Acta Agronomica Sinica ›› 2024, Vol. 50 ›› Issue (8): 1961-1970.doi: 10.3724/SP.J.1006.2024.33050
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
CAO Xiao-Qing(), QI Xian-Tao, LIU Chang-Lin, XIE Chuan-Xiao(
)
[1] | 徐雷, 贾飞飞, 王利琳. 拟南芥开花诱导途径分子机制研究进展. 西北植物学报, 2011, 31: 1057-1065. |
Xu L, Jia F F, Wang L L. Progresses on molecular mechanisms of flowering transition in Arabidopsis. Acta Bot Boreali-Occident Sin, 2011, 31: 1057-1065 (in Chinese with English abstract). | |
[2] | Hung H Y, Shannon L M, Tian F, Bradbury P J, Chen C, Garcia S A F, McMullen M D, Ware D, Buckler E S, Doebley J F, Holland J B. ZmCCT and the genetic basis of day-length adaptation underlying the post domestication spread of maize. Proc Natl Acad Sci USA, 2012, 109: 1913-1921. |
[3] | Jin M L, Liu X G, Jia W, Liu H J, Li W Q, Peng Y, Du Y F, Wang Y B, Yin Y J, Zhang X H, Liu Q, Deng M, Li N, Cui X Y, Hao D Y, Yan J B. ZmCOL3, a CCT gene represses flowering in maize by interfering with the circadian clock and activating expression of ZmCCT. J Integr Plant Biol, 2018, 60: 465-480. |
[4] | Xue W Y, Xing Y Z, Weng X Y, Zhao Y, Tang W J, Wang L, Zhou H J, Yu S B, Xu C G, Li X H, Zhang Q F. Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nat Genet, 2008, 40: 761-767. |
[5] | Meng X, Muszynski M G, Danilevskaya O N. The FT-like ZCN8 gene functions as a floral activator and is involved in photoperiod sensitivity in maize. Plant Cell, 2011, 23: 942-960. |
[6] |
Yang Q, Li Z, Li W Q, Ku L X, Wang C, Ye J R, Li K, Yang N, Li Y P, Zhong T, Li J S, Chen Y H, Yan J B, Yang X H, Xu M L. CACTA-like transposable element in ZmCCT attenuated photoperiod sensitivity and accelerated the post domestication spread of maize. Proc Natl Acad Sci USA, 2013, 110: 16969-16974.
doi: 10.1073/pnas.1310949110 pmid: 24089449 |
[7] | Huang C, Sun H Y, Xu D Y, Chen Q Y, Liang Y M, Wang X F, Xu G H, Tian J G, Wang C L, Li D, Wu L S, Yang X H, Jin W W, Doebley J F, Tian F. ZmCCT9 enhances maize adaptation to higher latitudes. Proc Natl Acad Sci USA, 2018, 115: 334-341. |
[8] | Jamann T M, Sood S, Wisser R J, Holland J B. High-throughput resequencing of maize landraces at genomic regions associated with flowering time. PLoS One, 2017, 12: e0168910. |
[9] |
郭栋, 杜媚, 周宝元, 高卓晗, 曹哲统, 赵明. 玉米CCT基因家族的鉴定与生物信息学分析. 植物遗传资源学报, 2019, 20: 1001-1010.
doi: 10.13430/j.cnki.jpgr.20181107001 |
Guo D, Du M, Zhou B Y, Gao Z H, Cao Z T, Zhao M. Identification and bioinformatic analysis of maize CCT gene family. J Plant Genet Resour, 2019, 20: 1001-1010 <br (in Chinese with English abstract). | |
[10] |
Zhang H, Zhang J S, Wei P L, Zhang B T, Gou F, Feng Z Y, Mao Y F, Yang L, Zhang H, Xu N F, Zhu J K. The CRISPR/Cas9 system produces specific and homozygous targeted gene editing in rice in one generation. Plant Biotechnol J, 2014, 12: 797-807.
doi: 10.1111/pbi.12200 pmid: 24854982 |
[11] | Zeng D C, Liu T L, Ma X L, Wang B, Zheng Z Y, Zhang Y L, Xie X R, Yang B W, Zhao Z, Zhu Q L, Liu Y G. Quantitative regulation of Waxy expression by CRISPR/Cas9-based promoter and 5'UTR-intron editing improves grain quality in rice. Plant Biotechnol J, 2020, 18: 2385. |
[12] |
Wang Y P, Cheng X, Shan Q W, Zhang Y, Liu J X, Gao C X, Qiu J L. Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat Biotechnol, 2014, 32: 947-953.
doi: 10.1038/nbt.2969 pmid: 25038773 |
[13] | Zhang S J, Zhang R Z, Gao J, Gu T T, Song G Q, Li W, Li D D, Li Y L, Li Y G. Highly efficient and heritable targeted mutagenesis in wheat via the Agrobacterium tumefaciens-mediated CRISPR/Cas9 system. Int J Mol Sci, 2019, 20: 4257. |
[14] |
Jacobs T B, LaFayette P R, Schmitz R J, Parrott W A. Targeted genome modifications in soybean with CRISPR/Cas9. BMC Biotechnol, 2015, 15: 16.
doi: 10.1186/s12896-015-0131-2 pmid: 25879861 |
[15] |
Wang L W, Sun S, Wu T T, Liu L P, Sun X G, Cai Y P, Li J C, Jia H C, Yuan S, Chen L, Jiang B J, Wu C X, Hou W S, Han T F. Natural variation and CRISPR/Cas9-mediated mutation in GmPRR37 affect photoperiodic flowering and contribute to regional adaptation of soybean. Plant Biotechnol J, 2020, 18: 1869-1881.
doi: 10.1111/pbi.13346 pmid: 31981443 |
[16] | Li C X, Liu C L, Qi X T, Wu Y C, Fei X H, Mao L, Cheng B J, Li X H, Xie C X. RNA-guided Cas9 as an in vivo desired-target mutator in maize. Plant Biotechnol J, 2017, 15: 1566-1576. |
[17] |
Dong L, Qi X T, Zhu J J, Liu C L, Zhang X, Cheng B J, Mao L, Xie C X. Supersweet and waxy: meeting the diverse demands for specialty maize by genome editing. Plant Biotechnol J, 2019, 17: 1853.
doi: 10.1111/pbi.13144 pmid: 31050154 |
[18] | Yifhar T, Pekker I, Peled D, Friedlander D, Pistunov A, Sabban M, Wachsman G, Alvarez J P, Amsellem Z, Eshed Y. Failure of the tomato trans-acting short interfering RNA program to regulate AUXIN RESPONSE FACTOR3 and ARF4 underlies the wiry leaf syndrome. Plant Cell, 2012, 24: 3575-3589. |
[19] |
Ma X L, Zhang Q Y, Zhu Q L, Liu W, Chen Y, Qiu R, Wang B, Yang Z F, Li H Y, Lin Y R, Xie Y Y, Shen R X, Chen S F, Wang Z, Chen Y L, Guo J X, Chen L T, Zhao X C, Dong Z C, Liu Y G. A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants. Mol Plant, 2015, 8: 1274-1284.
doi: 10.1016/j.molp.2015.04.007 pmid: 25917172 |
[20] |
Hsu P D, Lander E S, Zhang F. Development and applications of CRISPR-Cas9 for genome engineering. Cell, 2014, 157: 1262-1278.
doi: S0092-8674(14)00604-7 pmid: 24906146 |
[21] | Zhang H, Zhang J S, Lang Z B, Botella J R, Zhu J K. Genome editing-principles and applications for functional genomics research and crop improvement. Crit Rev Plant Sci, 2017, 36: 291-309. |
[22] | Soyk S, Müller N A, Park S J, Schmalenbach I, Jiang K, Hayama R, Zhang L, Eck J V, Jiménez-Gómez J M, Lippman Z B. Variation in the flowering gene SELF PRUNING 5G promotes day- neutrality and early yield in tomato. Nat Genet, 2017, 49: 162-168. |
[23] | Cai Y P, Chen L, Liu X J, Guo C, Sun S, Wu C X, Jiang B J, Han T F, Hou W S. CRISPR/Cas9-mediated targeted mutagenesis of GmFT2a delays flowering time in soybean. Plant Biotechnol J, 2018, 16: 176-185. |
[24] |
Liu X Q, Tian J, Zhou X J, Chen R M, Wang L, Zhang C Y, Zhao J, FanY L. Identification and characterization of promoters specifically and strongly expressed in maize embryos. Plant Biotechnol J, 2014, 12: 1286-1296.
doi: 10.1111/pbi.12227 pmid: 25052028 |
[25] |
Kalla R, Shimamoto K, Potter R, Nielsen P S, Linnestad C, Olsen O A. The promoter of the barley aleurone-specific gene encoding a putative 7 kDa lipid transfer protein confers aleurone cell-specific expression in transgenic rice. Plant J, 1994, 6: 849-860.
pmid: 7849757 |
[26] |
Dong L, Li L N, Liu C L, Liu C X, Geng S F, Li X H, Huang C L, Mao L, Chen S J, Xie C X. Genome editing and double- fluorescence proteins enable robust maternal haploid induction and identification in maize. Mol Plant, 2018, 11: 1214-1217.
doi: S1674-2052(18)30218-1 pmid: 30010025 |
[27] | 李荣华, 夏岩石, 刘顺枝, 孙莉丽, 郭培国, 缪绅裕, 陈健辉. 改进的CTAB提取植物DNA方法. 实验室研究与探索, 2009, 28(9): 14-16. |
Li R H, Xia Y S, Liu S Z, Sun L L, Guo P G, Miao S Y, Chen J H. CTAB-improved method of DNA extraction in plant. Res Explor Lab, 2009, 28(9): 14-16 (in Chinese with English abstract). | |
[28] | 马兴亮, 刘耀光. 植物CRISPR/Cas9基因组编辑系统与突变分析. 遗传, 2015, 38: 118-125. |
Ma X L, Liu Y G. CRISPR/Cas9-based genome editing systems and the analysis of targeted genome mutations in plants. Hereditas (Beijing), 2015, 38: 118-125 (in Chinese with English abstract). |
[1] | YE Liang, ZHU Ye-Lin, PEI Lin-Jing, ZHANG Si-Ying, ZUO Xue-Qian, LI Zheng-Zhen, LIU Fang, TAN Jing. Screening candidate resistance genes to ear rot caused by Fusarium verticillioides in maize by combined GWAS and transcriptome analysis [J]. Acta Agronomica Sinica, 2024, 50(9): 2279-2296. |
[2] | SUN Zhao-Hua, REN Hao, WANG Hong-Zhang, WANG Zi-Qiang, YAO Hai-Yan, XIN Ai-Mei, ZHAO Bin, ZHANG Ji-Wang, REN Bai-Zhao, LIU Peng. Effects of foliar silicon sprays on leaf photosynthetic performance and grain yield of summer maize in coastal saline-alkali soil [J]. Acta Agronomica Sinica, 2024, 50(9): 2383-2395. |
[3] | LIU Chen, WANG Kun-Kun, LIAO Shi-Peng, YANG Jia-Qun, CONG Ri-Huan, REN Tao, LI Xiao-Kun, LU Jian-Wei. Effects of nitrogen fertilizer application levels on yield and nitrogen absorption and utilization of oilseed rape under maize-oilseed rape and rice-oilseed rape rotation fields [J]. Acta Agronomica Sinica, 2024, 50(8): 2067-2077. |
[4] | LIU Chen-Ming, ZHAO Ke-Yong, YUE Man-Fang, ZHAO Yan-Ming, WU Zhong-Yi, ZHANG Chun. Functional study on the regulation of root growth and development and stress tolerance by maize transcription factor ZmEREB180 [J]. Acta Agronomica Sinica, 2024, 50(8): 1920-1933. |
[5] | LIU Shuang, LI Shen, WANG Dong-Mei, SHA Xiao-Qian, HE Guan-Hua, ZHANG Deng-Feng, LI Yong-Xiang, LIU Xu-Yang, WANG Tian-Yu, LI Yu, LI Chun-Hui. Superior allele genes mining for drought tolerance in maize based on introgression line from a cross between maize and teosinte [J]. Acta Agronomica Sinica, 2024, 50(8): 1896-1906. |
[6] | LIANG Lu, ZHOU Bao-Yuan, GAO Zhuo-Han, WANG Rui, WANG Xin-Bing, ZHAO Ming, LI Cong-Feng. Root and shoot growth of different maize varieties in response to soil compaction stress [J]. Acta Agronomica Sinica, 2024, 50(8): 2053-2066. |
[7] | GUO Si-Yu, ZHAO Ke-Yong, DAI Zheng-Gang, ZOU Hua-Wen, WU Zhong-Yi, ZHANG Chun. Functional analysis of maize N-acetyltransferase ZmNAT1 gene in response to abiotic stress [J]. Acta Agronomica Sinica, 2024, 50(8): 2001-2013. |
[8] | WANG Rui, SUN Bo, ZHANG Yun-Long, ZHANG Ming-Qi, FAN Ya-Ming, TIAN Hong-Li, ZHAO Yi-Kun, YI Hong-Mei, KUANG Meng, WANG Feng-Ge. Application analysis of chloroplast markers on rapid classification in maize germplasm [J]. Acta Agronomica Sinica, 2024, 50(7): 1867-1876. |
[9] | FANG Yu-Hui, QI Xue-Li, LI Yan, ZHANG Yu, PENG Chao-Jun, HUA Xia, CHEN Yan-Yan, GUO Rui, HU Lin, XU Wei-Gang. Effects of high light stress on photosynthesis and physiological characteristics of wheat with maize C4-type ZmPEPC+ZmPPDK gene [J]. Acta Agronomica Sinica, 2024, 50(7): 1647-1657. |
[10] | WANG Fei-Er, GUO Yao, LI Pan, WEI Jin-Gui, FAN Zhi-Long, HU Fa-Long, FAN Hong, HE Wei, YIN Wen, CHEN Gui-Ping. Compensation mechanism of increased maize density on yield with water and nitrogen reduction supply in oasis irrigation areas [J]. Acta Agronomica Sinica, 2024, 50(6): 1616-1627. |
[11] | SHE Meng, ZHENG Deng-Yu, KE Zhao, WU Zhong-Yi, ZOU Hua-Wen, ZHANG Zhong-Bao. Cloning and functional analysis of ZmGRAS13 gene in maize [J]. Acta Agronomica Sinica, 2024, 50(6): 1420-1434. |
[12] | ZHENG Xue-Qing, WANG Xing-Rong, ZHANG Yan-Jun, GONG Dian-Ming, QIU Fa-Zhan. Mapping of QTL for ear-related traits and prediction of key candidate genes in maize [J]. Acta Agronomica Sinica, 2024, 50(6): 1435-1450. |
[13] | WANG Yong-Liang, XU Zi-Hang, LI Shen, LIANG Zhe-Ming, BAI Ju, YANG Zhi-Ping. Effects of different mulching measures on moisture and temperature of soil and yield and water use efficiency of spring maize [J]. Acta Agronomica Sinica, 2024, 50(5): 1312-1324. |
[14] | TIAN Hong-Li, YANG Yang, FAN Ya-Ming, YI Hong-Mei, WANG Rui, JIN Shi-Qiao, JIN Fang, ZHANG Yun-Long, LIU Ya-Wei, WANG Feng-Ge, ZHAO Jiu-Ran. Development of an optimal core SNP loci set for maize variety genuineness identification [J]. Acta Agronomica Sinica, 2024, 50(5): 1115-1123. |
[15] | SU Shuai, LIU Xiao-Wei, NIU Qun-Kai, SHI Zi-Wen, HOU Yu-Wei, FENG Kai-Jie, RONG Ting-Zhao, CAO Mo-Ju. Identification and gene cloning of leafy dwarf mutant lyd1 in maize [J]. Acta Agronomica Sinica, 2024, 50(5): 1124-1135. |
|