Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2024, Vol. 50 ›› Issue (8): 1896-1906.doi: 10.3724/SP.J.1006.2024.43007

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Superior allele genes mining for drought tolerance in maize based on introgression line from a cross between maize and teosinte

LIU Shuang(), LI Shen, WANG Dong-Mei, SHA Xiao-Qian, HE Guan-Hua, ZHANG Deng-Feng, LI Yong-Xiang, LIU Xu-Yang, WANG Tian-Yu, LI Yu, LI Chun-Hui()   

  1. State Key Laboratory of Crop Gene Resources and Breeding / Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
  • Received:2024-01-24 Accepted:2024-04-01 Online:2024-08-12 Published:2024-04-22
  • Contact: * E-mail: lichunhui@caas.cn
  • Supported by:
    China Agriculture Research System of MOF and MARA(CARS-02-03);Innovation Program of Chinese Academy of Agricultural Sciences(CAAS-ZDRW202004)

Abstract:

Drought is one of the major abiotic stresses affecting maize production. In order to explore new genes for drought tolerance in maize, the BC2F6 population constructed on the basis of teosinte and PH4CV was screened for the drought-tolerant introgression lines TP180 through the preliminary identification of drought tolerance at seedling stage. After drought stress, the TP180 was less wilting than its recurrent parent PH4CV, and the survival rate of TP180 was significantly higher than PH4CV after rehydration. Genome-wide genotypic identification revealed that introgression line TP180 contained 0.6% of the teosinte genome. By transcriptomic analysis of TP180 and PH4CV under different water conditions, a total of 2307 differentially expressed genes were identified between TP180 and PH4CV, and 122 of the differentially expressed genes were identified under both two drought stresses conditions. These genes were related to the growth hormone pathway, jasmonic acid pathway, etc., and contained multiple transcription factors. Integrating the differentially expressed genes and the analysis of introgression region containing the teosinte genome, two drought-resistant candidate genes (Zm00001d033050 and Zm00001d002025) were identified and further validated by RT-PCR. This study provides an important germplasm and information for mining drought-resistant gene of the teosinte.

Key words: maize, teosinte, introgression line, drought tolerance, transcriptomic analysis

Table 1

Primers used in this study"

引物名称Primer name 引物序列Primer sequence (5'-3')
GAPDH-F CCCTTCATCACCACGGACTAC
GAPDH-R AACCTTCTTGGCACCACCCT
ReTIFY9-F CAGCGGAACGTGCAGAAACA
ReTIFY9-R2 GCCTTGCGCTTCTCCATGAAC
ReEreb24-F CACCACTGCTACGCCAATG
ReEreb24-R ATTGAAAGCGACCGGGGTG

Fig. 1

Drought tolerance of TP180 and PH4CV with survival rate of drought treatments A: watered; B: moderate-drought; C: severe-drought; D: re-watered; E: survival rate. ** indicates significant difference at P < 0.01."

Fig. 2

Analysis of imported segments in teosinte"

Fig. 3

Number of differentially expressed genes under different treatments A: Venn diagram of all differentially expressed genes; B: total number of up- and down-regulated differential genes. WW: normal water (watered); MD: moderate-drought stress (moderate-drought); SD: severe-drought stress (severe-drought)"

Fig. 4

GO enrichment of differentially expressed genes under different treatments A: up-regulated differential genes of moderate-drought; B: down-regulated differential genes of moderate-drought; C: up-regulated differential genes of severe-drought; D: down-regulated differential genes of severe-drought."

Fig. 5

Relative expression profile of known drought resistance genes in differential expression under different treatments FPKM: the expression levels of genes with significant differences; WW: gene expression under normal water (watered) conditions; MD: gene expression under moderate drought stress (moderate-drought) conditions; SD: gene expression under severe drought stress (severe-drought) conditions. * and ** indicate significant difference at P < 0.05 and P < 0.01, respectively, and ns indicates no significance."

Fig. 6

Gene expression levels of candidate drought-resistant genes under different treatments A-B: the transcriptome data; C-D: the results of RT-PCR experiments; FPKM: the relative expression of genes with significant differences; Relative expression level is the relative expression level of genes by RT-PCR. WW: the relative expression of genes under normal watered conditions (watered); MD: the relative expression level of genes under moderate drought stress (moderate-drought); SD: the relative expression level of genes under severe drought stress (severe-drought); * and ** indicate significant difference at P < 0.05 and P < 0.01, respectively, and ns indicates no significance."

[1] McMillen M S, Mahama A A, Sibiya J, Lübberstedt T, Suza W P. Improving drought tolerance in maize: tools and techniques. Front Genet, 2022, 13: 1001001.
[2] Li P, Zhang Y, Yin S, Zhu P, Pan T, Xu Y, Wang J, Hao D, Fang H, Xu C, Yang Z. QTL-by-environment interaction in the response of maize root and shoot traits to different water regimes. Front Plant Sci, 2018, 9: 229.
doi: 10.3389/fpls.2018.00229 pmid: 29527220
[3] Li C, Sun B, Li Y, Liu C, Wu X, Zhang D, Shi Y, Song Y, Buckler ES, Zhang Z, Wang T, Li Y. Numerous genetic loci identified for drought tolerance in the maize nested association mapping populations. BMC Genomics, 2016, 17: 894.
pmid: 27825295
[4] Riedelsheimer C, Lisec J, Czedik-Eysenberg A, Sulpice R, Flis A, Grieder C, Altmann T, Stitt M, Willmitzer L, Melchinger A E. Genome-wide association mapping of leaf metabolic profiles for dissecting complex traits in maize. Proc Natl Acad Sci USA, 2012, 109: 8872-8877.
doi: 10.1073/pnas.1120813109 pmid: 22615396
[5] Liu S, Qin F. Genetic dissection of maize drought tolerance for trait improvement. Mol Breed, 2021, 41: 8.
[6] Wang X, Wang H, Liu S, Ferjani A, Li J, Yan J, Yang X, Qin F. Genetic variation in ZmVPP1 contributes to drought tolerance in maize seedlings. Nat Genet, 2016, 48: 1233-1241.
[7] Mao H, Wang H, Liu S, Li Z, Yang X, Yan J, Li J, Tran L S, Qin F. A transposable element in a NAC gene is associated with drought tolerance in maize seedlings. Nat Commun, 2015, 6: 8326.
[8] Li C, Guo J, Wang D, Chen X, Guan H, Li Y, Zhang D, Liu X, He G, Wang T, Li Y. Genomic insight into changes of root architecture under drought stress in maize. Plant Cell Environ, 2023, 46: 1860-1872.
[9] Sun X, Xiang Y, Dou N, Zhang H, Pei S, Franco A V, Menon M, Monier B, Ferebee T, Liu T, Liu S, Gao Y, Wang J, Terzaghi W, Yan J, Hearne S, Li L, Li F, Dai M. The role of transposon inverted repeats in balancing drought tolerance and yield-related traits in maize. Nat Biotechnol, 2023, 41: 120-127.
[10] Yang N, Wang Y, Liu X, Jin M, Vallebueno-Estrada M, Calfee E, Chen L, Dilkes B P, Gui S, Fan X, Harper T K, Kennett D J, Li W, Lu Y, Ding J, Chen Z, Luo J, Mambakkam S, Menon M, Snodgrass S, Veller C, Wu S, Wu S, Zhuo L, Xiao Y, Yang X, Stitzer M C, Runcie D, Yan J, Ross-Ibarra J. Two teosintes made modern maize. Science, 2023, 382: eadg8940.
[11] Chen L, Luo J, Jin M, Yang N, Liu X, Peng Y, Li W, Phillips A, Cameron B, Bernal J S, Rellán-Álvarez R, Sawers R J H, Liu Q, Yin Y, Ye X, Yan J, Zhang Q, Zhang X, Wu S, Gui S, Wei W, Wang Y, Luo Y, Jiang C, Deng M, Jin M, Jian L, Yu Y, Zhang M, Yang X, Hufford M B, Fernie A R, Warburton M L, Ross-Ibarra J, Yan J. Genome sequencing reveals evidence of adaptive variation in the genus Zea. Nat Genet, 2022, 54: 1736-1745.
doi: 10.1038/s41588-022-01184-y pmid: 36266506
[12] 刘杰, 严建兵. 大刍草稀有等位基因促进玉米密植高产. 植物学报, 2019, 54: 554-557.
doi: 10.11983/CBB19119
Liu J, Yan J B. A teosinte rare allele increases maize plant density and yield. Chin Bull Bot, 2019, 54: 554-557 (in Chinese with English abstract).
[13] Feng X, Jia L, Cai Y, Guan H, Zheng D, Zhang W, Xiong H, Zhou H, Wen Y, Hu Y, Zhang X, Wang Q, Wu F, Xu J, Lu Y. ABA- inducible DEEPER ROOTING 1improves adaptation of maize to water deficiency. Plant Biotechnol J, 2022, 20: 2077-2088.
[14] Wang K, Zhang Z, Sha X, Yu P, Li Y, Zhang D, Liu X, He G, Li Y, Wang T, Guo J, Chen J, Li C. Identification of a new QTL underlying seminal root number in a maize-teosinte population. Front Plant Sci, 2023, 14: 1132017.
[15] Chen G, Liu C, Gao Z, Zhang Y, Jiang H, Zhu L, Ren D, Yu L, Xu G, Qian Q. OsHAK1, a high-affinity potassium transporter, positively regulates responses to drought stress in rice. Front Plant Sci, 2017, 8: 1885.
doi: 10.3389/fpls.2017.01885 pmid: 29163608
[16] Naithani S, Dikeman D, Garg P, Al-Bader N, Jaiswal P. Beyond gene ontology (GO): using biocuration approach to improve the gene nomenclature and functional annotation of rice S-domain kinase subfamily. PeerJ, 2021, 9: e11052.
[17] Zhang P Y, Qiu X, Fu J X, Wang G R, Wei L, Wang T C. Systematic analysis of differentially expressed ZmMYB genes related to drought stress in maize. Physiol Mol Biol Plants, 2021, 27: 1295-1309.
[18] Qu X, Zou J, Wang J, Yang K, Wang X, Le J. A rice R2R3-type MYB transcription factor OsFLP positively regulates drought stress response via OsNAC. Int J Mol Sci, 2022, 23: 5873.
[19] Zhao P X, Miao Z Q, Zhang J, Chen S Y, Liu Q Q, Xiang C B. Arabidopsis MADS-box factor AGL16 negatively regulates drought resistance via stomatal density and stomatal movement. J Exp Bot, 2020, 71: 6092-6106.
[20] Song W, Zhao H, Zhang X, Lei L, Lai J. Genome-wide identification of VQ motif-containing proteins and their expression profiles under abiotic stresses in maize. Front Plant Sci, 2016, 6: 1177.
[21] Isokpehi R D, Simmons S S, Cohly H H, Ekunwe S I, Begonia G B, Ayensu W K. Identification of drought-responsive universal stress proteins in viridiplantae. Bioinform Biol Insights, 2011, 5: 41-58.
[22] Zhang F, Wu J, Sade N, Wu S, Egbaria A, Fernie A R, Yan J, Qin F, Chen W, Brotman Y, Dai M. Genomic basis underlying the metabolome-mediated drought adaptation of maize. Genome Biol, 2021, 22: 260.
doi: 10.1186/s13059-021-02481-1 pmid: 34488839
[23] Gao H, Cui J, Liu S, Wang S, Lian Y, Bai Y, Zhu T, Wu H, Wang Y, Yang S, Li X, Zhuang J, Chen L, Gong Z, Qin F. Natural variations of ZmSRO1d modulate the trade-off between drought resistance and yield by affecting ZmRBOHC-mediated stomatal ROS production in maize. Mol Plant, 2022, 15: 1558-1574.
[24] Yang Y, Wang B, Wang J, He C, Zhang D, Li P, Zhang J, Li Z. Transcription factors ZmNF-YA1 and ZmNF-YB16 regulate plant growth and drought tolerance in maize. Plant Phys, 2022, 190: 1506-1525.
[25] Zhao W, Huang H, Wang J, Wang X, Xu B, Yao X, Sun L, Yang R, Wang J, Sun A, Wang S. Jasmonic acid enhances osmotic stress responses by MYC2-mediated inhibition of protein phosphatase 2C1 and response regulators 26 transcription factor in tomato. Plant J, 2023, 113: 546-561.
[26] Nie J, Wen C, Xi L, Lv S, Zhao Q, Kou Y, Ma N, Zhao L, Zhou X. The AP2/ERF transcription factor CmERF053 of chrysanthemum positively regulates shoot branching, lateral root, and drought tolerance. Plant Cell Rep, 2018, 37: 1049-1060.
doi: 10.1007/s00299-018-2290-9 pmid: 29687169
[27] 陈小晶, 王东梅, 关红辉, 郭剑, 沙小茜, 李永祥, 张登峰, 刘旭洋, 何冠华, 石云素, 宋燕春, 王天宇, 黎裕, 刘颖慧, 李春辉. 玉米CIPK基因家族的鉴定及ZmCIPK3的抗旱性功能研究. 植物遗传资源学报, 2022, 23: 1064-1075.
doi: 10.13430/j.cnki.jpgr.20220107006
Chen X J, Wang D M, Guan H H, Guo J, Sha X Q, Li Y X, Zhang D F, Liu X Y, He G H, Shi Y S, Song Y C, Wang T Y, Li Y, Liu Y H, Li C H. Identification of CIPK gene family members and investigation of the drought tolerance of ZmCIPK3 in maize. J Plant Genet Resour, 2022, 23: 1064-1075 (in Chinese with English abstract).
[28] Tian J, Wang C, Xia J, Wu L, Xu G, Wu W, Li D, Qin W, Han X, Chen Q, Jin W, Tian F. Teosinte ligule allele narrows plant architecture and enhances high-density maize yields. Science, 2019, 365: 658-664.
doi: 10.1126/science.aax5482 pmid: 31416957
[29] Depuydt S, Hardtke C S. Hormone signalling crosstalk in plant growth regulation. Curr Biol, 2011, 21: R365-373.
[30] 艾蓉, 张春, 悦曼芳, 邹华文, 吴忠义. 玉米转录因子ZmEREB211对非生物逆境胁迫的应答. 作物学报, 2023, 49: 2433-2445.
doi: 10.3724/SP.J.1006.2023.23071
Ai R, Zhang C, Yue M F, Zou H W, Wu Z Y. Response of maize transcriptional factor ZmEREB211 to abiotic stress. Acta Agron Sin, 2023, 49: 2433-2445 (in Chinese with English abstract).
[31] 王丽平, 王晓钰, 傅竞也, 王强. 玉米转录因子ZmMYB12提高植物抗旱性和低磷耐受性的功能鉴定. 作物学报, 2024, 50: 76-88.
doi: 10.3724/SP.J.1006.2024.33007
Wang L P, Wang X Y, Fu J Y, Wang Q. Functional identification of maize transcription factor ZmMYB12 to enhance drought resistance and low phosphorus tolerance in plants. Acta Agron Sin, 2024, 50: 76-88 (in Chinese with English abstract).
[32] Xiang Y, Sun X, Bian X, Wei T, Han T, Yan J, Zhang A. The transcription factor ZmNAC49 reduces stomatal density and improves drought tolerance in maize. J Exp Bot, 2021, 72: 1399-1410.
doi: 10.1093/jxb/eraa507 pmid: 33130877
[33] Zhang Z, Li X, Yu R, Han M, Wu Z. Isolation, structural analysis, and expression characteristics of the maize TIFY gene family. Mol Genet Genomics, 2015, 290: 1849-1858.
doi: 10.1007/s00438-015-1042-6 pmid: 25862669
[34] Ye H, Du H, Tang N, Li X, Xiong L. Identification and expression profiling analysis of TIFY family genes involved in stress and phytohormone responses in rice. Plant Mol Biol, 2009, 71: 291-305.
doi: 10.1007/s11103-009-9524-8 pmid: 19618278
[35] Qi H, Liang K, Ke Y, Wang J, Yang P, Yu F, Qiu F. Advances of apetala2/ethylene response factors in regulating development and stress response in maize. Int J Mol Sci, 2023, 24: 5416.
[36] Zhu Y, Liu Y, Zhou K, Tian C, Aslam M, Zhang B, Liu W, Zou H. Overexpression of ZmEREBP60 enhances drought tolerance in maize. J Plant Physiol, 2022, 275: 153763.
[1] YE Liang, ZHU Ye-Lin, PEI Lin-Jing, ZHANG Si-Ying, ZUO Xue-Qian, LI Zheng-Zhen, LIU Fang, TAN Jing. Screening candidate resistance genes to ear rot caused by Fusarium verticillioides in maize by combined GWAS and transcriptome analysis [J]. Acta Agronomica Sinica, 2024, 50(9): 2279-2296.
[2] SUN Zhao-Hua, REN Hao, WANG Hong-Zhang, WANG Zi-Qiang, YAO Hai-Yan, XIN Ai-Mei, ZHAO Bin, ZHANG Ji-Wang, REN Bai-Zhao, LIU Peng. Effects of foliar silicon sprays on leaf photosynthetic performance and grain yield of summer maize in coastal saline-alkali soil [J]. Acta Agronomica Sinica, 2024, 50(9): 2383-2395.
[3] LIU Bo, CHI Ming, CAO Meng-Qi, TANG Da, YANG Heng-Zhao, ZHANG Wei-Hua, XUE Cong. Impact of potato StuPPO9 gene overexpression on drought resistance in Nicotiana benthamiana [J]. Acta Agronomica Sinica, 2024, 50(9): 2237-2247.
[4] CAO Xiao-Qing, QI Xian-Tao, LIU Chang-Lin, XIE Chuan-Xiao. Construction and verification of the CRISPR/Cas9 system containing DsRed fluorescent expression cassette for editing of ZmCCT10, ZmCCT9, and ZmGhd7 genes in maize [J]. Acta Agronomica Sinica, 2024, 50(8): 1961-1970.
[5] LIU Chen, WANG Kun-Kun, LIAO Shi-Peng, YANG Jia-Qun, CONG Ri-Huan, REN Tao, LI Xiao-Kun, LU Jian-Wei. Effects of nitrogen fertilizer application levels on yield and nitrogen absorption and utilization of oilseed rape under maize-oilseed rape and rice-oilseed rape rotation fields [J]. Acta Agronomica Sinica, 2024, 50(8): 2067-2077.
[6] LIU Chen-Ming, ZHAO Ke-Yong, YUE Man-Fang, ZHAO Yan-Ming, WU Zhong-Yi, ZHANG Chun. Functional study on the regulation of root growth and development and stress tolerance by maize transcription factor ZmEREB180 [J]. Acta Agronomica Sinica, 2024, 50(8): 1920-1933.
[7] SHAO Mei-Hong, ZHAO Ling-Ling, CHENG Chu, CHENG Si-Ming, ZHU Shuang-Bing, ZHAI Lai-Yuan, CHEN Kai, XU Jian-Long. Screening, evaluation, and utilization of low nitrogen tolerance for the selected introgression lines in rice with Huanghuazhan background [J]. Acta Agronomica Sinica, 2024, 50(8): 1907-1919.
[8] LIANG Lu, ZHOU Bao-Yuan, GAO Zhuo-Han, WANG Rui, WANG Xin-Bing, ZHAO Ming, LI Cong-Feng. Root and shoot growth of different maize varieties in response to soil compaction stress [J]. Acta Agronomica Sinica, 2024, 50(8): 2053-2066.
[9] GUO Si-Yu, ZHAO Ke-Yong, DAI Zheng-Gang, ZOU Hua-Wen, WU Zhong-Yi, ZHANG Chun. Functional analysis of maize N-acetyltransferase ZmNAT1 gene in response to abiotic stress [J]. Acta Agronomica Sinica, 2024, 50(8): 2001-2013.
[10] WANG Rui, SUN Bo, ZHANG Yun-Long, ZHANG Ming-Qi, FAN Ya-Ming, TIAN Hong-Li, ZHAO Yi-Kun, YI Hong-Mei, KUANG Meng, WANG Feng-Ge. Application analysis of chloroplast markers on rapid classification in maize germplasm [J]. Acta Agronomica Sinica, 2024, 50(7): 1867-1876.
[11] FANG Yu-Hui, QI Xue-Li, LI Yan, ZHANG Yu, PENG Chao-Jun, HUA Xia, CHEN Yan-Yan, GUO Rui, HU Lin, XU Wei-Gang. Effects of high light stress on photosynthesis and physiological characteristics of wheat with maize C4-type ZmPEPC+ZmPPDK gene [J]. Acta Agronomica Sinica, 2024, 50(7): 1647-1657.
[12] WANG Fei-Er, GUO Yao, LI Pan, WEI Jin-Gui, FAN Zhi-Long, HU Fa-Long, FAN Hong, HE Wei, YIN Wen, CHEN Gui-Ping. Compensation mechanism of increased maize density on yield with water and nitrogen reduction supply in oasis irrigation areas [J]. Acta Agronomica Sinica, 2024, 50(6): 1616-1627.
[13] SHE Meng, ZHENG Deng-Yu, KE Zhao, WU Zhong-Yi, ZOU Hua-Wen, ZHANG Zhong-Bao. Cloning and functional analysis of ZmGRAS13 gene in maize [J]. Acta Agronomica Sinica, 2024, 50(6): 1420-1434.
[14] ZHENG Xue-Qing, WANG Xing-Rong, ZHANG Yan-Jun, GONG Dian-Ming, QIU Fa-Zhan. Mapping of QTL for ear-related traits and prediction of key candidate genes in maize [J]. Acta Agronomica Sinica, 2024, 50(6): 1435-1450.
[15] ZHU Zhong-Lin, WEN Yue, ZHOU Qi, WU Yan-Fei, DU Xue-Zhu, SHENG Feng. Mechanism of loding residence and drought tolerance of OsCNGC10 gene in rice [J]. Acta Agronomica Sinica, 2024, 50(5): 1351-1360.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] SHI Yong-Tai;ZHU Mu-Yuan. Genetic Variation Analysis by RAPD of Some Barley Cultivars in China[J]. Acta Agron Sin, 2004, 30(03): 258 -265 .
[2] DU Yong;WANG Yan;WANG Xue-Hong;SUN Lai-Li;YANG Jian-Chang. Comparisons of Plant Type, Grain Yield, and Quality of Different Japonica Rice Cultivars in Huanghe-Huaihe River Area[J]. Acta Agron Sin, 2007, 33(07): 1079 -1085 .
[3] HE Li-Yuan;XU Shang-Zhong;LI Jian-Sheng. Biologic and Nutrient Characters of Maize for Tolerance to Acid Soil at Seedling Stage[J]. Acta Agron Sin, 2000, 26(02): 205 -209 .
[4] SONG Kai-Shan; ZHANG Bai; LI Fang; DUAN Hong-Tao; WANG Zong-Ming. A Hyperspectral Model for Estimating Chlorophyll Content in Maize Leaves[J]. Acta Agron Sin, 2005, 31(08): 1095 -1097 .
[5] Pan Qingmin;Yu Zhenwen;Wang Yuefu;Tian Qizhuo. Studies on Uptake and Distribution of Nitrogen in Wheat at the Level of 9000kg Per Hectare[J]. Acta Agron Sin, 1999, 25(05): 541 -547 .
[6] Wang Aiyun; Tian Xu. An Application Study of Chelate Rar-Earth Boron in Ramie(Bochmeria nivea)[J]. Acta Agron Sin, 1997, 23(05): 597 -602 .
[7] ZHANG Lei;ZHANG Bao-Shi;ZHOU Rong-Hua;GAO Li-Feng;ZHAO Guang-Yao;SONG Yan-Xia;JIA Ji-Zeng. Cloning and Genetic Mapping of Cytokinin Oxidase/Dehydrogenase Gene (TaCKX2) in Wheat[J]. Acta Agron Sin, 2007, 33(09): 1419 -1425 .
[8] ZHUANG Ke-Zhang;GUO Xin-Yu;WANG Ji-Hua;WANG Kong-Jun;WU Zheng-Feng;LIU Peng;DONG Shu-Ting;ZHANG Ji-Wang. Light Energy Utilization Efficiency of High Oil Corn 115 at Grain Filling Stage[J]. Acta Agron Sin, 2007, 33(02): 230 -235 .
[9] CHENG Ying;SONG Wei;LIU Zhi-Yong;XIE Chao-Jie;NI Zhong-Fu;PENG Hui-Ru;NIE Xiu-Ling;YANG Zuo-Min;SUN Qi-Xin. Microsatellite Markers for A Yellow Rust Resistant Gene in Wheat Cultivar Guinong 21[J]. Acta Agron Sin, 2006, 32(12): 1867 -1872 .
[10] ZHENG Ke-Wu;ZOU Jiang-Shi; LÜ; Chuan-Gen. Effects of Transplanting Density and Nitrogen Fertilizer on Yield Formation and N Absorption in a Two-line Intersubspecific Hybrid Rice “Liangyoupeijiu”[J]. Acta Agron Sin, 2006, 32(06): 885 -893 .