050
[24] Kim T S, Decker E A, Lee J. Effects of chlorophyll photosensitisation on the oxidative stability in oil-in-water emulsions. Food Chem, 2012, 133: 1449-1455.
[25] Salami M, Heidari B, Tan H. Comparative profiling of polyphenols and antioxidants and analysis of antiglycation activities in rapeseed (Brassica napus L.) under different moisture regimes. Food Chem, 2023, 399: 133946.
[26] Yang M, Zheng C, Zhou Q, Huang F, Liu C, Wang H. Minor components and oxidative stability of cold-pressed oil from rapeseed cultivars in China. J Food Compost Anal, 2013, 29: 1-9.
[27] Yao Y, Xuan P, Xiong W, Zhao L, Xu X, Liang Q. Chlorophylls, lutein and β‐carotene play great but different roles in colour of rapeseed oil. Color Technol, 2022, 138: 660-673.
[28] Zhang Y, Zhu Y, Shi L, Guo Y, Wei L, Zhang H, Wang X, Jin Q. Physicochemical properties and health risk assessment of polycyclic aromatic hydrocarbons of fragrant rapeseed oils in China. J Sci Food Agric, 2020, 100: 3351-3359.
[29] 仲琴, 杨玲, 薛寒, 楼展展, 范国刚, 严成. 不同产地初榨菜籽油挥发性风味成分比较分析. 食品工业科技, 2021, 42(14): 70-78.
Zhong Q, Yang L, Xue H, Lou Z Z, Fan G G, Yan C. Comparative analysis of volatile flavor compounds in virgin rapeseed oil from different producing areas. Sci Technol Food Ind, 2021, 42(14): 70-78 (in Chinese with English abstract).
[30] 邱江, 黄秀芳, 戚存扣, 孙敬东, 陈新军, 韩桂琴. 移栽密度和施氮量对宁油14号油菜产量及品质的影响. 江苏农业科学, 2006, (4): 22-24.
Qiu J, Huang X X, Qi C K, Sun J D, Chen X J, Han G Q. Effects of transplanting density and nitrogen application on rapeseed yield and quality of Ningyou No. 14. Jiangsu Agric Sci, 2006, (4): 22-24 (in Chinese).
[31] 张欣, 袁春新, 王学军, 汪凯华, 王显生, 麻浩. 高低芥酸油菜品种发育籽粒脂肪酸积累模式的研究. 中国油料作物学报, 2009, 31: 127-131.
Zhang X, Yuan C X, Wang X J, Wang K H, Wang X S, Ma H. The study on the accumulation pattern of fatty acids during seed development of rape seed cultivars with high or low erucic acid content. Chin J Oil Crop Sci, 2009, 31: 127-131 (in Chinese with English abstract).
[32] 徐黎峰, 侯锡学, 李守国, 宋俊峰, 杨荣合, 张敏, 王强, 吴泽江, 胡言辉, 唐剑, 王得名, 赵婧霞, 贾茜茜, 张瑜, 邓孝全. 高芥酸甘蓝型杂交油菜绵油31高产制种技术. 中国种业, 2022, (1): 89-92.
Xu L F, Hou X X, Li S G, Song J F, Yang R H, Zhang M, Wang Q, Wu Z J, Hu Y H, Tang J, Wang D M, Zhao J X, Jia X X, Zhang Y, Deng X Q. High yield seed production technology of high erucic acid hybrid rapeseed Mianyou 31. Chin Seed Ind, 2022, (1): 89-92 (in Chinese).
[33] Patel A, Desai S S, Mane V K, Enman J, Rova U, Christakopoulos P, Matsakas L. Futuristic food fortification with a balanced ratio of dietary ω-3/ω-6 omega fatty acids for the prevention of lifestyle diseases. Trends Food Sci Technol, 2022, 120: 140-153.
[34] Rathke G W, Christen O, Diepenbrock W. Effects of nitrogen source and rate on productivity and quality of winter oilseed rape (Brassica napus L.) grown in different crop rotations. Field Crops Res, 2005, 94: 103-113.
[35] 刘念, 范其新, 蒙大庆, 汤天泽, 李芝凡, 李迎春, 谢卓霖. 油菜籽粒发育过程中脂肪酸累积模式及相关分析. 江苏农业学报, 2014, 30(1): 21-26.
Liu N, Fan Q X, Meng D Q, Tang T Z, Li Z F, Li Z F, Li Y C, Xie Z L. Accumulation pattern of fatty acids and their associations during development of rapeseed. Jiangsu J Agric Sci, 2014, 30(1): 21-26 (in Chinese with English abstract).
[36] Chew S C. Cold-pressed rapeseed (Brassica napus) oil: chemistry and functionality. Food Res Int, 2020, 131: 108997.
[37] McDevitt T M, Tchao R, Harrison E H, Morel D W. Carotenoids normally present in serum Inhibit proliferation and induce differentiation of a human monocyte/macrophage cell line (U937). J Nutr, 2005, 135: 160-164.
doi: 10.1093/jn/135.2.160 pmid: 15671207
[38] Maszewska M, Florowska A, Matysiak K, Marciniak-Łukasiak K, Dłużewska E. The study of palm and rapeseed oil stability during frying. J Appl Bot Food Qual, 2018, 91: 103-108.
[39] 刘国梅, 姚琳, 孙璇, 张高杨, 咸拴狮, 杜春芳. 油菜中类胡萝卜素组成与调控的研究进展. 食品科技, 2022, 47(12): 209-214.
Liu G M, Yao L, Sun X, Zhang G Y, Xian S S, Du C F. Research progress on carotenoid composition and regulation in rape. Food Sci Technol, 2022, 47(12): 209-214 (in Chinese with English abstract).
[40] Yang M, Huang F, Liu C, Zheng C, Zhou Q, Wang H. Influence of microwave treatment of rapeseed on minor components content and oxidative stability of oil. Food Bioproc Technol, 2013, 6: 3206-3216.
[41] 宁宁, 莫娇, 胡冰, 李大双, 娄洪祥, 王春云, 白晨阳, 蒯婕, 汪波, 王晶, 徐正华, 李晓华, 贾才华, 周广生. 长江流域不同生态区油菜籽关键品质比较研究. 作物学报, 2023, 49: 3315-3327.
doi: 10.3724/SP.J.1006.2023.34017
Ning N, Mo J, Hu B, Li D S, Lou H X, Wang C Y, Bai C Y, Kuai J, Wang B, Wang J, Xu Z H, Li X H, Jia C H, Zhou G S. Comparative study on the processing quality of winter rape in different ecological zones of the Yangtze River valley. Acta Agron Sin, 2023, 49: 3315-3327 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2023.34017
[42] 华晓雨, 陶爽, 孙盛楠, 郭娜, 阎秀峰, 蔺吉祥. 植物次生代谢产物-酚类化合物的研究进展. 生物技术通报, 2017, 33(12): 22-29.
doi: 10.13560/j.cnki.biotech.bull.1985.2017-0546
Hua X Y, Tao S, Sun S N, Guo N, Yan X F, Lin J X. Research progress on phenolic compounds of plant secondary metabolites. Biotechnol Bull, 2017, 33(12): 22-29 (in Chinese with English abstract).
[43] 黄颖, 郑畅, 刘昌盛. 收割方式与微波预处理对压榨菜籽油品质的影响. 食品工业科技, 2019, 40(24): 8-13.
Huang Y, Zheng C, Liu C S. Effects of harvesting methods and microwave pretreatment on the quality of pressed rapeseed oil. Sci Technol Food Ind, 2019, 40(24): 8-13 (in Chinese with English abstract).
[44] Barja M V, Rodriguez-Concepcion M. Plant geranylgeranyl diphosphate synthases: every (gene) family has a story. aBIOTECH, 2021, 2: 289-298.
doi: 10.1007/s42994-021-00050-5 pmid: 36303884
[45] Wang J L, Tan S L, He M X, Huang W, Huang J C. Ketocarotenoids accumulation in the leaves of engineered Brassica napus restricts photosynthetic efficiency and plant growth. Environ Exp Bot, 2021, 186: 104461.
[46] Deng Q, Yu X, Ma F, Xu J, Huang F, Huang Q, Sheng F. Comparative analysis of the in-vitro antioxidant activity and bioactive compounds of flaxseed in China according to variety and geographical origin. Int J Food Prop, 2017, 20: S2708-S2722.
[47] Schaeffer A, Bronner R, Benveniste P, Schaller H. The ratio of campesterol to sitosterol that modulates growth in Arabidopsis is controlled by STEROL METHYLTRANSFERASE 2;1: Sterols and growth in transgenic SMT2;1 Arabidopsis. Plant J, 2001, 25: 605-615.
pmid: 11319028
[48] Amar S, Becker H C, Möllers C. Genetic variation and genotype × environment interactions of phytosterol content in three doubled haploid populations of winter rapeseed. Crop Sci, 2008, 48: 1000-1006.
[1] NIE Bo-Tao, LIU De-Quan, CHEN Jian, CUI Zheng-Guo, HOU Yun-Long, CHEN Liang, QIU Hong-Mei, WANG Yue-Qiang. Analysis and comprehensive evaluation of agronomic and quality traits of spring soybean varieties in northern China [J]. Acta Agronomica Sinica, 2024, 50(9): 2248-2266.
[2] JIA Shu-Han, HE Can, CHEN Min, LIU Jia-Xin, HU Wei-Min, HU Jin, GUAN Ya-Jing. Study on the quality differences of seeds with different pre-harvest sprouting levels and the grading of pre-harvest sprouting in hybrid rice [J]. Acta Agronomica Sinica, 2024, 50(9): 2310-2322.
[3] PENG Jie, XIE Xiao-Qi, ZHANG Zhao, YAO Xiao-Fen, QIU Shen, CHEN Dan-Dan, GU Xiao-Na, WANG Yu-Jie, WANG Chen-Chen, YANG Guo-Zheng. Relationship between cotton yield and canopy microenvironment under summer direct seeding [J]. Acta Agronomica Sinica, 2024, 50(9): 2371-2382.
[4] LIU Chen, WANG Kun-Kun, LIAO Shi-Peng, YANG Jia-Qun, CONG Ri-Huan, REN Tao, LI Xiao-Kun, LU Jian-Wei. Effects of nitrogen fertilizer application levels on yield and nitrogen absorption and utilization of oilseed rape under maize-oilseed rape and rice-oilseed rape rotation fields [J]. Acta Agronomica Sinica, 2024, 50(8): 2067-2077.
[5] PENG Xiao-Ai, LU Mao-Ang, ZHANG Ling, LIU Tong, CAO Lei, SONG You-Hong, ZHENG Wen-Yin, HE Xian-Fang, ZHU Yu-Lei. Genome-wide association study of major grain quality traits in wheat based on 55K SNP arrays [J]. Acta Agronomica Sinica, 2024, 50(8): 1948-1960.
[6] LOU Hong-Xiang, HUANG Xiao-Yu, JIANG Meng, NING Ning, BIAN Meng-Lei, ZHANG Lei, LUO Dong-Xu, QIN Meng-Qian, KUAI Jie, WANG Bo, WANG Jing, ZHAO Jie, XU Zheng-Hua, ZHOU Guang-Sheng. Optimal allocation of sowing date and sowing rate of late-sowing rapeseed in the Yangtze River Basin [J]. Acta Agronomica Sinica, 2024, 50(8): 2091-2105.
[7] YANG Qi-Rui, LI Lan-Tao, ZHANG Duo, WANG Ya-Xian, SHENG Kai, WANG Yi-Lun. Effect of phosphorus application on yield, quality, light temperature physiological characteristics, and root morphology in summer peanut [J]. Acta Agronomica Sinica, 2024, 50(7): 1841-1854.
[8] YAN Zi-Heng, WANG Xian-Ling, SHAO Dong-Li, GAO Geng-Dong, NING Ning, JIA Cai-Hua, KUAI Jie, WANG Bo, XU Zheng-Hua, WANG Jing, ZHAO Jie, ZHOU Guang-Sheng. Effect of chlorophyll degradation rate in seed on key quality of rapeseed oil [J]. Acta Agronomica Sinica, 2024, 50(7): 1818-1828.
[9] PEI Fa-Jing, ZHANG Wen-Xuan, ZHANG Xiao, WANG Xin-Yu, PENG Shao-Bing, MI Jia-Ming. Developing new rice lines with ultrashort-duration, long-grain, and fragrance [J]. Acta Agronomica Sinica, 2024, 50(7): 1684-1698.
[10] XIE Xiong-Ze, XIE Jie, CHU Qian-Mei, YIN Yu-Feng, YU Xiao-Hong, WANG Dun, FENG Peng. Analysis of water requirement and water surplus/deficit characteristics of winter rapeseed in Yangtze River Basin [J]. Acta Agronomica Sinica, 2024, 50(7): 1829-1840.
[11] XU Ze, WU Xin-Ling, LIU Zhen-Yu, LI Han-Jia, LENG Xin-Hua, WU Tian-Fan, CHEN Yuan, ZHANG Xiang, CHEN De-Hua. Effects of planting density with nitrogen rate on regulation of nitrogen utilization in summer direct seeded cotton [J]. Acta Agronomica Sinica, 2024, 50(6): 1584-1596.
[12] WANG Long, LI Jing, QIAN Chen, LIN Guo-Bing, LI Yi-Yang, YANG Guang, ZUO Qing-Song. Effects of salt stress on yield, quality, and physiology in rapeseed [J]. Acta Agronomica Sinica, 2024, 50(6): 1597-1607.
[13] MA Yan-Ming, LOU Hong-Yao, WANG Wei, SUN Na, YAN Guo-Rong, ZHANG Sheng-Jun, LIU Jie, NI Zhong-Fu, XU Lin. Genetic difference and genome association analysis of grain quality traits in Xinjiang winter wheat [J]. Acta Agronomica Sinica, 2024, 50(6): 1394-1405.
[14] NING Ning, YU Xin-Ying, QIN Meng-Qian, LOU Hong-Xiang, WANG Zong-Kai, WANG Chun-Yun, JIA Cai-Hua, XU Zheng-Hua, WANG Jing, KUAI Jie, WANG Bo, ZHAO Jie, ZHOU Guang-Sheng. Effect of key cultivated measures on rapeseed oil comprehensive quality [J]. Acta Agronomica Sinica, 2024, 50(6): 1554-1567.
[15] YANG Chun-Ju, TANG Dao-Bin, ZHANG Kai, DU Kang, HUANG Hong, QIAO Huan-Huan, WANG Ji-Chun, LYU Chang-Wen. Effect of reducing nitrogen and potassium application on yield and quality in sweet potato [J]. Acta Agronomica Sinica, 2024, 50(5): 1341-1350.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!