Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2024, Vol. 50 ›› Issue (8): 2053-2066.doi: 10.3724/SP.J.1006.2024.33071

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Root and shoot growth of different maize varieties in response to soil compaction stress

LIANG Lu1(), ZHOU Bao-Yuan1,*(), GAO Zhuo-Han2, WANG Rui3, WANG Xin-Bing1, ZHAO Ming1, LI Cong-Feng1,*()   

  1. 1Institute of Crop Sciences, Chinese Academy of Agricultural Sciences / Key Laboratory of Crop Physiology and Ecology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
    2College of Agronomy, Inner Mongolia Agricultural University, Hohhot 010019, Inner Mongolia, China
    3College of Agronomy and Biotechnology, Hebei Normal University of Science and Technology / Hebei Key Laboratory of Crop Stress Biology, Qinhuangdao 066004, Hebei, China
  • Received:2023-12-01 Accepted:2024-04-01 Online:2024-08-12 Published:2024-04-17
  • Contact: * E-mail: zhoubaoyuan@caas.cn;E-mail: licongfeng@caas.cn.
  • Supported by:
    National Natural Science Foundation of China(31971851);National Key Research and Development Program of China(2022YFD2300803);China Agriculture Research System of MOF and MARA(CARS-02-14)

Abstract:

Soil compaction has become a limiting factor for further increasing maize yield as the development of intensification and mechanization in agriculture in the Huang-Huai-Hai region. Understanding the characteristics of root and shoot growth of different maize varieties under soil compaction stress is benefit for maize high-yield cultivation. To analyse the root and shoot growth and yield of different maize varieties under different levels of soil compaction stress, in this study, three maize varieties were selected, and three soil compaction levels [no compaction stress (NC: no compaction stress, bulk density 1.0-1.3 g cm-3), moderate compaction stress (MC: moderate compaction stress, bulk density 1.4-1.5 g cm-3), and heavy compaction stress (HC: heavy compaction stress, bulk density > 1.6 g cm-3)] were simulated by mechanical rolling in the same field. The results showed that compared with NC, maize yield under MC and HC treatments decreased by 3.8%-10.3% and 12.5%-33.3%, respectively. There were differences in maize root and shoot growth and yield formation under soil compaction stress among three varieties. Under MC treatment, root length, root dry matter, and root-shoot ratio of DK517 increased by 6.0% and 14.0%, 15.7% and 29.6%, 18.8% and 24.8%, respectively, compared to ZD958 and DH605. However, there was no significant difference in the maximum leaf area index, total dry matter, and yield. Under HC treatment, root length and root dry matter of DK517 increased by 8.4% and 22.5%, 29.6% and 57.8%, respectively, compared to ZD958 and DH605, and the maximum leaf area index, total dry matter, and root-shoot ratio increased by 4.6% and 15.5%, 3.7% and 20.9%, 28.0% and 32.1%, respectively, resulting in an increase in yield of 7.5% and 27.2%, respectively. The correlation analysis showed that soil bulk density and penetration resistance were negatively correlated with maize root and shoot growth and yield (P < 0.01). In summary, soil compaction stress could significantly inhibit the growth of maize roots and shoot, resulting in the reduced yields. However, there were differences in maize root and shoot growth under soil compaction stress among different varieties, and the variety with advantages in both root and shoot growth and coordination could maintain higher yields under heavy soil compaction stress. The results provide the theoretical basis for maize breeding improvement and cultivation measures optimization with root architecture as the goal.

Key words: maize, root and shoot growth, soil compaction stress, response

Fig. 1

Daily precipitation, average temperature, and radiation in maize growing season in 2022 and 2023"

Fig. 2

Soil bulk density and penetration resistance under different compaction stress treatments NC: no compaction stress; MC: moderate compaction stress; HC: heavy compaction stress."

Fig. 3

Root morphological indexes of different maize varieties under soil compaction stress NC: no compaction stress; MC: moderate compaction stress; HC: heavy compaction stress. DK517: Dika 517; ZD958: Zhengdan 958; DH605: Denghai 605. Different lowercase letters indicate significant differences at the 0.05 probability level."

Table 1

Plant height and ear height of different maize varieties under soil compaction stress"

年份
Year
紧实胁迫处理
Compaction treatment
品种
Variety
株高Plant height (cm) 穗位高
Ear height
(cm)
拔节期
Jointing stage
大喇叭口期
Male tetrad stage
开花期
Tasseling stage
2022 无紧实胁迫NC DK517 64.67±0.58 d 155.00±8.00 fg 201.33±1.53 e 64.00±2.65 ij
ZD958 74.00±1.00 bc 181.33±6.66 bc 206.33±6.81 e 83.00±5.57 g
DH605 73.67±7.51 bc 165.00±6.00 def 204.00±4.58 e 75.33±0.58 gh
中度紧实胁迫MC DK517 33.33±3.21 ef 94.00±2.00 i 197.00±3.61 e 60.00±0.00 ij
ZD958 37.00±1.73 e 104.00±12.17 h 201.33±1.53 e 67.33±3.06 hi
DH605 33.00±3.00 ef 93.67±1.53 i 183.33±1.53 f 48.33±0.58 k
重度紧实胁迫HC DK517 30.67±8.39 ef 93.67±1.53 i 187.67±4.04 f 58.67±3.79 ij
ZD958 29.67±2.31 ef 89.00±2.65 i 187.33±3.06 f 55.67±1.15 jk
DH605 25.33±2.08 f 77.67±10.97 j 179.00±1.00 f 47.33±3.06 k
2023 无紧实胁迫NC DK517 75.00±0.00 bc 187.00±2.65 ab 255.00±7.00 b 113.33±5.13 bc
ZD958 82.83±7.52 a 196.33±1.53 a 269.33±10.12 a 132.00±7.55 a
DH605 79.33±3.21 ab 187.33±1.53 ab 255.33±6.66 b 117.33±3.79 b
中度紧实胁迫MC DK517 73.33±4.16 bc 175.00±6.56 cd 240.67±6.81 c 104.33±9.24 de
ZD958 78.33±0.58 ab 178.00±7.00 bc 254.00±2.65 b 108.33±6.66 cd
DH605 73.00±7.55 bc 161.00±4.00 ef 237.33±0.58 c 91.67±8.02 f
重度紧实胁迫HC DK517 72.00±1.73 bcd 165.67±3.06 de 235.67±2.89 c 100.33±5.51 de
ZD958 71.00±1.00 bcd 157.33±3.79 efg 231.67±6.35 c 99.00±4.00 ef
DH605 67.33±6.03 cd 148.67±4.73 g 218.33±11.58 d 83.33±4.04 g
变异来源Source of variation
年份Year (Y) ** ** ** **
紧实胁迫Compaction (C) ** ** ** **
品种Variety (V) * ** ** **
年份×紧实胁迫Y×C ** ** ** NS
年份×品种Y×V NS * NS NS
紧实胁迫×品种C×V * ** ** **
年份×紧实胁迫×品种Y×C×V NS NS NS NS

Fig. 4

Leaf area index (LAI) of different maize varieties under soil compaction stress Treatments and varieties are the same as those given in Fig. 3. * and ** indicate significant differences at the 0.05 and 0.01 probability levels, respectively."

Table 2

Dry matter accumulation of different maize varieties under soil compaction stress"

年份
Year
紧实胁迫处理
Compaction treatment
品种
Variety
拔节期
Jointing stage
大喇叭口期
Male tetrad stage
开花期
Tasseling stage
灌浆期
Grain-filling stage
成熟期
Mature stage
2022 无紧实胁迫NC DK517 5.76±0.06 gh 45.33±1.05 g 105.93±4.90 e 185.02±2.51 g 273.70±9.41 c
ZD958 6.42±0.15 de 59.16±1.15 d 122.03±5.50 bcd 219.14±5.80 de 282.65±9.78 bc
DH605 6.04±0.05 fg 46.30±1.12 g 114.62±9.20 de 210.02±3.52 ef 293.26±7.55 b
中度紧实胁迫MC DK517 5.24±0.11 i 32.16±1.92 j 83.53±2.51 fg 151.58±8.57 h 197.39±14.63 f
ZD958 5.54±0.05 h 32.34±0.74 j 85.93±1.21 f 159.35±6.10 h 202.70±13.42 ef
DH605 4.88±0.03 j 28.16±0.16 k 80.05±3.72 g 136.36±6.19 i 175.08±2.23 g
重度紧实胁迫HC DK517 4.82±0.04 j 25.08±0.48 l 70.35±4.69 h 125.98±7.88 j 179.63±3.60 g
ZD958 4.14±0.06 k 25.03±0.63 l 68.99±8.72 h 113.91±4.87 k 168.31±11.80 h
DH605 3.59±0.04 l 21.15±0.25 m 59.28±0.94 i 99.58±3.22 l 150.43±9.00 i
2023 无紧实胁迫NC DK517 6.99±0.28 cd 65.19±1.34 c 134.76±6.35 ab 245.14±5.07 b 291.06±4.82 b
ZD958 8.25±0.23 a 83.03±1.93 a 139.23±11.07 a 273.83±13.36 a 307.92±14.16 a
DH605 7.85±0.35 ab 75.18±1.83 b 135.02±14.11 ab 273.29±10.58 a 286.86±7.78 bc
中度紧实胁迫MC DK517 6.88±0.97 d 56.26±1.14 e 129.67±1.49 abc 226.33±5.87 cd 276.36±14.50 bc
ZD958 7.51±0.39 bc 60.80±0.28 d 131.93±3.36 ab 231.74±5.13 c 288.96±5.74 bc
DH605 6.82±0.62 d 55.70±1.92 e 118.58±6.29 cde 207.93±6.99 ef 260.76±6.70 d
重度紧实胁迫HC DK517 6.21±0.12 ef 52.23±1.78 f 115.03±11.79 de 224.15±2.47 cd 273.65±14.70 c
ZD958 5.92±0.72 fg 40.09±1.82 h 105.76±10.10 e 222.05±3.58 cd 250.31±14.32 d
DH605 5.75±0.19 gh 35.15±1.85 i 85.07±6.29 f 203.61±7.16 f 227.61±11.86 e
变异来源Source of variation
年份Year (Y) ** ** ** ** **
紧实胁迫Compaction (C) ** ** ** ** **
品种Variety (V) ** ** ** * **
年份×紧实胁迫Y×C NS ** ** ** **
年份×品种Y×V NS NS NS NS NS
紧实胁迫×品种C×V ** ** ** ** **
年份×紧实胁迫×品种Y×C×V NS ** NS NS NS

Fig. 5

Root-shoot ratio of different maize varieties under soil compaction stress Treatments and varieties are the same as those given in Fig. 3. Different lowercase letters indicate significant differences at the 0.05 probability level."

Table 3

Grain yield and yield components of different maize varieties under soil compaction stress"

年份
Year
紧实胁迫处理
Compaction treatment
品种
Variety
穗粒数
Kernel number per ear
百粒重
100-kernel weight (g)
产量
Grain yield (kg hm-2)
2022 无紧实胁迫NC DK517 408.24±18.51 e 34.32±0.15 b 8458.37±393.64 ef
ZD958 400.42±8.76 e 34.81±0.13 a 8609.04±373.23 ef
DH605 400.91±15.90 e 34.59±0.19 ab 8803.56±182.68 e
中度紧实胁迫MC DK517 378.33±8.86 f 33.56±0.11 cd 8277.62±234.98 fg
ZD958 376.90±4.29 f 33.80±0.16 c 8371.95±117.45 f
DH605 409.40±4.16 e 30.66±0.17 f 7773.35±63.56 hi
重度紧实胁迫HC DK517 351.67±3.13 g 32.47±0.21 e 7496.81±73.70 i
ZD958 331.47±2.29 h 32.43±0.61 e 6844.16±154.91 j
DH605 339.86±5.69 gh 27.94±0.19 i 5820.43±138.80 k
2023 无紧实胁迫NC DK517 543.16±4.62 b 33.25±0.14 d 11,559.28±162.36 a
ZD958 539.28±12.66 b 33.61±0.10 cd 11,625.43±331.27 a
DH605 589.04±8.45 a 34.33±0.14 b 11,824.37±218.24 a
2023 中度紧实胁迫MC DK517 522.25±4.15 c 29.78±0.16 g 10,934.52±154.29 b
ZD958 546.50±10.51 b 32.15±0.17 e 10,976.43±219.32 b
DH605 520.43±6.77 c 32.13±0.21 e 10,771.29±194.19 b
重度紧实胁迫HC DK517 538.14±1.14 b 28.61±0.12 h 9980.36±25.93 c
ZD958 500.64±1.97 d 28.03±0.16 i 9463.59±123.11 d
DH605 501.94±2.54 d 25.17±0.18 j 7950.09±27.01 gh
变异来源Source of variation
年份Year (Y) ** ** **
紧实胁迫Compaction (C) ** ** **
品种Variety (V) ** ** **
年份×紧实胁迫Y×C ** ** **
年份×品种Y×V NS ** NS
紧实胁迫×品种C×V ** ** **
年份×紧实胁迫×品种Y×C×V ** ** NS

Table 4

Correlation between soil physical properties and maize root morphology, agronomic characters, grain yield, and yield components"

BD PR RL RSA RV RDM PH EH LAI SDM R/S KN HKW Y
容重Bulk density (BD) 1
贯穿阻力Penetration resistance (PR) 0.89** 1
根长Root length (RL) -0.55** -0.53** 1
根表面积Root surface area (RSA) -0.53** -0.50** 0.99** 1
根体积Root volume (RV) -0.57** -0.54** 0.99** 0.98** 1
根干重Root dry weight (RDW) -0.61** -0.63** 0.94** 0.94** 0.94** 1
株高Plant height (PH) -0.50** -0.48** 0.96** 0.96** 0.94** 0.90** 1
穗位高Ear height (EH) -0.53** -0.47** 0.93** 0.93** 0.91** 0.87** 0.95** 1
叶面积指数Leaf area index (LAI) -0.58** -0.57** 0.93** 0.93** 0.92** 0.91** 0.96** 0.96** 1
地上部干重Shoot dry matter (SDM) -0.58** -0.56** 0.74** 0.75** 0.71** 0.83** 0.79** 0.83** 0.85** 1
根冠比Root/shoot ratio (R/S) -0.38** -0.41** 0.70** 0.71** 0.70** 0.83** 0.64** 0.60** 0.63** 0.59** 1
穗粒数Kernel number per ear (KN) -0.39** -0.36** 0.91** 0.93** 0.90** 0.84** 0.92** 0.90** 0.91** 0.73** 0.59** 1
百粒重100-kernel weight (HKW) -0.61** -0.69** 0.05 0.03 0.08 0.28* 0.05 0.06 0.15 0.30* 0.24 -0.14 1
产量Yield (Y) -0.58** -0.61** 0.94** 0.94** 0.94** 0.96** 0.94** 0.91** 0.94** 0.82** 0.71** 0.90** 0.25 1
[1] 张方博, 侯玉雪, 敖园园, 申建波, 金可默. 土壤紧实胁迫下根系-土壤的相互作用. 植物营养与肥料学报, 2021, 27: 531-543.
Zhang F B, Hou Y X, Ao Y Y, Shen J B, Jin K M. Root-soil interaction under soil compaction stress. J Plant Nutr Fert, 2021, 27: 531-543 (in Chinese with English abstract).
[2] Batey T. Soil compaction and soil management: a review. Soil Use Manag, 2009, 25: 335-345.
[3] Hamza M A, Anderson W. Soil compaction in cropping systems: a review of the nature, causes and possible solutions. Soil Tillage Res, 2005, 82: 121-145.
[4] 周宝元, 陈传永, 孙雪芳, 葛均筑, 丁在松, 马玮, 王新兵, 赵明. 冬小麦-夏玉米双机收籽粒模式周年资源利用效率及经济效益. 中国生态农业学报, 2022, 30: 1959-1972.
Zhou B Y, Chen C Y, Sun X F, Ge J Z, Ding Z S, Ma W, Wang X B, Zhao M. Resource use efficiencies and economic benefits of winter wheat-summer maize cropping system with double mechanical grain harvest. Chin J Eco-Agric, 2022, 30: 1959-1972 (in Chinese with English abstract).
[5] Wang M X, Wu W L, Liu W N, Bao Y H. Life cycle assessment of the winter wheat-summer maize production system on the North China Plain. Int J Sust Dev World, 2007, 14: 400-407.
[6] Zhang X, Chen S, Sun H, Wang Y, Shao L. Water use efficiency and associated traits in winter wheat cultivars in the North China Plain. Agric Water Manag, 2010, 97: 1117-1125.
[7] 强小嫚, 张凯, 米兆荣, 刘战东, 王万宁, 孙景生. 黄淮海平原地区深松和灌水次数对冬小麦-夏玉米节水增产的影响. 中国农业科学, 2019, 52: 491-502.
doi: 10.3864/j.issn.0578-1752.2019.03.009
Qiang X M, Zhang K, Mi Z R, Liu Z D, Wang W N, Sun J S. Effects of subsoiling and irrigation times on water saving and yield increase of winter wheat and summer maize in Huang-Huai-Hai plain. Sci Agric Sin, 2019, 52: 491-502 (in Chinese with English abstract).
[8] 周艳丽, 刘娜, 於丽华, 卢秉福, 张文彬, 刘晓雪. 土壤机械压实及其对作物生长的影响. 中国农学通报, 2022, 38(28): 83-88.
doi: 10.11924/j.issn.1000-6850.casb2021-0915
Zhou Y L, Liu N, Yu L H, Lu B F, Zhang W B, Liu X X. Soil mechanical compaction and its influence on crop growth. Chin Agric Sci Bull, 2022, 38(28): 83-88 (in Chinese with English abstract).
[9] Lipiec J, Simota C. Role of soil and climate factors influencing crop responses to compaction in Central and Eastern Europe. Dev Agric Eng, 1994, 11: 365-390.
[10] 李潮海, 周顺利. 土壤容重对玉米苗期生长的影响. 华北农学报, 1994, 9(2): 49-54.
doi: 10.3321/j.issn:1000-7091.1994.02.010
Li C H, Zhou S L. Effects of soil bulk density on maize seedling growth. Acta Agric Boreali-Sin, 1994, 9(2): 49-54 (in Chinese with English abstract).
[11] 刘晚苟, 山仑. 不同土壤水分条件下容重对玉米生长的影响. 应用生态学报, 2003, 14: 1906-1910.
Liu W G, Shan L. Effect of soil bulk density on maize growth under different water regimes. J Appl Ecol, 2003, 14: 1906-1910 (in Chinese with English abstract).
[12] Ishaq M, Hassan A, Saeed M, Ibrahim M, Lal R. Subsoil compaction effects on crops in Punjab, Pakistan. Soil Tillage Res, 2001, 60: 153-161.
[13] 王群, 李潮海, 郝四平, 张永恩, 韩锦峰. 下层土壤容重对玉米生育后期光合特性和产量的影响. 应用生态学报, 2008, 19: 787-793.
Wang Q, Li C H, Hao S P, Zhang Y E, Han J F. Effects of subsoil bulk density on late growth stage photosynthetic characteristics and grain yield of maize (Zea mays L.). J Appl Ecol, 2008, 19: 787-793 (in Chinese with English abstract).
[14] 张兴义, 隋跃宇. 土壤压实对农作物影响概述. 农业机械学报, 2005, 36(10): 161-164.
Zhang X Y, Sui Y Y. Summarization on the effect of soil compaction on crop. Trans CSAM, 2005, 36(10): 161-164 (in Chinese with English abstract).
[15] Canarache A, Colibas I, Colibas M, Horobeanu I, Trandafirescu T. Effect of induced compaction by wheel traffic on soil physical properties and yield of maize in Romania. Soil Tillage Res, 1984, 4: 199-213.
[16] Gaultney L, Krutz G, Steinhardt G, Liljedahl J. Effects of subsoil compaction on corn yields. Trans ASABE, 1980, 25: 563-569.
[17] 王群, 李潮海, 李全忠, 薛帅. 紧实胁迫对不同类型土壤玉米根系时空分布及活力的影响. 中国农业科学, 2011, 44: 2039-2050.
doi: 10.3864/j.issn.0578-1752.2011.10.009
Wang Q, Li C H, Li Q Z, Xue S. Effects of compaction stress on temporal and spatial distribution and vigor of maize roots in different types of soil. Sci Agric Sin, 2011, 44: 2039-2050 (in Chinese with English abstract).
[18] Wasson A P, Richards R A, Chatrath R, Misra S C, Prasad S V S, Rebetzke G J, Kirkegaard J A, Christopher J, Watt M. Traits and selection strategies to improve root systems and water uptake in water-limited wheat crops. J Exp Bot, 2012, 63: 3485-3498.
doi: 10.1093/jxb/ers111 pmid: 22553286
[19] Jordon D, Ponder J F, Hubbard V C. Effects of soil compaction, forest leaf litter and nitrogen fertilizer on two oak species and microbial activity. Appl Soil Ecol, 2003, 23: 33-41.
[20] Tracy S R, Black C R, Roberts J A, McNeill A, Davidson R, Tester M, Samec M, Korosak D, Sturrock C, Mooney S J. Quantifying the effect of soil compaction on three varieties of wheat (Triticum aestivum L.) using X-ray Micro Computed Tomography (CT). Plant Soil, 2012, 353: 195-208.
[21] Whalley W R, Watts C W, Gregory A S, Mooney S J, Clark L J, Whitmore A P. The effect of soil strength on the yield of wheat. Plant Soil, 2008, 306: 237-247.
[22] 王空军, 郑洪建, 刘开昌, 张吉旺, 董熟亭, 胡昌浩. 我国玉米品种更替过程中根系时空分布特性的演变. 植物生态学报, 2001, 25: 472-475.
Wang K J, Zheng H J, Liu K C, Zhang J W, Dong S T, Hu C H. Evolution of temporal and spatial distribution characteristics of root system during maize variety replacement in China. J Plant Ecol, 2001, 25: 472-475 (in Chinese with English abstract).
[23] Xiong P, Zhang Z B, Hallett P D, Peng X H. Variable responses of maize root architecture in elite cultivars due to soil compaction and moisture. Plant Soil, 2020, 455: 79-91.
[24] 杨晓娟, 李春俭. 机械压实对土壤质量、作物生长、土壤生物及环境的影响. 中国农业科学, 2008, 41: 2008-2015.
Yang X J, Li C J. Effects of mechanical compaction on soil quality, crop growth, soil biology and environment. Sci Agric Sin, 2008, 41: 2008-2015 (in Chinese with English abstract).
[25] Tullberg J N, Ziebarth P J, Li Y X. Tillage and traffic effects on runoff. Aust J Soil Res, 2001, 39: 249-257.
[26] Wang X, He J, Bai M, Liu L, Gao S, Chen K, Zhuang H. The impact of traffic-induced compaction on soil bulk density, soil stress distribution and key growth indicators of maize in North China Plain. Agriculture, 2022, 12: 1220.
[27] 刘晚苟, 山仑, 邓西平. 植物对土壤紧实度的反应. 植物生理学通讯, 2001, 37: 254-260.
Liu W G, Shan L, Deng X P. Plant response to soil compactness. Plant Physiol Commun, 2001, 37: 254-260 (in Chinese).
[28] Alameda D, Villar R. Linking root traits to plant physiology and growth in Fraxinus angustifolia Vahl. seedlings under soil compaction conditions. Environ Exp Bot, 2012, 79: 49-57.
[29] Grzesiak S, Grzesiak M T, Hura T, Marcińska I, Rzepka A. Changes in root system structure, leaf water potential and gas exchange of maize and triticale seedlings affected by soil compaction. Environ Exp Bot, 2013, 88: 2-10.
[30] Correa J, Postma J A, Watt M, Wojciechowski T. Soil compaction and the architectural plasticity of root systems. J Exp Bot, 2019, 70: 6019-6034.
doi: 10.1093/jxb/erz383 pmid: 31504740
[31] Wolfe D W, Topoleski D T, Gundersheim N A, Ingall B A. Growth and yield sensitivity of four vegetable crops to soil compaction. J Am Soc Hortic Sci, 1995, 120: 956-963.
[32] Poorter H, Nagel O. The role of biomass allocation in the growth response of plants to different levels of light, CO2, nutrients and water: a quantitative review. Aust J Plant Physiol, 2000, 27: 595-607.
[33] Yu P, Li X, White P J, Li C. A large and deep root system underlies high nitrogen-use efficiency in maize production. PLoS One, 2015, 10: e0126293.
[34] Battisti R, Sentelhas P C. Improvement of soybean resilience to drought through deep root system in Brazil. Agron J, 2017, 109: 1612-1622.
[35] Xie Y, Islam S, Legesse H T, Kristensen H L. Deep root uptake of leachable nitrogen in two soil types is reduced by high availability of soil nitrogen in fodder radish grown as catch crop. Plant Soil, 2021, 456: 213-227.
[36] Wu X, Li H, Rengel Z, Whalley W R, Li H, Zhang F, Shen J, Jin K. Localized nutrient supply can facilitate root proliferation and increase nitrogen-use efficiency in compacted soil. Soil Tillage Res, 2022, 215: 105198.
[37] Bushamuka V N, Zobel R W. Differential genotypic and root type penetration of compacted soil layers. Crop Sci, 1998, 38: 776-781.
[38] Tubeileh A, Groleau-Renaud V, Plantureux S, Guckert. Effect of soil compaction on photosynthesis and carbon partitioning within a maize-soil system. Soil Tillage Res, 2003, 71: 151-161.
[39] 关军锋, 马春红, 李广敏. 干旱胁迫下小麦根冠生物量变化及其与抗旱性的关系. 河北农业大学学报, 2004, 27(1): 1-5.
Guan J F, Ma C H, Li G M. Changes of root and shoot biomass of wheat under drought stress and its relationship with drought resistance. J Agric Univ Hebei, 2004, 27(1): 1-5 (in Chinese with English abstract).
[40] 李鲁华, 李世清, 翟军海, 史俊通. 小麦根系与土壤水分胁迫关系的研究进展. 西北植物学报, 2001, 2(1): 1-7.
Li L H, Li S Q, Zhai J H, Shi J T. Research progress on the relationship between wheat roots and soil water stress. Acta Bot Boreal-Occident Sin, 2001, 21(1): 1-7 (in Chinese with English abstract).
[41] 张玉芹, 杨恒山, 李从锋, 赵明, 罗方, 张瑞富. 条带耕作错位种植对灌区春玉米产量形成与冠根特征的影响. 作物学报, 2020, 46: 902-913.
doi: 10.3724/SP.J.1006.2020.93053
Zhang Y Q, Yang H S, Li C F, Zhao M, Luo F, Zhang R F. Effect of strip tillage and dislocation planting on yield formation and crown and root characteristics of spring maize in irrigation area. Acta Agron Sin, 2020, 46: 902-913 (in Chinese with English abstract).
[42] 张大勇, 姜新华. 对于作物生产的生态学思考. 植物生态学报, 2000, 24: 383-384.
Zhang D Y, Jiang X H. An ecological perspective on crop production. J Plant Ecol, 2000, 24: 383-384 (in Chinese).
[43] Pandey B K, Huang G Q, Bhosale R, Hartman S, Sturrock C J, Jose L, Martin O C, Karady M, Voesenek L A C J, Ljung K, Lynch J P, Brown K M, Whalley W R, Mooney S J, Zhang D B, Bennett M J. Plant roots sense soil compaction through restricted ethylene diffusion. Science, 2021, 371: 276-280.
doi: 10.1126/science.abf3013 pmid: 33446554
[44] Huang G Q, Kilic A, Karady M, Zhang J, Mehra P, Song X Y, Sturrock C J, Zhu W W, Qin H, Hartman S, Schneider H M, Bhosale R, Dodd I C, Sharp R E, Huang R F, Mooney S J, Liang W Q, Bennett M J, Zhang D B, Pandey B K. Ethylene inhibits rice root elongation in compacted soil via ABA- and auxin- mediated mechanisms. Proc Natl Acad Sci USA, 2022, 119: e2201072119.
[1] YE Liang, ZHU Ye-Lin, PEI Lin-Jing, ZHANG Si-Ying, ZUO Xue-Qian, LI Zheng-Zhen, LIU Fang, TAN Jing. Screening candidate resistance genes to ear rot caused by Fusarium verticillioides in maize by combined GWAS and transcriptome analysis [J]. Acta Agronomica Sinica, 2024, 50(9): 2279-2296.
[2] SUN Zhao-Hua, REN Hao, WANG Hong-Zhang, WANG Zi-Qiang, YAO Hai-Yan, XIN Ai-Mei, ZHAO Bin, ZHANG Ji-Wang, REN Bai-Zhao, LIU Peng. Effects of foliar silicon sprays on leaf photosynthetic performance and grain yield of summer maize in coastal saline-alkali soil [J]. Acta Agronomica Sinica, 2024, 50(9): 2383-2395.
[3] GUO Si-Yu, ZHAO Ke-Yong, DAI Zheng-Gang, ZOU Hua-Wen, WU Zhong-Yi, ZHANG Chun. Functional analysis of maize N-acetyltransferase ZmNAT1 gene in response to abiotic stress [J]. Acta Agronomica Sinica, 2024, 50(8): 2001-2013.
[4] CAO Xiao-Qing, QI Xian-Tao, LIU Chang-Lin, XIE Chuan-Xiao. Construction and verification of the CRISPR/Cas9 system containing DsRed fluorescent expression cassette for editing of ZmCCT10, ZmCCT9, and ZmGhd7 genes in maize [J]. Acta Agronomica Sinica, 2024, 50(8): 1961-1970.
[5] LIU Chen, WANG Kun-Kun, LIAO Shi-Peng, YANG Jia-Qun, CONG Ri-Huan, REN Tao, LI Xiao-Kun, LU Jian-Wei. Effects of nitrogen fertilizer application levels on yield and nitrogen absorption and utilization of oilseed rape under maize-oilseed rape and rice-oilseed rape rotation fields [J]. Acta Agronomica Sinica, 2024, 50(8): 2067-2077.
[6] LIU Chen-Ming, ZHAO Ke-Yong, YUE Man-Fang, ZHAO Yan-Ming, WU Zhong-Yi, ZHANG Chun. Functional study on the regulation of root growth and development and stress tolerance by maize transcription factor ZmEREB180 [J]. Acta Agronomica Sinica, 2024, 50(8): 1920-1933.
[7] LIU Shuang, LI Shen, WANG Dong-Mei, SHA Xiao-Qian, HE Guan-Hua, ZHANG Deng-Feng, LI Yong-Xiang, LIU Xu-Yang, WANG Tian-Yu, LI Yu, LI Chun-Hui. Superior allele genes mining for drought tolerance in maize based on introgression line from a cross between maize and teosinte [J]. Acta Agronomica Sinica, 2024, 50(8): 1896-1906.
[8] WANG Rui, SUN Bo, ZHANG Yun-Long, ZHANG Ming-Qi, FAN Ya-Ming, TIAN Hong-Li, ZHAO Yi-Kun, YI Hong-Mei, KUANG Meng, WANG Feng-Ge. Application analysis of chloroplast markers on rapid classification in maize germplasm [J]. Acta Agronomica Sinica, 2024, 50(7): 1867-1876.
[9] FANG Yu-Hui, QI Xue-Li, LI Yan, ZHANG Yu, PENG Chao-Jun, HUA Xia, CHEN Yan-Yan, GUO Rui, HU Lin, XU Wei-Gang. Effects of high light stress on photosynthesis and physiological characteristics of wheat with maize C4-type ZmPEPC+ZmPPDK gene [J]. Acta Agronomica Sinica, 2024, 50(7): 1647-1657.
[10] WANG Jia-Xiang, YU Xue-Ting, LI Meng-Tao, MAI Wei-Tao, CHEN Xin, WANG Wen-Quan. Preliminary study on the regulation of cassava plant type by MeLAZY1c gene [J]. Acta Agronomica Sinica, 2024, 50(6): 1514-1524.
[11] WANG Fei-Er, GUO Yao, LI Pan, WEI Jin-Gui, FAN Zhi-Long, HU Fa-Long, FAN Hong, HE Wei, YIN Wen, CHEN Gui-Ping. Compensation mechanism of increased maize density on yield with water and nitrogen reduction supply in oasis irrigation areas [J]. Acta Agronomica Sinica, 2024, 50(6): 1616-1627.
[12] SHE Meng, ZHENG Deng-Yu, KE Zhao, WU Zhong-Yi, ZOU Hua-Wen, ZHANG Zhong-Bao. Cloning and functional analysis of ZmGRAS13 gene in maize [J]. Acta Agronomica Sinica, 2024, 50(6): 1420-1434.
[13] ZHENG Xue-Qing, WANG Xing-Rong, ZHANG Yan-Jun, GONG Dian-Ming, QIU Fa-Zhan. Mapping of QTL for ear-related traits and prediction of key candidate genes in maize [J]. Acta Agronomica Sinica, 2024, 50(6): 1435-1450.
[14] HAN Jie-Nan, ZHANG Ze, LIU Xiao-Li, LI Ran, SHANG-GUAN Xiao-Chuan, ZHOU Ting-Fang, PAN Yue, HAO Zhuan-Fang, WENG Jian-Feng, YONG Hong-Jun, ZHOU Zhi-Qiang, XU Jing-Yu, LI Xin-Hai, LI Ming-Shun. Analysis of differential accumulation of starch in waxy maize grain caused by the o2 mutation gene [J]. Acta Agronomica Sinica, 2024, 50(5): 1207-1222.
[15] WANG Yong-Liang, XU Zi-Hang, LI Shen, LIANG Zhe-Ming, BAI Ju, YANG Zhi-Ping. Effects of different mulching measures on moisture and temperature of soil and yield and water use efficiency of spring maize [J]. Acta Agronomica Sinica, 2024, 50(5): 1312-1324.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[2] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[3] Hu Yuqi;Liao Xiaohai. A STUDY ON THE COEFFICIENT OF LEAVES SHAPE OF MAIZE[J]. Acta Agron Sin, 1986, (01): 71 -72 .
[4] LIANG Tai-Bo;YIN Yan-Ping;CAI Rui-Guo;YAN Su-Hui;LI Wen-Yang;GENG Qing-Hui;WANG Ping;WANG Zhen-Lin. Starch Accumulation and Related Enzyme Activities in Superior and Inferior Grains of Large Spike Wheat[J]. Acta Agron Sin, 2008, 34(01): 150 -156 .
[5] WANG Cheng-Zhang;HAN Jin-Feng;SHI Ying-Hua;LI Zhen-Tian;LI De-Feng. Production Performance in Alfalfa with Different Classes of Fall Dormancy[J]. Acta Agron Sin, 2008, 34(01): 133 -141 .
[6] TIAN Zhi-Jian;Yi Rong;CHEN Jian-Rong;GUO Qing-Quan;ZHANG Xue-Wen;. Cloning and Expression of Cellulose Synthase Gene in Ramie [Boehme- ria nivea (Linn.) Gaud.][J]. Acta Agron Sin, 2008, 34(01): 76 -83 .
[7] ZHAO Xiu-Qin;ZHU Ling-Hua;XU Jian-Long;LI Zhi-Kang. QTL Mapping of Yield under Irrigation and Rainfed Field Conditions for Advanced Backcrossing Introgression Lines in Rice[J]. Acta Agron Sin, 2007, 33(09): 1536 -1542 .
[8] WU Ying ; SONG Feng-Sun ; LU Xu-Zhong; ZHAO Wei; YANG Jian-Bo; LI Li ;. Detecting Genetically Modified Soybean by Real-time Quantitative PCR Technique[J]. Acta Agron Sin, 2007, 33(10): 1733 -1737 .
[9] GOU Ling ; HUANG Jian-Jun; ZHANG Bin; LI Tao; SUN Rui; ZHAO Ming ;. Effects of Population Density on Stalk Lodging Resistant Mechanism and Agronomic Characteristics of Maize[J]. Acta Agron Sin, 2007, 33(10): 1688 -1695 .
[10] YU Jing;ZHANG Lin;CUI Hong;ZHANG Yong-Xia;CANG Jing;HAO Zai-Bin;LI Zhuo-Fu. Physiological and Biochemical Characteristics of Dongnongdongmai 1 before Wintering in High-Cold Area[J]. Acta Agron Sin, 2008, 34(11): 2019 -2025 .