Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2024, Vol. 50 ›› Issue (5): 1124-1135.doi: 10.3724/SP.J.1006.2024.33044

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Identification and gene cloning of leafy dwarf mutant lyd1 in maize

SU Shuai(), LIU Xiao-Wei, NIU Qun-Kai, SHI Zi-Wen, HOU Yu-Wei, FENG Kai-Jie, RONG Ting-Zhao, CAO Mo-Ju*()   

  1. Maize Research Institute, Sichuan Agricultural University / Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture and Rural Affairs, Chengdu 611130, Sichuan, China
  • Received:2023-07-31 Accepted:2024-01-12 Online:2024-05-12 Published:2024-02-08
  • Contact: E-mail: caomj@sicau.edu.cn
  • Supported by:
    Sichuan Science and Technology Program(2021YFYZ0011);Sichuan Science and Technology Program(2021YFYZ0017);Sichuan Science and Technology Program(MZGC20230108);Specific Research Supporting Program for Discipline Construction at Sichuan Agricultural University.

Abstract:

The decrease of plant height in maize is usually caused by the decrease in the number of internodes, the shortening of internodes or the combination of both. However, in this study, the mutant leafy dwarf1 (lyd1) found in the progeny of gene editing, exhibited more leaves and shorter stature. Quantitative measurements indicated the plant height of mutant lyd1 was only 93.10 cm, the plant height of wild-type KN5585 was 159.95 cm. The plant height was significantly reduced by 41.79% in mutant lyd1 compared with the wild type KN5585. The wild type KN5585 produced an average of 17.8 leaves at maturity stage, whereas mutants lyd1 produced 27.8 leaves. The number of leaves were significantly increased by 56.18% in mutant lyd1 compared with the wild type. Genetic analysis showed that the mutation phenotype of lyd1 was controlled by a pair of recessive nuclear genes. We applied a map-based cloning strategy to identify the gene responsible for the lyd1 phenotype. The gene was located between Indel10 and Indel11 on maize chromosome 3, and the physical distance was 0.74 Mb. Gene sequencing analysis of 13 genes (excluding pseudogenes) within the interval revealed that one base A was substituted in the fourth exon of ZmTE1, and there was no significant difference in other genes. ZmTE1 encoded an RNA-binding protein. The amino acid substitution was in the third RNA binding domain (RRM3), resulting in the conversion of aspartic acid to valine. The mutation sites of the mutant lyd1 were different from te1-mum1, te1-mum2, te1-mum3, and zm66 in previously reported. The discovery of lyd1 provides valuable materials for further analysis of the genetic mechanism of the balance between leaves and internodes development in maize.

Key words: maize, the number of leaves, the length of internodes, gene mapping

Fig. 1

Comparison of characters between wild type KN5585 and mutant lyd1 A, B, and C: represent the 5th leaf stage, 10th leaf stage, and mature stage of wild type KN5585 and mutant lyd1, respectively. D: leaves phenotypes of wild type KN5585 and mutant lyd1 at maturity. E: the tassel phenotype of wild type KN5585 and mutant lyd1. F, G: phenotypes of ear and kernel of wild types KN5585 and mutant lyd1. Bar: A 15 cm; B, C, D 30 cm; E 5 cm; F 2 cm."

Fig. 2

Comparison of internodes and leaves development between wild type KN5585 and mutant lyd1 A: the comparison of internodes length between the wild type KN5585 and mutant lyd1, 0 represents the internode of the ear, -1 represents the first internode below the ear, +1 represents the first internode above the ear, and so on. B: the comparison of leaves development between wild type KN5585 and mutant lyd1. The vertical axis shows the average number of leaves in the surveyed population. The horizontal axis indicates the survey date."

Table 1

Agronomic characters of lyd1 and KN5585"

农艺性状
Agronomic trait
野生型
KN5585
突变体
lyd1
相比KN5585
Compared with KN5585 (%)
株高 Plant height (cm) 159.95±6.37 93.10±6.78 -41.79**
穗位高 Ear height (cm) 64.37±5.50 43.48±2.96 -32.45**
完全叶数量 Number of the complete leaves 17.80±0.96 27.80±1.18 56.18**
雄穗分支数 Number of the tassel branches 12.07±1.38 9.59±1.53 -20.55**
叶长(穗位叶) Length of leaf (cm) 63.60±2.76 43.65±1.29 -31.37**
叶长(穗位叶下第一叶) Length of leaf (cm) 63.30±3.62 43.51±1.76 -31.26**
叶长(穗位叶下第二叶) Length of leaf (cm) 63.30±2.11 39.60±2.19 -37.44**
叶宽(穗位叶) Width of leaf (cm) 6.81±0.23 6.24±0.32 -8.37*
叶宽(穗位叶下第一叶) Width of leaf (cm) 7.72±0.20 6.58±0.57 -14.77**
叶宽(穗位叶下第二叶) Width of leaf (cm) 8.17±0.25 6.89±0.33 -15.67**
穗长 Ear length (mm) 137.5±3.94 75.93±4.54 -44.78**
穗粗 Ear width (mm) 41.66±1.51 35.61±1.35 -14.52**
穗行数 Ear rows 14.53±0.88 14.70±1.24 1.17
行粒数 Kernels per row 28.47±2.31 14.40±2.73 -49.42**
穗粒重 Grain weight per ear (g) 88.75±3.83 27.78±3.09 -68.70**
百粒重 100-kernel weight (g) 23.56±1.31 16.80±2.35 -25.70**
播种至群体内50%植株散粉的天数
Time to sow until 50% of the plant is powdered (d)
89.03±2.10
88.64±1.79
0.44

Fig. 3

Paraffin sections of wild type KN5585 and mutant lyd1 in the second internode of ear after loose powder were observed A: the observation of longest intersegmental (the internode where the 11th leaf is located.) cells of wild type KN5585 after loose powder; B: the observation of longest intersegmental (the internode where the 19th leaf is located.) cells of mutant lyd1 after loose powder; C, D: the comparison of longest intersegmental cell length and number between wild type KN5585 and mutant lyd1. Bar: 5 μm; **: P < 0.01."

Table 2

Gene location-related marker information of mutant lyd1"

引物
Primer name
正向引物物理位置
Physical location of the forward sequences in Chr.3
正向引物
Forward sequence (5'-3')
反向引物
Reverse sequence (5'-3')
Bnlg1019 26,363,937 ACCATAGTTGGACGGACCAC ACCACAACACAGACGAGCAC
Indel1 119,614,380 GTCTCCTCAGGCTCAGCG TCCAGTGGTGGTGTAGCAGA
Indel2 151,632,100 CGCATTTGAACACAGACAATG TTGTTTGTCAGATTGGACCG
Indel3 153,748,760 CGCATTTGAACACAGACAATG TTGTTTGTCAGATTGGACCG
Indel4 158,344,977 AATTCTTGCAGAAGTAGAGAGCC ACTTCATCACCACCTCCACC
Indel5 159,813,116 CTTTTGCCTCTGGCGTTTG GCAGTCAATGGGGATGGA
Indel6 160,577,046 ATTGGGAGGCACAGCCTAAC CTGAGCCTCTGTACCTTGGG
Indel7 164,148,097 CCCTCCACATCATCACCAGT GATGATCCGACGCTGTCTTT
Inde18 175,087,860 TGAACGAACGATTAACGATGA GAGGATTTCGTCTTGGTTCG
Indel9 176,089,140 GACATGTCCGTCGGTTCC CACGTACATGGTTCGCATTC
Indel10 169,660,810 GAACGCGACACGGAGGTC TGACTGACACATGCTTGCAC
Indel11 170,400,425 CGGCCGAATAATTAGAGTTCC GAGCATCTTTTTGGACCAGC
Indel12 170,529,987 TCTGAGCACCAGATCAAATCA GCACTCGAGGGAATGAAATC
Indel13 171,483,961 CACTGGCAGCAGCAGACTAA AAATATTCCGAGAACGAGCG
SNP1 169,869,794 GCTAGTAACGCCATAGCCCA TCTCGCCTGGTTCTTGATCG

Fig. 4

Fine mapping of lyd1 mutant A: the candidate gene was preliminarily located between the Indel7 and Indel8 molecular markers on chromosome 3; B: the candidate gene was finely positioned between the Indel10 and Indel11 molecular markers on chromosome 3; C: there are 14 candidate genes in the fine localization interval. Above the horizontal line is the molecular marker, below the horizontal line is the number of recombinant individual plants."

Table 3

Information of candidate genes within the localization interval"

基因ID
B73_V5_gene ID
功能注释
Function annotation
位置
Location
Zm00001eb144240 Ald1-aldolase 170,387,546-170,390,313
Zm00001eb144160 Ccp33-cysteine protease 170,125,038-170,126,144
Zm00001eb144140 RNA blind protein 169,867,979-169,872,110
Zm00001eb144180 JmjC domain—containing histone demethylase 170,134,182-170,134,702
Zm00001eb144170 JmjC domain—containing histone demethylase 170,128,075-170,133,903
Zm00001eb144220 Protein_coding 170,296,791-170,307,581
Zm00001eb144250 Protein_coding 170,390,315-170,392,581
Zm00001eb144260 Protein_coding 170,393,357-170,396,464
Zm00001eb144210 Protein_coding 170,142,920-170,157,964
Zm00001eb144200 Non_coding 170,140,528-170,140,860
Zm00001eb144190 Non_coding 170,140,015-170,140,550
Zm00001eb144150 Non_coding 170,124,627-170,126,302
Zm00001eb144230 Non_coding 170,332,480-170,333,214
Zm00001eb144130 Pseudogene 169,694,106-169,706,660

Fig. 5

lyd1 mutation site and conservative analysis of mutation site A: the comparison of CDS difference sequence of ZmTE1 in mutant lyd1 and wild type KN5585; B, C: the conservative analysis of amino acid residues mutated in ZmTE1 protein sequence."

Fig. 6

Population verification of ZmTE1 sequence difference sites between wild type KN5585 and mutant lyd1"

Fig. 7

Tissue expression analysis of ZmTE1 A: the relative expression level of ZmTE1 genes in different tissues of wild type KN5585; B: the comparison of ZmTE1 expression in wild type KN5585 and mutant lyd1. V3, V7, V11, and V17 represent the stage when the maize has 3, 7, 11, and 17 fully unfolded leaves, respectively."

Fig. 8

Subcellular localization of ZmTE1 PC2300-eGFP-ZmTE1 are colocalized with NLS (nuclear marker) and mCherry (cell membrane marker). Bar: 50 μm."

[1] Tester M, Langridge P. Breeding technologies to increase crop production in a changing world. Science, 2010, 327: 818-822.
doi: 10.1126/science.1183700 pmid: 20150489
[2] Haarhoff S J, Swanepoel P A. Plant population and maize grain yield: a global systematic review of rainfed trials. Crop Sci, 2018, 5: 1819-1829.
[3] Bensen R J, Johal G S. Cloning and characterization of the maize AN1 gene. Plant Cell, 1995, 7: 75-84.
doi: 10.1105/tpc.7.1.75 pmid: 7696880
[4] Chen Y, Hou M M, Liu L J, Wu S, Shen Y, Ishiyama K, Kobaya, Shi M, McCarty D R, Tan B C. The maize Dwarf1 encodes a gibberellin 3-oxidase and is dual localized to the nucleus and cytosol. Plant Physiol, 2014, 166: 2028-2039.
doi: 10.1104/pp.114.247486 pmid: 25341533
[5] Teng F, Zhai L H, Liu R X, Bai W, Wang L Q, Huo D G, Tao Y S, Zheng Y L, Zhang Z X. ZmGA3ox2, a candidate gene for a major QTL, qPH3.1, for plant height in maize. Plant J, 2013, 73: 405-416.
doi: 10.1111/tpj.2013.73.issue-3
[6] Winkler R G, Helentjaris T. The maize Dwarf3 gene encodes a cytochrome P450-mediated early step in gibberellin biosynthesis. Plant Cell, 1995, 7: 1307-1317.
doi: 10.1105/tpc.7.8.1307 pmid: 7549486
[7] Cassani E, Bertolini E, Cerino Badone F, Landoni M, Gavina D, Sirizzotti A, Pilu R. Characterization of the first dominant dwarf maize mutant carrying a single amino acid insertion in the VHYNP domain of the Dwarf8 gene. Mol Breed, 2009, 24: 375-385.
doi: 10.1007/s11032-009-9298-3
[8] Harberd N P, Freeling M. Genetics of dominant gibberellin- insensitive dwarfism in maize. Genetics, 1989, 121: 827-838.
doi: 10.1093/genetics/121.4.827 pmid: 17246493
[9] Lawit S J, Wych H M, Xu D, Kundu S, Tomes D T. Maize DELLA proteins Dwarf plant8 and Dwarf plant9 as modulators of plant development. Plant Cell Physiol, 2010, 51: 1854-1868.
doi: 10.1093/pcp/pcq153
[10] Multani D S, Briggs S P, Chamberlin M A, Blakeslee J J, Murphy A S, Johal G S. Loss of an MDR transporter in compact stalks of maize Br2and sorghum Dw3 mutants. Science, 2003, 302: 81-84.
doi: 10.1126/science.1086072 pmid: 14526073
[11] Zhang X, Hou X, Liu Y, Zheng L, Yi Q, Zhang H, Huang X, Zhang J, Hu Y, Yu G, Liu H, Li Y, Huang H, Zhan F, Chen L, Tang J, Huang Y. Maize brachytic2 (Br2) suppresses the elongation of lower internodes for excessive auxin accumulation in the intercalary meristem region. BMC Plant Biol, 2019, 19: 589.
doi: 10.1186/s12870-019-2200-5 pmid: 31881837
[12] Hartwig T, Chuck G S, Fujioka S, Klempien A, Weizbauer R, Potluri D P V, Choe S, Johal G S, Schulz B. Brassinosteroid control of sex determination in maize. Proc Natl Acad Sci USA, 2011, 108: 19814-19819.
doi: 10.1073/pnas.1108359108 pmid: 22106275
[13] Best N B, Hartwig T, Budka J, Fujioka S, Johal G, Schulz B, Dilkes B P. Nana plant2 encodes a maize ortholog of the Arabidopsis brassinosteroid biosynthesis gened Dwarf1, identifying developmental interactions between brassinosteroids and gibberellins. Plant Physiol, 2016, 171: 2633-2647.
doi: 10.1104/pp.16.00399
[14] Makarevitch I, Thompson A, Muehlbauer G J, Springer N M. Brd1 gene in maize encodes a brassinosteroid C-6 oxidase. PLoS One, 2012, 7: e30798.
[15] Kir G, Ye H, Nelissen H, Neelakandan A K, Kusnandar A S, Luo A, Inzé D, Sylvester A W, Yin Y, Becraft P W. RNA interference knock down of BRI1 in maize reveals novel functions for brassinosteroid signaling in controlling plant architecture. Plant Physiol, 2015, 169: 826-839.
doi: 10.1104/pp.15.00367
[16] Li H, Wang L, Liu M, Dong Z, Li Q, Fei S, Xiang H, Liu B, Jin W. Maize plant architecture is regulated by the ethylene biosynthetic gene ZmACS7. Plant Physiol, 2020, 183: 1184-1199.
doi: 10.1104/pp.19.01421
[17] Schaller G E, Bishopp A, Kieber J J. The Yin-Yang of hormones: cytokinin and auxin interactions in plant development. Plant Cell, 2015, 27: 44-63.
doi: 10.1105/tpc.114.133595
[18] Phillips K A, Skirpan A L, Liu X, Christensen A, Slewinski T L, Hudson C, Barazesh S, Cohen J D, Malcomber S, Mcsteen P. Vanishing tassel2 encodes a grass-specific tryptophan aminotransferase required for vegetative and reproductive development in maize. Plant Cell, 2011, 23: 550-566.
doi: 10.1105/tpc.110.075267
[19] Lee B H, Johnston R, Yang Y, Gallavotti A, Kojima M, Travençolo B A, Costa Lda F, Sakakibara H, Jackson D. Studies of Aberrant phyllotaxy1 mutants of maize indicate complex interactions between auxin and cytokinin signaling in the shoot apical meristem. Plant Physiol, 2009, 150: 205-216.
[20] 张在宝, 李婉杰, 李九丽, 张弛, 胡梦辉, 程琳, 袁红雨. 植物RNA结合蛋白研究进展. 中国农业科学, 2018, 51: 4007-4019.
doi: 10.3864/j.issn.0578-1752.2018.21.001
Zhang Z B, Li W J, Li J L, Zhang C, Hu M H, Cheng L, Yuan H Y. The research progress of plant RNA binding proteins. Sci Agric Sin, 2018, 51: 4007-4019 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2018.21.001
[21] Cho H, Cho H S, Hwang I. Emerging roles of RNA-binding proteins in plant development. Curr Opin Plant Biol, 2019, 51: 51-57.
doi: S1369-5266(19)30026-3 pmid: 31071564
[22] Jeffares D C, Phillips M J, Moore S, Veit B. A description of the Mei2-like protein family; structure, phylogenetic distribution and biological context. Dev Genes Evol, 2004, 214: 149-158.
pmid: 14986133
[23] Kawakatsu T, Itoh J, Miyoshi K, Kurata N, Alvarez N, Veit B, Nagato Y. PLASTOCHRON2 regulates leaf initiation and maturation in rice. Plant Cell, 2006, 18: 612-625.
pmid: 16461585
[24] Anderson G H, Alvarez N D, Gilman C, Jeffares D C, Trainor V C, Hanson M R, Veit B. Diversification of genes encoding mei2-like RNA binding proteins in plants. Plant Mol Biol, 2004, 54: 653-670.
pmid: 15356386
[25] 王关林, 方宏筠. 植物基因工程(第2版). 北京: 科学出版社, 2002. pp 742-744.
Wang G L, Fang H Y. Plant Gene Engineering, 2nd edn. Beijing: Science Press, 2002. pp 742-744 (in Chinese).
[26] Michelmore R W, Paran I, Kesseli R V. Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA, 1991, 88: 9828-9832.
doi: 10.1073/pnas.88.21.9828 pmid: 1682921
[27] Avila L M, Cerrudo D, Swanton C, Lukens L. Brevis plant1, a putative inositol polyphosphate 5-phosphatase, is required for internode elongation in maize. J Exp Bot, 2016, 67: 1577-1588.
doi: 10.1093/jxb/erv554 pmid: 26767748
[28] Zhang D, Sun W, Singh R, Zheng Y, Cao Z, Li M, Lunde C, Hake S, Zhang Z. GRF-interacting factor1 regulates shoot architecture and meristem determinacy in maize. Plant Cell, 2018, 30: 360-374.
doi: 10.1105/tpc.17.00791
[29] Li W, Ge F, Qiang Z, Zhu L, Zhang S, Chen L, Wang X, Li J, Fu Y. Maize ZmRPH1 encodes a microtubule-associated protein that controls plant and ear height. Plant Biotechnol J, 2020, 18: 1345-1347.
doi: 10.1111/pbi.v18.6
[30] Heuer S, Hansen S, Bantin J, Brettschneider R, Kranz E, Lörz H, Dresselhaus T. The maize MADS box gene ZmMADS3 affects node number and spikelet development and is co-expressed with ZmMADS1 during flower development, in egg cells, and early embryogenesis. Plant Physiol, 2001, 127: 33-45.
doi: 10.1104/pp.127.1.33 pmid: 11553732
[31] Lyu H K, Zheng J, Wang T Y, Fu J J, Huai J L, Min H W, Zhang X, Tian B H, Shi Y S, Wang G Y. The maize d2003, a novel allele of VP8, is required for maize internode elongation. Plant Mol Biol, 2014, 84: 243-257.
doi: 10.1007/s11103-013-0129-x
[32] Bommert P, Je B I, Goldshmidt A, Jackson D. The maize Gα gene Compact plant2 functions in clavata signalling to control shoot meristem size. Nature, 2013, 502: 555-558.
doi: 10.1038/nature12583
[33] Veit B, Briggs S P. Regulation of leaf initiation by the terminal ear1 gene of maize. Nature, 1998, 393: 166-168.
doi: 10.1038/30239
[34] Wang F, Yu Z, Zhang M, Wang M, Lu X, Liu X, Li Y, Zhang X, Tan B C, Li C, Ding Z. ZmTE1 promotes plant height by regulating intercalary meristem formation and internode cell elongation in maize. Plant Biotechnol J, 2022, 20: 526-537.
doi: 10.1111/pbi.v20.3
[35] Hentze M W, Castello A, Schwarzl T, Preiss T. A brave new world of RNA-binding proteins. Nat Rev Mol Cell Biol, 2018, 19: 327-341.
doi: 10.1038/nrm.2017.130
[36] 唐蜻. 植物RNA结合蛋白的研究进展. 安徽农业科学, 2010, 38(1): 38-41.
Tang Q. The research progress of plant RNA binding proteins. J Anhui Agric Sci, 2010, 38(1): 38-41 (in Chinese with English abstract).
[1] HAN Jie-Nan, ZHANG Ze, LIU Xiao-Li, LI Ran, SHANG-GUAN Xiao-Chuan, ZHOU Ting-Fang, PAN Yue, HAO Zhuan-Fang, WENG Jian-Feng, YONG Hong-Jun, ZHOU Zhi-Qiang, XU Jing-Yu, LI Xin-Hai, LI Ming-Shun. Analysis of differential accumulation of starch in waxy maize grain caused by the o2 mutation gene [J]. Acta Agronomica Sinica, 2024, 50(5): 1207-1222.
[2] WANG Yong-Liang, XU Zi-Hang, LI Shen, LIANG Zhe-Ming, BAI Ju, YANG Zhi-Ping. Effects of different mulching measures on moisture and temperature of soil and yield and water use efficiency of spring maize [J]. Acta Agronomica Sinica, 2024, 50(5): 1312-1324.
[3] TIAN Hong-Li, YANG Yang, FAN Ya-Ming, YI Hong-Mei, WANG Rui, JIN Shi-Qiao, JIN Fang, ZHANG Yun-Long, LIU Ya-Wei, WANG Feng-Ge, ZHAO Jiu-Ran. Development of an optimal core SNP loci set for maize variety genuineness identification [J]. Acta Agronomica Sinica, 2024, 50(5): 1115-1123.
[4] YU Yao, WANG Zi-Yao, ZHOU Si-Rui, LIU Peng-Cheng, YE Ya-Feng, MA Bo-Jun, LIU Bin-Mei, CHEN Xi-Feng. Phenotypic identification and disease resistance mechanism analysis of rice lesion mutant lms1 [J]. Acta Agronomica Sinica, 2024, 50(4): 857-870.
[5] ZOU Jia-Qi, WANG Zhong-Lin, TAN Xian-Ming, CHEN Liao-Yuan, YANG Wen-Yu, YANG Feng. Estimation of maize grain yield under drought stress based on continuous wavelet transform [J]. Acta Agronomica Sinica, 2024, 50(4): 1030-1042.
[6] LOU Fei, ZUO Yi-Ping, LI Meng, DAI Xin-Meng, WANG Jian, HAN Jin-Ling, WU Shu, LI Xiang-Ling, DUAN Hui-Jun. Effects of organic fertilizer substituting chemical fertilizer nitrogen on yield, quality, and nitrogen efficiency of waxy maize [J]. Acta Agronomica Sinica, 2024, 50(4): 1053-1064.
[7] YUE Hai-Wang, WEI Jian-Wei, LIU Peng-Cheng, CHEN Shu-Ping, BU Jun-Zhou. Comprehensive evaluation of maize hybrids in the mega-environments of Huanghuaihai plain based on GYT biplot analysis [J]. Acta Agronomica Sinica, 2024, 50(4): 836-856.
[8] XUE Ming, WANG Chen-Chen, JIANG Lu-Guang, LIU Hao, ZHANG Lu-Yao, CHEN Sai-Hua. Mapping and functional analysis of maize inflorescence development gene AFP1 [J]. Acta Agronomica Sinica, 2024, 50(3): 603-612.
[9] ZHAO Rong-Rong, CONG Nan, ZHAO Chuang. Optimal phase selection for extracting distribution of winter wheat and summer maize over central subregion of Henan Province based on Landsat 8 imagery [J]. Acta Agronomica Sinica, 2024, 50(3): 721-733.
[10] LIANG Xing-Wei, YANG Wen-Ting, JIN Yu, HU Li, FU Xiao-Xiang, CHEN Xian-Min, ZHOU Shun-Li, SHEN Si, LIANG Xiao-Gui. Is cob color variation in maize accidental or incidental to any agronomic traits? —An example of nationally approved common hybrids over the years [J]. Acta Agronomica Sinica, 2024, 50(3): 771-778.
[11] MAO Yan, ZHENG Ming-Min, MOU Cheng-Xiang, XIE Wu-Bing, TANG Qi. Function analysis of the promoter of natural antisense transcript cis- NATZmNAC48 in maize under osmotic stress [J]. Acta Agronomica Sinica, 2024, 50(2): 354-362.
[12] MA Juan, CAO Yan-Yong. Genome-wide association study of yield traits and special combining ability in maize hybrid population [J]. Acta Agronomica Sinica, 2024, 50(2): 363-372.
[13] YANG Jing-Lei, WU Bing-Jie, WANG An-Zhou, XIAO Ying-Jie. Genomic prediction of maize agronomic and quality traits using multi-omics data [J]. Acta Agronomica Sinica, 2024, 50(2): 373-382.
[14] YANG Chen-Xi, ZHOU Wen-Qi, ZHOU Xiang-Yan, LIU Zhong-Xiang, ZHOU Yu-Qian, LIU Jie-Shan, YANG Yan-Zhong, HE Hai-Jun, WANG Xiao-Juan, LIAN Xiao-Rong, LI Yong-Sheng. Mapping and cloning of plant height gene PHR1 in maize [J]. Acta Agronomica Sinica, 2024, 50(1): 55-66.
[15] YUE Run-Qing, LI Wen-Lan, MENG Zhao-Dong. Acquisition and resistance analysis of transgenic Maize Inbred Line LG11 with insect and herbicide resistance [J]. Acta Agronomica Sinica, 2024, 50(1): 89-99.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!