Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2024, Vol. 50 ›› Issue (7): 1647-1657.doi: 10.3724/SP.J.1006.2024.31077

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Effects of high light stress on photosynthesis and physiological characteristics of wheat with maize C4-type ZmPEPC+ZmPPDK gene

FANG Yu-Hui(), QI Xue-Li, LI Yan, ZHANG Yu, PENG Chao-Jun, HUA Xia, CHEN Yan-Yan, GUO Rui, HU Lin, XU Wei-Gang*()   

  1. Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences / Key Laboratory for Wheat Biology of Henan Province / Shennong Laboratory, Zhengzhou 450002, Henan, China
  • Received:2023-12-01 Accepted:2024-01-30 Online:2024-07-12 Published:2024-02-20
  • Contact: *E-mail: xuwg1958@163.com
  • Supported by:
    Independent Innovation Foundation of Henan Academy of Agricultural Sciences(2023ZC090);Henan Provincial Science and Technology Research Project(232102110203);‘First-class Project’ of Shennong Laboratory(SN01-2022-01);Major Project of Agricultural Biological Breeding(2023ZD0402302);China Agriculture Research System of MOF and MARA(CARS-03-7)

Abstract:

To study the photosynthetic and physiological response of maize C4-type PEPC (phosphoenolpyruvate carboxylase gene) and PPDK (pyruvate phosphate double kinase gene) dual-gene wheat to high light, the ZmPEPC + ZmPPDK wheat lines PCK30 and PCK60 and their wild type control material (WT) were used as experimental materials. The relative expression levels of exogenous genes in transgenic wheat were identified. The photosynthetic enzyme activity, chlorophyll content, gas exchange parameters, chlorophyll fluorescence parameters, active oxygen content, and antioxidant enzyme activity of transgenic wheat were measured under normal light intensity (NL) and high light stress (HL) at heading and grain-filling stages. The results showed that the two transgenic lines expressed the PEPC and PPDK genes efficiently at the transcriptional level. The enzyme activity of PEPC, PPDK, NADP-ME, and Rubisco of transgenic wheat was significantly higher than WT under NL or HL stress at different stage, and the increase of WT was more obvious under HL stress. Compared with NL stress, the chlorophyll content of transgenic wheat and WT decreased significantly under HL stress, but the decrease of transgenic lines was smaller, and the chlorophyll content of transgenic lines was significantly higher than WT under HL stress. Under two treatment stresses, the net photosynthetic rate (Pn) of PCK30 and PCK60 was significantly higher than WT, and the higher range was more obvious under HL stress. The increases were 15.26% and 17.57% at heading stage and 13.41% and 15.82% at grain-filling stage, respectively. The variation trend of stomatal conductance, Fv/Fm and qp was consistent with Pn, while the variation trend of intercellular carbon dioxide concentration was opposite to Pn. The content of reactive oxygen species and malondialdehyde produced by transgenic lines under HL stress was significantly lower than WT, while the trend of antioxidant enzymes was opposite. In two consecutive years of field plot yield experiments, PCK30 and PCK60 were 8.37% and 10.16% higher than WT on average. The overexpression of PEPC and PPDK in wheat enhanced the endogenous photosynthetic enzyme, photochemical efficiency, and antioxidant enzyme activities of wheat, enhanced the stability of leaf cell membrane under high light stress, protected the photosynthetic apparatus, and maintained a high photosynthetic efficiency, thus improving the tolerance of transgenic wheat to high light stress.

Key words: wheat, maize C4-type photosynthetic gene, high light stress, photosynthesis, physiological characteristics

Fig. 1

PCR analysis of ZmPEPC in ZmPEPC and ZmPPDK transgenic wheats M: marker DL2000 plus; 1: positive control; 2: wile type control (Zhengmai 1860); 3-6: PCK30 transgenic plants; 7-9: PCK60 transgenic plants."

Fig. 2

PCR analysis of ZmPPDK in ZmPEPC and ZmPPDK transgenic wheats M: marker DL2000 plus; 1: positive control; 2: wile type control (Zhengmai 1860); 3-6: PCK30 transgenic plants; 7-9: PCK60 transgenic plants."

Fig. 3

Relative expression level of ZmPEPC and ZmPPDK in flag leaves of transgenic wheat lines and wild type Lowercases letters indicate significant difference at the 0.05 probability level. Error bar: ±SE."

Fig. 4

PEPC, PPDK, NADP-ME, and Rubisco activities in flag leaves of transgenic wheat lines and wild type Lowercases letters indicate significant difference at the 0.05 probability level. Error bar: ±SE."

Table 1

Chlorophyll content in flag leaves of transgenic wheat and control (WT) under high light"

叶绿素含量
Chlorophyll content
材料
Material
抽穗期 Heading 灌浆期 Grain-filling
NL HL NL HL
总叶绿素含量
Total chlorophyll content
WT 5.046±0.132 a 4.197±0.157 c 5.071±0.112 b 4.078±0.127 d
PCK30 5.271±0.243 a 4.704±0.223 b 5.418±0.151 a 4.676±0.178 c
PCK60 5.253±0.108 a 4.595±0.176 b 5.360±0.127 a 4.760±0.223 c
叶绿素a/b
Chlorophyll a/b
WT 2.073±0.068 a 1.453±0.047 c 1.614±0.065 b 1.334±0.047 c
PCK30 2.141±0.109 a 1.650±0.075 b 1.742±0.076 a 1.554±0.037 b
PCK60 2.149±0.078 a 1.635±0.056 b 1.776±0.097 a 1.617±0.066 b

Table 2

Gas exchange parameter in flag leaves of transgenic wheat and control (WT) under high light"

气体交换参数
Gas exchange parameter
材料
Material
抽穗期 Heading 灌浆期 Grain-filling
NL HL NL HL
Pn (μmol CO2 m-2 s-1) WT 26.32±0.61 b 20.35±0.99 d 24.79±0.92 b 20.18±1.14 d
PCK30 28.14±0.88 a 23.46±1.58 c 26.94±0.75 a 22.89±0.76 c
PCK60 28.48±0.92 a 23.93±0.65 c 27.23±0.76 a 23.37±1.04 bc
Gs (mmol H2O m-2 s-1) WT 287.25±10.60 a 225.96±7.21 c 297.67±4.39 b 243.00±7.27 d
PCK30 296.67±7.30 a 261.25±9.46 b 323.67±6.90 a 273.25±13.67 c
PCK60 298.00±12.05 a 261.67±12.27 b 319.96±10.17 a 276.33±6.44 c
Tr (mmol H2O m-2 s-1) WT 4.76±0.16 a 3.60±0.15 c 5.44±0.15 b 4.32±0.20 d
PCK30 4.88±0.16 a 4.32±0.18 b 5.80±0.13 a 4.92±0.16 c
PCK60 4.89±0.22 a 4.27±0.14 b 5.78±0.21 a 4.95±0.25 c
Ci (μmol mol-1) WT 248.00±9.36 c 290.67±5.06 a 241.67±6.30 bc 273.67±4.88 a
PCK30 236.25±10.61 c 265.33±10.54 b 226.96±7.69 d 255.00±8.80 b
PCK60 234.67±7.98 c 269.96±8.47 b 228.33±10.22 d 252.67±7.61 b

Table 3

Chlorophyll fluorescence parameter in flag leaves of transgenic wheat and control (WT) under high light"

叶绿素荧光参数
Chlorophyll fluorescence parameters
材料
Material
抽穗期 Heading 灌浆期 Grain-filling
NL HL NL HL
Fv/Fm WT 0.833±0.016 b 0.714±0.019 d 0.821±0.028 b 0.710±0.012 d
PCK30 0.886±0.025 a 0.785±0.008 c 0.873±0.012 a 0.779±0.019 c
PCK60 0.884±0.013 a 0.794±0.016 c 0.870±0.021 a 0.802±0.013 bc
qp WT 0.705±0.019 b 0.548±0.012 c 0.692±0.028 b 0.497±0.014 d
PCK30 0.813±0.020 a 0.691±0.026 b 0.750±0.011 a 0.599±0.032 c
PCK60 0.822±0.015 a 0.668±0.034 b 0.748±0.026 a 0.614±0.015 c

Table 4

Reactive oxygen species and MDA content in flag leaves of transgenic wheat and control (WT) under high light"

指标
Index
材料
Material
抽穗期 Heading 灌浆期 Grain-filling
NL HL NL HL
MDA含量
MDA content (μmol g-1 FW)
WT 24.51±0.42 b 31.50±1.35 a 27.95±0.64 c 34.15±0.98 a
PCK30 22.88±0.64 c 26.20±0.92 b 25.60±0.58 d 29.27±1.26 bc
PCK60 22.50±0.55 c 26.11±1.18 b 26.01±0.71 d 29.87±1.57 b
超氧阴离子生成速率
Production rate of superoxide anion (nmol min-1 g-1 FW)
WT 20.38±0.41 c 25.61±0.89 a 26.11±0.35 c 34.27±1.15 a
PCK30 19.29±0.43 d 22.21±0.75 b 24.48±0.56 d 30.67±1.33 b
PCK60 18.88±0.55 d 20.90±1.24 bc 24.46±0.42 d 30.93±1.38 b
H2O2含量
H2O2 content (μmol g-1 FW)
WT 11.62±0.38 c 15.85±0.58 a 16.48±0.66 c 21.06±0.67 a
PCK30 10.71±0.52 d 14.04±0.64 b 15.06±0.35 d 18.06±0.52 b
PCK60 10.66±0.44 d 13.53±0.43 b 14.92±0.46 d 17.46±0.86 bc

Table 5

Antioxidant enzyme activity in flag leaves of transgenic wheat and control (WT) under high light (U g-1)"

抗氧化酶
Antioxidant enzyme
材料
Material
抽穗期 Heading 灌浆期 Grain-filling
NL HL NL HL
SOD
WT 319.48±8.20 c 401.39±12.51 b 509.36±6.22 d 624.12±15.76 b
PCK30 332.90±10.48 c 463.13±10.36 a 541.09±12.37 c 710.31±22.15 a
PCK60 334.75±13.35 c 472.16±17.77 a 549.34±16.23 c 720.61±17.50 a
POD
WT 179.75±8.21 c 236.60±7.94 b 221.83±6.84 d 271.81±10.58 b
PCK30 187.53±11.36 c 266.46±13.21 a 240.71±7.61 c 303.47±8.63 a
PCK60 186.60±9.48 c 268.24±10.25 a 240.33±10.48 c 300.95±12.66 a
CAT
WT 50.83±2.28 c 61.54±2.45 b 62.46±2.24 c 72.40±2.57 b
PCK30 52.24±3.15 c 71.23±1.86 a 69.49±1.66 b 84.52±3.22 a
PCK60 53.20±1.24 c 70.36±1.59 a 70.84±3.18 b 85.08±2.64 a

Table 6

Plot yield and its composition of transgenic wheat and control (WT)"

年度
Year
材料
Material
穗数
Spike number
(×104 hm-2)
穗粒数
Grains per spike
千粒重
1000-kernel weight
(g)
产量
Grain yield
(kg hm-2)
2021-2022 WT 423.59±18.32 a 35.33±2.42 a 51.27±0.67 b 7551.12±167.45 b
PCK30 429.83±20.37 a 35.17±2.18 a 54.03±0.95 a 8168.27±204.42 a
PCK60 428.60±13.03 a 35.71±1.64 a 54.18±0.62 a 8291.38±162.33 a
2022-2023 WT 470.11±21.72 a 34.84±2.32 a 50.09±0.65 b 8062.50±233.39 b
PCK30 477.76±17.30 a 34.75±1.04 a 52.72±0.54 a 8752.81±139.63 a
PCK60 471.65±24.51 a 35.62±2.19 a 53.04±0.71 a 8910.90±199.02 a
[1] Aranjuelo I, Sanz-Sáez Á, Jauregui I, Irigoyen J, Araus J, Sánchez-Díaz M, Erice G. Harvest index, a parameter conditioning responsiveness of wheat plants to elevated CO2. J Exp Bot, 2013, 64: 1879-1892.
doi: 10.1093/jxb/ert081 pmid: 23564953
[2] Long S P, Zhu X G, Naidu S L, Ort D R. Can improvement in photosynthesis increase crop yields? Plant Cell Environ, 2006, 29: 315-330.
doi: 10.1111/j.1365-3040.2005.01493.x pmid: 17080588
[3] Zhu X G, Long S P, Ort D R. Improving photosynthetic efficiency for greater yield. Annu Rev Plant Biol, 2010, 61: 235-261.
[4] 李宏伟, 李滨, 郑琪, 李振声. 小麦幼苗从低光到强光适应过程中光合和抗氧化酶变化. 作物学报, 2010, 36: 449-456.
doi: 10.3724/SP.J.1006.2010.00449
Li H W, Li B, Zheng Q, Li Z S. Variation in photosynthetic traits and antioxidant enzyme activities of wheat seedlings transferred from low to high light growth condition. Acta Agron Sin, 2010, 363: 449-456 (in Chinese with English abstract).
[5] Ögren E, Rosenqvist E. On the significance of photoinhibition of photosynthesis in the field and its generality among species. Photosyn Res, 1992, 33: 63-71.
[6] Chen Y E, Zhang C M, Su Y Q, Ma J, Zhang Z W, Yuan M, Zhang H Y, Yuan S. Responses of photosystem II and antioxidative systems to high light and high temperature co-stress in wheat. Environ Exp Bot, 2017, 135: 45-55.
[7] Parry M A J, Reynolds M, Salvucci M E, Raines C, Andralojc P J, Zhu X G, Price G D, Condon A G, Furbank R T. Raising yield potential of wheat: II. Increasing photosynthetic capacity and efficiency. J Exp Bot, 2011, 62: 453-467.
[8] Gaponenko A K, Shulga O A, Mishutkina Y B, Tsarkova E A, Timoshenko A A, Spechenkova N A. Perspectives of use of transcription factors for improving resistance of wheat productive varieties to abiotic stresses by transgenic technologies. Russ J Genet, 2018, 54: 27-35.
[9] Wang J Y, Mao X G, Wang R T, Li A, Zhao G Y, Zhao J F, Jing R L. Identification of wheat stress-responding genes and TaPR-1-1 function by screening a cDNA yeast library prepared following abiotic stress. Sci Rep, 2019, 9: 141.
doi: 10.1038/s41598-018-37859-y pmid: 30644420
[10] Zhu X G, Long S P, Ort D R. What is the maximum efficiency with which photosynthesis can convert solar energy into biomass? Curr Opin Biotechnol, 2008, 19: 153-159.
[11] Singh J, Garai S, Das S, Thakur J K, Tripathy B C. Role of C4 photosynthetic enzyme isoforms in C3 plants and their potential applications in improving agronomic traits in crops. Photosynth Res, 2022, 154: 233-258.
[12] Chen S, Peng W, Ansah E O, Xiong F, Wu Y. Encoded C4 homologue enzymes genes function under abiotic stresses in C3 plant. Plant Signal Behav, 2022, 17: 2115634.
[13] Hudspeth R L, Grula J W, Dai Z, Edwards G E, Ku M S B. Expression of maize phosphoenolpyruvate carboxylase in transgenic tobacco: effects on biochemistry and physiology. Plant Physiol, 1992, 98: 458-464.
doi: 10.1104/pp.98.2.458 pmid: 16668662
[14] Sheriff A, Meyer H, Riedel E, Schmitt J M, Lapke C. The influence of plant pyruvate orthophosphate dikinase on a C3 plant with respect to the intracellular location of the enzyme. Plant Sci, 1998, 136: 43-57.
[15] Laporte M M, Shen B, Tarczynski M C. Engineering for drought avoidance: expression of maize NADP-malic enzyme in tobacco results in altered stomatal function. J Exp Bot, 2002, 53: 699-705.
doi: 10.1093/jexbot/53.369.699 pmid: 11886890
[16] Wang Y M, Xu W G, Hu L, Zhang L, Li Y, Du X H. Expression of maize gene encoding C4-pyruvate orthophosphate dikinase (PPDK) and C4-phosphoenolpyruvate carboxylase (PEPC) in transgenic Arabidopsis. Plant Mol Biol Rep, 2012, 30: 1367-1374.
[17] Kandoi D, Mohanty S, Govindjee, Tripathy B C. Towards efficient photosynthesis: overexpression of Zea mays phosphoenolpyruvate carboxylase in Arabidopsis thaliana. Photosynth Res, 2016, 130: 47-72.
[18] Zhang Q C, Li Y, Xu W G, Zhang Y, Qi X L, Fang Y H, Peng C J. Joint expression of Zmpepc, Zmppdk, and Zmnadp-me is more efficient than expression of one or two of those genes in improving the photosynthesis of Arabidopsis. Plant Physiol Biochem, 2021, 158: 410-419.
[19] Ku M S B, Agarie S, Nomura M, Fukayama H, Tsuchida H, Ono K, Hirose S, Toki S, Miyao M, Matsuoka M. High-level expression of maize phosphoenolpyruvate carboxylase in transgenic rice plants. Nat Biotechnol, 1999, 17: 76-80.
pmid: 9920274
[20] Ku M S B, Ranade U, Hsu T-P, Cho D W, Li X, Jiao D, Ehleringer J, Miyao M, Matsuoka M. Photosynthetic performance of transgenic rice plants overexpressing maize C4 photosynthesis enzyme. Stud Plant Sci, 2000, 7: 193-204.
[21] Takeuchi Y, Akagi H, Kamasawa N, Osumi M, Honda H. Aberrant chloroplasts in transgenic rice plants expressing a high level of maize NADP-dependent malic enzyme. Planta, 2000, 211: 265-274.
pmid: 10945221
[22] 李艳, 许为钢, 胡琳, 张磊, 齐学礼, 张庆琛, 王根松. 玉米磷酸烯醇式丙酮酸羧化酶基因高效表达载体构建及其导入小麦的研究. 麦类作物学报, 2009, 29: 741-746.
Li Y, Xu W G, Hu L, Zhang L, Qi X L, Zhang Q C, Wang G S. Construction of a high-efficient expression vector for maize phosphoenolpyruvate carboxylase gene and its transformation in wheat. J Triticeae Crops, 2009, 29: 741-746 (in Chinese with English abstract).
[23] Hu L, Li Y, Xu W, Zhang Q, Zhang L, Qi X, Dong H. Improvement of the photosynthetic characteristics of transgenic wheat plants by transformation with the maize C4 phosphoenolpyruvate carboxylase gene. Plant Breed, 2012, 131: 385-391.
[24] Zhang H F, Xu W G, Wang H W, Hu L, Li Y, Qi X L, Hua X. Pyramiding expression of maize genes encoding phosphoenolpyruvate carboxylase (PEPC) and pyruvate orthophosphate dikinase (PPDK) synergistically improve the photosynthetic characteristics of transgenic wheat. Protoplasma, 2014, 251: 1163-1173.
doi: 10.1007/s00709-014-0624-1 pmid: 24595619
[25] 王永霞, 杜新华, 许为钢, 齐学礼, 李艳, 王会伟, 胡琳. 导入外源玉米C4NADP-ME基因对小麦光合效能的影响. 作物学报, 2016, 42: 600-608.
doi: 10.3724/SP.J.1006.2016.00600
Wang Y X, Du X H, Xu W G, Qi X L, Li Y, Wang H W, Hu L. Photosynthetic characteristics of transgenic wheat expressing maize C4-type NADP-ME gene. Acta Agron Sin, 2016, 42: 600-608 (in Chinese with English abstract).
[26] 雷明月, 许为钢, 李小博, 张庆琛, 王会伟, 张磊, 方宇辉, 李艳, 李春鑫. 玉米C4光合酶导入对拟南芥光合特性及抗旱性的影响. 麦类作物学报, 2017, 37: 108-115.
Lei M Y, Xu W G, Li X B, Zhang Q C, Wang H W, Zhang L, Fang Y H, Li Y, Li C X. Effect of maize C4-specific phtosynthesis genes on phtosynthesis and drought resistance of Arabidopsis thaliana. J Triticeae Crops, 2017, 37: 108-115 (in Chinese with English abstract).
[27] Zhang Q C, Qi X L, Xu W G, Li Y, Zhang Y, Peng C J, Fang Y H. Response of transgenic Arabidopsis expressing maize C4 photosynthetic enzyme genes to high light. Plant Signal Behav, 2021, 16: 1885894.
[28] 焦德茂, 李霞, 黄雪清, 迟伟, 匡廷云, 古森本. 转PEPC基因水稻的光合CO2同化和叶绿素荧光特性. 科学通报, 2001, 46: 414-418.
Jiao D M, Li X, Huang X Q, Chi W, Kuang T Y, Ku M S B. Characteristics of photosynthetic CO2 assimilation and chlorophyll fluorescence in transgenic rice with PEPC gene. Chin Sci Bull, 2001, 46: 414-418 (in Chinese).
[29] Qi X L, Xu W G, Zhang J Z, Guo R, Zhao M Z, Hu L, Wang H W, Dong H B, Li Y. Physiological characteristics and metabolomics of transgenic wheat containing the maize C4 phosphoenolpyruvate carboxylase (PEPC) gene under high temperature stress. Protoplasma, 2017, 254: 1017-1030.
[30] Qin N, Xu WG, Hu L, Li Y, Wang H W, Qi X L, Fang Y H, Hua X. Drought tolerance and proteomics studies of transgenic wheat containing the maize C4 phosphoenolpyruvate carboxylase (PEPC) gene. Protoplasma, 2016, 253: 1503-1512.
pmid: 26560113
[31] 柴建芳, 刘旭, 贾继增. 一种适于PCR扩增的小麦基因组DNA快速提取法. 植物遗传资源学报, 2006, 7: 246-248.
Chai J F, Liu X, Jia J Z. A rapid isolation method of wheat DNA suitable for PCR analysis. J Plant Genet Resour, 2006, 7: 246-248 (in Chinese with English abstract).
[32] Sayre R T, Kennedy R A, Pringnitz D J. Photosynthetic enzyme activities and localization in Mollugo verticillata populations differing in the levels of C3 and C4 cycle operation. Plant Physiol, 1979, 64: 293-299.
doi: 10.1104/pp.64.2.293 pmid: 16660952
[33] Arnon D I. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol, 1949, 24: 1-15.
doi: 10.1104/pp.24.1.1 pmid: 16654194
[34] Elstner E F, Heupel A. Inhibition of nitrite formation from hydroxylammonium chloride: a simple assay for superoxide dismutase. Anal Biochem, 1976, 70: 616-620.
doi: 10.1016/0003-2697(76)90488-7 pmid: 817618
[35] Brennan T, Frenkel C. Involvement of hydrogen peroxide in the regulation of senescence in pear. Plant Physiol, 1977, 59: 411-416.
doi: 10.1104/pp.59.3.411 pmid: 16659863
[36] Hodges D M, Delong J M, Forney C F, Prange R K. Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta, 1999, 207: 604-611.
[37] Tan W, Liu J, Dai T, Jing Q, Cao W, Jiang D. Alterations in photosynthesis and antioxidant enzyme activity in winter wheat subjected to post-anthesis water-logging. Photosynthetica, 2008, 46: 21-27.
[38] 王笑, 蔡剑, 周琴, 戴廷波, 姜东. 非生物逆境锻炼提高作物耐逆性的生理机制研究进展. 中国农业科学, 2021, 54: 2287-2301.
doi: 10.3864/j.issn.0578-1752.2021.11.004
Wang X, Cai J, Zhou Q, Dai T B, Jiang D. Physiological mechanisms of abiotic stress priming induced the crops stress tolerance: a review. Sci Agric Sin, 2021, 54: 2287-2301 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2021.11.004
[39] 吴琼, 许为钢, 李艳, 齐学礼, 胡琳, 张磊, 韩琳琳. 田间条件下转玉米C4型PEPC基因小麦的光合生理特性. 作物学报, 2011, 37: 2046-2052.
doi: 10.3724/SP.J.1006.2011.02046
Wu Q, Xu W G, Li Y, Qi X L, Hu L, Zhang L, Han L L. Physiological characteristics of photosynthesis in transgenic wheat with maize C4-PEPC gene under field conditions. Acta Agron Sin, 2011, 37: 2046-2052 (in Chinese with English abstract).
[40] 齐学礼, 李艳, 王玉民, 韩留鹏, 张磊, 胡琳, 许为钢. 转ZmPPDK基因小麦新品系的光合特性及产量分析. 麦类作物学报, 2019, 39: 950-957.
Qi X L, Li Y, Wang Y M, Han L P, Zhang L, Hu L, Xu W G. Development of transgenic wheat lines with ZmPPDK gene and analysis on its photosynthetic and yield characteristics. J Triticeae Crops, 2019, 39: 950-957 (in Chinese with English abstract).
[41] Jiao D M, Li X, Ji B H. Photoprotective effects of high level expression of C4 phosphoenolpyruvate carboxylase in transgenic rice during photoinhibition. Photosynthetica, 2005, 43: 501-508.
[42] 丁在松, 周宝元, 孙雪芳, 赵明. 干旱胁迫下PEPC过表达增强水稻的耐强光能力. 作物学报, 2012, 38: 285-292.
doi: 10.3724/SP.J.1006.2012.00285
Ding Z S, Zhou B Y, Sun X F, Zhao M. High light tolerance is enhanced by overexpressed PEPC in rice under drought stress. Acta Agron Sin, 2012, 38: 285-292 (in Chinese with English abstract).
[43] 李小博, 许为钢, 雷明月, 张庆琛, 王会伟, 李艳, 华夏, 高崇. 转玉米C4光合途径pepcppdknadp-me基因拟南芥光合特性对强光胁迫的反应. 分子植物育种, 2017, 15: 911-919.
Li X B, Xu W G, Lei M Y, Zhang Q C, Wang H W, Li Y, Hua X, Gao C. The response of photosynthetic characteristics of maize C4-type pepc, ppdk and nadp-me transgenetic Arabidopsis thaliana on high light stress. Mol Breed, 2017, 15: 911-919 (in Chinese with English abstract).
[44] Magnin N C, Cooley B A, Reiskind J B, Bowes G. TRegulation and localization of key enzymes during the induction of Kranz-less, C4-type photosynthesis in Hydrilla verticilataT. Plant Physiol, 1997, 115: 1681-1689.
pmid: 12223888
[45] Li Y T, Yang C, Zhang Z S, Zhao S J, Gao H Y. Photosynthetic acclimation strategies in response to intermittent exposure to high light intensity in wheat (Triticum aestivum L.). Environ Exp Bot, 2021, 181: 104275.
[46] 齐学礼, 胡琳, 董海滨, 张磊, 王根松, 高崇, 许为钢. 强光高温同时作用下不同小麦品种的光合特性. 作物学报, 2008, 34: 2196-2201.
doi: 10.3724/SP.J.1006.2008.02196
Qi X L, Hu L, Dong H B, Zhang L, Wang G S, Gao C, Xu W G. Characteristics of photosynthesis in different wheat cultivars under high light intensity and high temperature stresses. Acta Agron Sin, 2008, 34: 2196-2201 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2008.02196
[47] Bao G Z, Tang W Y, An Q R, Liu Y X, Tian J Q, Zhao N, Zhu S N. Physiological effects of the combined stresses of freezing-thawing, acid precipitation and deicing salt on alfalfa seedlings. BMC Plant Biol, 2020, 20: 204-212.
doi: 10.1186/s12870-020-02413-4 pmid: 32393175
[48] 齐学礼, 方宇辉, 赵明忠, 韩留鹏, 郭瑞, 王会伟, 胡琳, 许为钢. 小麦品种郑麦7698耐强光高温的生理机制. 麦类作物学报, 2017, 37: 1589-1595.
Qi X L, Fang Y H, Zhao M Z, Han L P, Guo R, Wang H W, Hu L, Xu W G. Physiological mechanism of high light intensity and high temperature co-stress tolerance of a wheat variety Zhengmai 7698. J Triticeae Crops, 2017, 37: 1589-1595 (in Chinese with English abstract).
[49] 董杰, 陈新新, 杨倩, 张怀渝, 陈洋尔. 高光、水分和盐胁迫下小麦光合特性和抗氧化酶系统的比较. 麦类作物学报, 2018, 38: 315-322.
Dong J, Chen X X, Yang Q, Zhang H Y, Chen Y E. Effects of high light, water and salt stress on photosynthetic characteristics and antioxidant enzyme system in wheat. J Triticeae Crops, 2018, 38: 315-322 (in Chinese with English abstract).
[1] CHEN Juan, YANG Ting-Ting, YAN Su-Hui, YONG Yu-Dong, ZHANG Shi-Ya, LI Wen-Yang. Effects of waterlogging at jointing stage on starch particle size distribution and pasting properties of soft wheat [J]. Acta Agronomica Sinica, 2024, 50(7): 1877-1884.
[2] BI Jun-Ge, ZENG Zhan-Kui, LI Qiong, HONG Zhuang-Zhuang, YAN Qun-Xiang, ZHAO Yue, WANG Chun-Ping. QTL mapping and KASP marker development of grain quality-relating traits in two wheat RIL populations [J]. Acta Agronomica Sinica, 2024, 50(7): 1669-1683.
[3] QIAO Zhi-Xin, ZHANG Jie-Dao, WANG Yu, GUO Qi-Fang, LIU Yan-Jing, CHEN Rui, HU Wen-Hao, SUN Ai-Qing. Difference in germination characteristics of different winter wheat cultivars under drought stress [J]. Acta Agronomica Sinica, 2024, 50(6): 1568-1583.
[4] MA Yan-Ming, LOU Hong-Yao, WANG Wei, SUN Na, YAN Guo-Rong, ZHANG Sheng-Jun, LIU Jie, NI Zhong-Fu, XU Lin. Genetic difference and genome association analysis of grain quality traits in Xinjiang winter wheat [J]. Acta Agronomica Sinica, 2024, 50(6): 1394-1405.
[5] ZHANG Zhi-Yuan, ZHOU Jie-Guang, LIU Jia-Jun, WANG Su-Rong, WANG Tong-Zhu, ZHAO Cong-Hao, YOU Jia-Ning, DING Pu-Yang, TANG Hua-Ping, LIU Yan-Lin, JIANG Qian-Tao, CHEN Guo-Yue, WEI Yu-Ming, MA Jian. Identification and verification of low-tillering QTL based on a new model of genetic analysis in wheat [J]. Acta Agronomica Sinica, 2024, 50(6): 1373-1383.
[6] ZHU Ming-Kun, BAO Jun-Hao, PANG Jing-Lu, ZHOU Shi-Qi, FANG Zhong-Yan, ZHENG Wen, ZHANG Ya-Zhou, WU Dan-Dan. Generation and identification of a resistance to stripe rust perennial intergeneric hybrid F1 between Roegneria ciliaris and common wheat [J]. Acta Agronomica Sinica, 2024, 50(6): 1406-1420.
[7] LU Ru-Hua, WANG Wen-Xuan, CAO Qiang, TIAN Yong-Chao, ZHU Yan, CAO Wei-Xing, LIU Xiao-Jun. Research on the effects of nitrogen fertilizer and rice straw return on wheat yield and N2O emission and recommended fertilization under rice-wheat rotation pattern [J]. Acta Agronomica Sinica, 2024, 50(5): 1300-1311.
[8] CHEN Jia-Ting, BAI Xin, GU Yu-Jie, ZHANG Xiao-Wen, GUO Hui-Juan, CHANG Li-Fang, CHEN Fang, ZHANG Shu-Wei, ZHANG Xiao-Jun, LI Xin, FENG Rui-Yun, CHANG Zhi-Jian, QIAO Lin-Yi. Applicability evaluation of screen methods to identify salt tolerance in wheat at germination and seedling stages [J]. Acta Agronomica Sinica, 2024, 50(5): 1193-1206.
[9] XU Nai-Yin, JIN Shi-Qiao, JIN Fang, LIU Li-Hua, XU Jian-Wen, LIU Feng-Ze, REN Xue-Zhen, SUN Quan, XU Xu, PANG Bin-Shuang. Genetic similarity and its detection accuracy analysis of wheat varieties based on SNP markers [J]. Acta Agronomica Sinica, 2024, 50(4): 887-896.
[10] HUANG Hong-Sheng, ZHANG Xin-Yue, JU Hui, HAN Xue. Spectral characteristics of winter wheat canopy and estimation of aboveground biomass under elevated atmospheric CO2 concentration [J]. Acta Agronomica Sinica, 2024, 50(4): 991-1003.
[11] WANG Tian-Ning, FENG Ya-Lan, JU Ji-Hao, WU Yi, ZHANG Jun, MA Chao. Whole genome identification and analysis of GRFs transcription factor family in wheat and its ancestral species [J]. Acta Agronomica Sinica, 2024, 50(4): 897-813.
[12] QI Xue-Li, LI Ying, LI Chun-Ying, HAN Liu-Peng, ZHAO Ming-Zhong, ZHANG Jian-Zhou. Alleviative effect of salicylic acid on wheat seedlings with stripe rust based on transcriptome and differentially expressed genes [J]. Acta Agronomica Sinica, 2024, 50(4): 1080-1090.
[13] ZHANG Zhen, ZHAO Jun-Ye, SHI Yu, ZHANG Yong-Li, YU Zhen-Wen. Effects of different sowing space on photosynthetic characteristics after anthesis and grain yield of wheat [J]. Acta Agronomica Sinica, 2024, 50(4): 981-990.
[14] HAO Qian-Lin, YANG Ting-Zhi, LYU Xin-Ru, QIN Hui-Min, WANG Ya-Lin, JIA Chen-Fei, XIA Xian-Chun, MA Wu-Jun, XU Deng-An. QTL mapping and GWAS analysis of coleoptile length in bread wheat [J]. Acta Agronomica Sinica, 2024, 50(3): 590-602.
[15] ZHAO Rong-Rong, CONG Nan, ZHAO Chuang. Optimal phase selection for extracting distribution of winter wheat and summer maize over central subregion of Henan Province based on Landsat 8 imagery [J]. Acta Agronomica Sinica, 2024, 50(3): 721-733.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!