Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2024, Vol. 50 ›› Issue (7): 1762-1775.doi: 10.3724/SP.J.1006.2024.32053

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Effects of an integrated dryland tillage and soaking pattern on the reducing substances in rice field and early growth of machine transplanted rice

CHENG Shuang(), XING Zhi-Peng*(), TIAN Chao, HU Qun, WEI Hai-Yan, ZHANG Hong-Cheng*()   

  1. Jiangsu Key Laboratory of Crop Cultivation and Physiology / Jiangsu Co-innovation Center for Modern Production Technology of Grain Crops / Research Institute of Rice Industrial Engineering Technology, Yangzhou University, Yangzhou 225009, Jiangsu, China
  • Received:2023-12-08 Accepted:2024-04-02 Online:2024-07-12 Published:2024-04-16
  • Contact: *E-mail: hczhang@yzu.edu.cn; E-mail: zpxing@yzu.edu.cn
  • Supported by:
    National Key Research and Development Program of China(BE2022338);Jiangsu Agriculture Science and Technology Innovation Fund(CX[20]1012);Jiangsu Technical System of Rice Industry(JATS[2022]485);Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)

Abstract:

There were some problems in rice-wheat rotation areas, such as low quality of rice field soil preparation, and the accumulation of reducing substances was not conducive to the early growth of mechanically transplanting rice. We explored the feasibility of applying an integrated dry tillage and soaking pattern to promote high-quality early growth of machine transplanted rice. The experiment was carried out in the experimental base of Sihong county, Suqian city, Jiangsu province from 2021 to 2022. Three tillage patterns were conducted, namely integrated dryland tillage + soaking pattern (Treatment 1, T1), dryland rotary tillage + soaking + paddy rotary tillage pattern (Treatment 2, T2), and soaking + paddy rotary tillage pattern (Treatment 3, T3). The redox potential of paddy soil, the content of reducing substances in different soil layers, and the root and shoot traits of machine-transplanted rice at early growth stage were determined. The result showed that the soil redox potential of T1 was the highest, which was 19.3%-24.7% and 31.6%-41.1% higher than that of T2 and T3 at the lowest point, respectively. Different tillage patterns significantly affected the contents of total reducing substances, active reducing substances, ferrous ions, and divalent manganese ions in 0-5 cm and 5-10 cm soil layers. Among them, compared with the mean values of T2 and T3, the content of active reducing substances in the 0-5 cm and 5-10 cm soil layers of T1 decreased by 31.9%-37.6% and 22.6%-23.5%, respectively, and the content of ferrous ions decreased by 30.5%-40.3% and 25.3%-27.3%, respectively. This result was mainly related to the fact that T1 significantly reduced the soil bulk density of 0-5 cm and 5-10 cm soil layers and increased the total soil porosity of the same soil layers. Root traits (root total number, root dry weight, and root oxidation capacity) and above-ground indexes (tiller number, dry matter accumulation) of T1 were the highest, followed by T2, and T3 was the lowest. Compared with the mean values of T2 and T3, the total root number, root dry weight, root oxidation force, the number of tillers, and the dry matter accumulation of T1 increased by 9.6%-32.9%, 19.5%-53.8%, 27.3%-34.7%, 9.0%-15.4%, and 30.7%-44.7%, respectively. Correlation analysis indicated that the early high-quality growth of machine-transplanted rice under T1 was mainly due to the reduction of reducing substances within the 0-5 cm soil layer, especially the significant reduction of active reducing substances and ferrous ions (P < 0.05). In conclusion, the application of the integrated dryland tillage and soaking pattern can help to reduce the content of rice field reducing substances and promote the early high-quality growth of machine transplanted rice in rice-wheat rotation areas.

Key words: mechanically transplanted rice, tillage pattern, reducing substances, seedling growth

Fig. 1

Daily average temperature and daily precipitation during rice growing season in 2021 and 2022"

Table 1

Field operation procedures and agricultural machinery used in different tillage patterns"

耕整地模式
Tillage pattern
田间作业程序及其所用农机具
Field operation procedures and agricultural machinery used
T1 使用2F-750型抛肥机施肥→采用2BFMZ-350型一体化旱地双轴旋耕平整机(配套动力220匹马力)实施双轴旋耕秸秆翻埋还田、初次镇压、单轴浅旋、二次镇压、开排水沟→灌水泡田。
Fertilization using 2F-750 fertilizer applicator → The 2BFMZ-350 integrated dryland biaxial rotary tillage and leveling machine (supporting power 220 horsepower) was used to implement biaxial rotary tillage straw burying, initial suppression, uniaxial shallow rotation, secondary suppression, and drainage ditch opening → Irrigation bubble field.
T2 使用2F-750型抛肥机施肥→采用1GS-360型旱地单轴旋耕平机(配套动力160匹马力)实施旱地旋耕秸秆还田→灌水泡田→采用1JS-280型水田单轴旋耕机进行1次作业以实施旋耕起浆和平整土地。
Fertilization using 2F-750 fertilizer applicator → The 1GS-360 type dryland single-axis rotary tillage machine (supporting power 160 horsepower) was used to implement dryland rotary tillage straw burying → Irrigation bubble field → The 1JS-280 paddy field single axis rotary machine was used for one operation to implement rotary tillage and soil leveling.
T3 使用2F-750型抛肥机施肥→灌水泡田→采用1JS-280型水田单轴旋耕机(配套动力160匹马力)进行2次作业以实施旋耕起浆和平整土地。
Fertilization using 2F-750 fertilizer applicator → Irrigation bubble field → The 1JS-280 paddy field single axis rotary machine was used for two operations to implement rotary tillage and soil leveling.

Fig. 2

Effects of different tillage patterns on Eh in paddy soil T1: integrated dryland tillage + soaking pattern; T2: dryland rotary tillage + soaking + paddy rotary tillage pattern; T3: soaking + paddy rotary tillage pattern."

Fig. 3

Effects of different tillage patterns on soil bulk density and soil total porosity The values of different lowercase letters are significantly different at the 0.05 probability level. Abbreviations are the same as those given in Fig. 2."

Fig. 4

Effects of different tillage patterns on soil total reducing substances and soil active reducing substances The values of different lowercase letters are significantly different at the 0.05 probability level. Abbreviations are the same as those given in Fig. 2."

Fig. 5

Effects of different tillage patterns on soil ferrous ions and soil divalent manganese ions The values of different lowercase letters are significantly different at the 0.05 probability level. Abbreviations are the same as those given in Fig. 2."

Table 2

Effects of different tillage patterns on the roots total number of machine-transplanted rice (×103 m-2)"

品种
Cultivar
年份
Year
耕整地模式
Tillage pattern
移栽后天数Days after transplanted
5 d 10 d 20 d 30 d
南粳5718 Nanjing 5718 2021 T1 1.9±0.15 a 2.8±0.31 a 4.4±0.49 a 9.9±0.92 a
T2 1.5±0.22 bc 2.3±0.22 abc 3.7±0.47 b 8.1±0.90 b
T3 1.1±0.16 d 1.8±0.13 c 3.0±0.28 c 6.8±0.49 c
2022 T1 1.8±0.20 ab 2.7±0.26 ab 4.4±0.35 a 9.4±0.92 a
T2 1.5±0.19 bc 2.2±0.28 bc 3.5±0.48 bc 7.9±0.57 b
T3 1.3±0.07 cd 1.9±0.21 c 3.0±0.34 c 6.8±0.35 c
方差分析ANOVA
年份Year (Y) ns ns ns ns
处理Treatment (T) ** ** ** **
年份×处理Y×T ** ** ns ns
洪扬5号Hongyang 5 2022 T1 2.0±0.22 a 3.0±0.35 a 4.9±0.33 a 11.4±0.64 a
T2 1.7±0.14 ab 2.9±0.29 a 4.6±0.41 ab 11.0±0.42 a
T3 1.4±0.18 b 2.5±0.20 b 4.3±0.36 b 9.8±0.99 b
方差分析ANOVA
处理Treatment * * * *

Table 3

Effects of different tillage patterns on root dry weight of machine-transplanted rice (g m-2)"

品种
Cultivar
年份
Year
耕整地模式
Tillage pattern
移栽后天数Days after transplanted
5 d 10 d 20 d 30 d
南粳5718 Nanjing 5718 2021 T1 2.5±0.27 ab 4.1±0.49 a 25.5±3.6 a 65.3±6.5 a
T2 2.4±0.28 bc 3.7±0.35 b 23.0±1.6 bc 53.0±3.8 c
T3 2.3±0.21 bc 3.4±0.28 c 21.6±3.0 cd 31.9±2.3 d
2022 T1 2.7±0.20 a 3.8±0.42 b 24.5±2.4 ab 61.3±4.3 ab
T2 2.3±0.22 bc 3.6±0.27 bc 23.0±2.3 bc 54.3±4.6 bc
T3 2.2±0.13 c 3.4±0.29 c 20.8±1.4 d 32.0±3.2 d
方差分析ANOVA
年份Year (Y) ns ns * ns
处理Treatment (T) ** ** ** **
年份×处理Y×T ns ns ns ns
洪扬5号Hongyang 5 2022 T1 2.4±0.16 a 2.8±0.15 a 18.6±1.6 a 47.2±2.0 a
T2 2.2±0.17 ab 2.7±0.19 b 16.0±1.9 b 42.0±2.4 b
T3 2.1±0.18 b 2.5±0.22 c 15.8±2.1 b 37.0±1.6 c
方差分析ANOVA
处理Treatment ns ** * *

Table 4

Effects of different tillage methods on root oxidizing ability of machine-transplanted rice (μg α-NA g-1 h-1)"

品种
Cultivar
年份
Year
耕整地模式
Tillage pattern
移栽后天数Days after transplanted
5 d 10 d 20 d 30 d
南粳5718 Nanjing 5718 2021 T1 83.2±4.7 b 102.7±11.6 ab 87.7±10.0 ab 139.0±17.7 a
T2 72.2±4.1 d 88.3±7.5 c 74.1±10.5 c 122.6±10.4 b
T3 58.3±4.2 e 70.4±10.0 d 61.1±6.9 d 95.2±6.7 c
2022 T1 91.3±6.4 a 111.5±9.5 a 92.0±9.1 a 145.3±14.4 a
T2 77.8±5.4 c 94.8±5.4 bc 82.6±8.2 b 125.4±8.8 b
T3 51.8±5.2 f 66.9±5.7 d 55.2±4.7 d 90.4±9.0 c
方差分析ANOVA
年份Year (Y) * ns ns ns
处理Treatment (T) ** ** ** **
年份×处理Y×T ** ns * ns
洪扬5号Hongyang 5 2022 T1 100.8±10.0 a 120.1±8.5 a 102.6±8.8 a 160.9±13.7 a
T2 80.8±6.9 b 103.3±7.3 b 82.6±3.5 b 131.7±13.0 b
T3 73.2±3.0 b 87.3±7.4 c 75.4±4.2 c 121.1±10.3 b
方差分析ANOVA
处理Treatment ** * ** **

Fig. 6

Effects of different tillage patterns on main stem and tiller number of machine-transplanted rice Values of different lowercase letters are significantly different at the 0.05 probability level. Abbreviations are the same as those given in Fig. 2."

Table 5

Effects of different tillage patterns on aboveground dry matter accumulation of machine-transplanted rice (g m-2)"

品种
Cultivar
年份
Year
耕整地模式
Tillage pattern
移栽后天数Days after transplanted
5 d 10 d 20 d 30 d
南粳5718 Nanjing 5718 2021 T1 2.7±0.28 b 7.9±0.64 a 32.8±4.60 a 149.9±19.02 a
T2 2.8±0.21 a 7.4±1.06 ab 30.3±2.12 ab 139.6±15.84 ab
T3 2.7±0.35 b 4.9±0.71 c 20.1±2.26 bc 89.7±7.57 c
2022 T1 2.7±0.08 b 7.6±0.41 a 31.0±3.89 ab 138.8±11.70 ab
T2 2.8±0.14 a 6.7±0.42 b 25.5±3.61 abc 120.6±10.30 b
T3 2.8±0.13 a 4.5±0.24 c 17.5±1.48 c 71.3±9.10 c
方差分析ANOVA
年份Year (Y) ns ns ns ns
处理Treatment (T) ** ** ** **
年份×处理Y×T ns ns ns ns
洪扬5号Hongyang 5 2022 T1 2.7±0.20 a 7.5±0.28 a 30.2±3.82 a 118.0±16.70 a
T2 2.8±0.11 a 6.3±0.31 b 22.6±2.62 b 86.8±6.20 b
T3 2.7±0.19 a 6.5±0.27 b 24.5±2.47 b 91.1±11.60 b
方差分析ANOVA
处理Treatment ns * ** **

Fig. 7

Correlation analysis between soil redox indexes and early growth indexes of machine-transplanted rice BD, TP, Eh, TRS, ARS, Fe2+, and Mn2+ represented soil bulk density, soil total porosity, redox potential, total reducing substances, active reducing substances, ferrous ion, and divalent manganese ion, respectively. RTN, RDW, and ROA represent the total roots, root dry weight, and root oxidation ability, respectively. DMA and STN represent dry matter accumulation, the number of stems and tillers, respectively. The soil part was the data of 10 days after transplanting, and the other indicators were the data of 30 days after transplanted. * indicates significant correlation at the 0.05 probability level."

[1] Zhen X X, Li X, Yu J L, Xu F. OsATG8c-mediated increased autophagy regulates the yield and nitrogen use efficiency in rice. Int J Mol Sci, 2019, 20: 4956-4956.
[2] 蒋伟勤, 车阳, 李可, 文廷刚, 顾大路, 章安康. 江苏省水稻栽培关键技术应用现状及展望. 江苏农业学报, 2023, 39: 567-575.
Jiang W Q, Che Y, Li K, Wen T G, Gu D L, Zhang A K. Application status and prospect of key technologies of rice cultivation in Jiangsu province. Jiangsu J Agric Sci, 2023, 39: 567-575 (in Chinese with English abstract).
[3] Yang J C, Zhang J H. Simultaneously improving grain yield and water and nutrient use efficiencies by enhancing the harvest index in rice. Crop Environ, 2023, 2: 157-164.
[4] Ma G H, Yuan L P. Hybrid rice achievements, development and prospect in China. J Integr Agric, 2015, 14: 197-205.
[5] 张洪程, 邢志鹏, 翁文安, 田晋钰, 陶钰, 程爽, 胡群, 胡雅杰, 郭保卫, 魏海燕. 生育约束型直播水稻生育特征与稳产关键技术. 中国农业科学, 2021, 54: 1322-1337.
doi: 10.3864/j.issn.0578-1752.2021.07.002
Zhang H C, Xing Z P, Weng W A, Tian J Y, Tao Y, Cheng S, Hu Q, Hu Y J, Guo B W, Wei H Y. Growth characteristics and key techniques of stable yield of growth-constrained direct seeding rice. Sci Agric Sin, 2021, 54: 1322-1337 (in Chinese with English abstract).
[6] Liang F, Li B Z, Vogt R D, Mulder J, Song H, Chen S, Guo J H. Straw return exacerbates soil acidification in major Chinese croplands. Resour Conserv Recy, 2023, 198: 107176.
[7] 张向前, 杨文飞, 徐云姬. 中国主要耕作方式对旱地土壤结构及养分和微生态环境影响的研究综述. 生态环境学报, 2019, 28: 2464-2472.
doi: 10.16258/j.cnki.1674-5906.2019.12.020
Zhang X Q, Yang W F, Xu Y J. A review of the effects of main tillage practices on soil structure, nutrients and micro-ecological environment in drylands in China. Acta Ecol Environ Sin, 2019, 28: 2464-2472 (in Chinese with English abstract).
[8] 常单娜, 刘春增, 李本银, 吕玉虎, 潘兹亮, 高嵩涓, 曹卫东. 翻压紫云英对稻田土壤还原物质变化特征及温室气体排放的影响. 草业学报, 2018, 27(12): 133-144.
Chang D N, Liu C Z, Li B Y, Lyu Y H, Pan Z L, Gao S J, Cao W D. Effects of Chinese milk vetch on the variation characteristics of reducing substances and greenhouse gas emissions in paddy soil. Acta Pratac Sin, 2018, 27(12): 133-144 (in Chinese with English abstract).
[9] 林海波, 朱青, 陈正刚, 张钦, 崔宏浩. 冷浸田亚铁对水稻毒害作用及改良措施. 山地农业生物学报, 2015, 34(2): 82-86.
Lin H B, Zhu Q, Chen Z G, Zhang Q, Cui H H. Toxic effects of ferrous iron in cold waterlogged paddy field on rice and improvement measures. J Mount Agric Biol, 2015, 34(2): 82-86 (in Chinese with English abstract).
[10] 于天仁, 刘志光. 水稻土的氧化还原过程及其与水稻生长的关系. 土壤学报, 1964, 12: 380-389.
Yu T R, Liu Z G. Redox process of paddy soil and its relationship with rice growth. Acta Pedol Sin, 1964, 12: 380-389 (in Chinese with English abstract).
[11] 丁琪洵, 汪甜甜, 童童, 王强, 马友华. 深耕深松对土壤特性和作物产量影响研究进展. 江苏农业科学, 2023, 51(12): 34-41.
Ding Q X, Wang T T, Tong T, Wang Q, Ma Y H. Research progress on the effects of deep tillage and subsoiling on soil characteristics and crop yield. Jiangsu Agric Sci, 2023, 51(12): 34-41 (in Chinese with English abstract).
[12] 何椿禹, 刘月月, 邵玺文, 郭丽颖, 滕宇, 杜娟, 耿艳秋. 种植模式对水稻根系分布与氮素吸收的影响. 灌溉排水学报, 2023, 42(11): 58-66.
He C Y, Liu Y Y, Shao X W, Guo L Y, Teng Y, Du J, Geng Y Q. Effects of planting patterns on root distribution and nitrogen uptake of rice. J Irrig Drain, 2023, 42(11): 58-66 (in Chinese with English abstract).
[13] 胡柯鑫, 董春华, 罗尊长, 谢宜, 周旋, 周孟瑜, 洪曦, 王玲玲. 不同释放速率过氧化钙对模拟潜育环境下稻田土壤理化特性的影响. 土壤, 2020, 52: 853-861.
Hu K X, Dong C H, Luo Z C, Xie Y, Zhou X, Zhou M Y, Hong X, Wang L L. Effects of different release rates of calcium peroxide on physical and chemical properties of paddy soil under simulated incubation environment. Soil, 2020, 52: 853-861 (in Chinese with English abstract).
[14] Kan Z R, Li Y F, Yang X Y, Zhai S L, Meng Y, Xu C F, Qi J Y, Li F M, Chen C Q, Yang H S. Methane emission under straw return is mitigated by tillage types depending on crop growth stages in a wheat-rotated rice farming system. Soil Tillage Res, 2023, 228: 105649.
[15] Yang H, Zhou J, Feng J. Chapter five: ditch-buried straw return: a novel tillage practice combined with tillage rotation and deep ploughing in rice-wheat rotation systems. Adv Agron, 2019, 154: 257-290.
[16] Chen Y, Li S Y, Zhang Y J, Li T T, Ge H M, Xia S M, Gu J F, Zhang H, Lu B, Wu X X, Wang Z Q, Yang J C, Zhang J H, Liu L J. Rice root morphological and physiological traits interaction with rhizosphere soil and its effect on methane emissions in paddy fields. Soil Biol Biochem, 2019, 129: 191-200.
[17] 张洪程, 胡雅杰, 戴其根, 邢志鹏, 魏海燕, 孙成明, 高辉, 胡群. 中国大田作物栽培学前沿与创新方向探讨. 中国农业科学, 2022, 55: 4373-4382.
doi: 10.3864/j.issn.0578-1752.2022.22.004
Zhang H C, Hu Y J, Dai Q G, Xing Z P, Wei H Y, Sun C M, Gao H, Hu Q. Discussions on frontiers and directions of scientific and technological innovation in China’s field crop cultivation. Sci Agric Sin, 2022, 55: 4373-4382 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2022.22.004
[18] Tian J Y, Li S P, Xing Z P, Cheng S, Liu Q Y, Zhou L, Liao P, Hu Y J, Guo B W, Wei H Y, Zhang H C. Seedling establishment and yield performance of dry direct-seeded rice after wheat straw returning coupled with early nitrogen application. Agriculture, 2022, 12: 565-581.
[19] 赵凌天, 咸云宇, 刘光明, 姜恒鑫, 廖平强, 赵灿, 王维领, 霍中洋. 不同机械化耕播模式对冬小麦幼苗质量和产量的影响. 农业工程学报, 2021, 37(17): 31-38.
Zhao L T, Xian Y Y, Liu G M, Jiang H X, Liao P Q, Zhao C, Wang W L, Huo Z Y. Effects of different mechanized tillage and sowing patterns on seedling quality and yield of winter wheat. Trans CSAE, 2021, 37(17): 31-38 (in Chinese with English abstract).
[20] Tian J Y, Li S P, Cheng S, Liu Q Y, Zhou L, Tao Y, Xing Z P, Hu Y J, Guo B W, Wei H Y, Zhang H C. Increasing the appropriate seedling density for higher yield in dry direct-seeded rice sown by a multifunctional seeder after wheat straw return. J Integr Agric, 2023, 22: 400-416.
[21] 李绍平, 邢志鹏, 田晋钰, 程爽, 胡群, 胡雅杰, 郭保卫, 魏海燕, 张洪程. 机械旱直播方式对水稻产量和光合物质生产特征的影响. 农业工程学报, 2022, 38(7): 1-9.
Li S P, Xing Z P, Tian J Y, Cheng S, Hu Q, Hu Y J, Guo B W, Wei H Y, Zhang H C. Effects of mechanical dry direct seeding on rice yield and photosynthetic matter production characteristics. Trans CSAE, 2022, 38(7): 1-9 (in Chinese with English abstract).
[22] Cheng S, Xing Z P, Tian C, Liu M Z, Feng Y, Zhang H C. Effects of tillage method on the carbon footprint, energy budget, and net ecosystem economic efficiency of rice fields. Front Sustain Food System, 2023, 7: 1169886-1169896.
[23] Ferraro D O, Ghersa C M. Quantifying the crop management influence on arable soil condition in the Inland Pampa (Argentina). Geoderma, 2007, 141: 43-52.
[24] 鲁如坤. 土壤农业化学分析方法. 北京: 中国农业科技出版社, 2000.
Lu R K. Methods for Soil Agrochemical Analysis. Beijing: China Agricultural Science and Technology Press, 2000 (in Chinese).
[25] Chu G, Wang Z Q, Zhang H, Liu L J, Yang J C, Zhang J H. Morphological and physiological traits of roots and their relationships with water productivity in water-saving and drought-resistant rice. Field Crops Res, 2014, 162: 108-119.
[26] 于天仁, 李松华. 水稻土中氧化还原过程的研究: I. 影响氧化还原电位的条件. 土壤学报, 1957, 5: 97-110.
Yu T R, Li S H. Study on redox process in paddy soil: I. Conditions affecting redox potential. Acta Pedol Sin, 1957, 5: 97-110 (in Chinese).
[27] Tian J Y, Li S P, Xing Z P, Cheng S, Liu Q Y, Zhou L, Liao P, Hu Y J, Guo B W, Wei H Y, Zhang H C. Seedling establishment and yield performance of dry direct-seeded rice after wheat straw returning coupled with early nitrogen application. Agriculture, 2022, 12: 565.
[28] 丁昌璞. 水稻土中的还原性物质. 土壤学进展, 1984, 12(2): 1-12.
Ding C P. Reductive substances in paddy soils. Prog Soil Sci, 1984, 12(2): 1-12 (in Chinese with English abstract).
[29] 彭显龙, 董强, 张辰, 李鹏飞, 李博琳, 刘智蕾, 于彩莲. 不同土壤条件下秸秆还田量对土壤还原性物质及水稻生长的影响. 中国水稻科学, 2023, 38: 198-210.
Peng X L, Dong Q, Zhang C, Li P F, Li B L, Liu Z L, Yu C L. Effects of straw returning amount on soil reducing substances and rice growth under different soil conditions. Chin J Rice Sci, 2023, 38: 198-210.
[30] 张辰. 秸秆还田量对土壤还原性物质及水稻生长的影响. 东北农业大学硕士学位论文, 黑龙江哈尔滨, 2023.
Zhang C. Effects of Straw Returning Amount on Soil Reducing Substances and Rice Growth. MS Thesis of Northeast Agricultural University, Harbin, Heilongjiang, China, 2023 (in Chinese with English abstract).
[31] 孙泽峰. 耕作培肥对寒地水稻生长及土壤肥力的影响. 东北农业大学硕士学位论文, 黑龙江哈尔滨, 2022.
Sun Z F. Effects of Tillage and Fertilization on Rice Growth and Soil Fertility in Cold Region. MS Thesis of Northeast Agricultural University, Harbin, Heilongjiang, China, 2022 (in Chinese with English abstract).
[32] 胡兴骥, 王莹, 张振华. 曝气滴灌对不同容重下土壤水分入渗及通气性的影响. 鲁东大学学报(自然科学版), 2019, 35: 164-171.
Hu X J, Wang Y, Zhang Z H. Effects of aerated drip irrigation on soil water infiltration and aeration under different bulk densities. J Ludong Univ (Nat Sci Edn), 2019, 35: 164-171 (in Chinese with English abstract).
[33] 叶昌, 黄秀, 褚光, 徐春梅, 陈松, 章秀福, 王丹英. 水稻因土质施肥方法探讨. 中国稻米, 2020, 26(1): 11-15.
doi: 10.3969/j.issn.1006-8082.2020.01.003
Ye C, Huang X, Chu G, Xu C M, Chen S, Zhang X F, Wang D Y. Discussion on fertilization methods of rice due to soil. China Rice, 2020, 26(1): 11-15 (in Chinese with English abstract).
[34] 李江, 潘艳川, 缴锡云, 胡伟钰, 刘永. 加气灌溉对麦秸秆还田后土壤还原性与水稻生长的影响. 农业机械学报, 2021, 52(9): 250-259.
Li J, Pan Y C, Jiao X Y, Hu W Y, Liu Y. Effects of aerated irrigation on soil reducibility and rice growth after wheat straw returning. Trans CSAM, 2021, 52(9): 250-259 (in Chinese with English abstract).
[35] Yuan P L, Wang J, Li C F, Cao C G. Long-term rice-crayfish farming aggravates soil gleiing and induced changes of soil iron morphology. Soil Use Manag, 2022, 38: 757-770.
[36] 龚子同, 张效朴, 韦启璠. 我国潜育性水稻土的形成、特性及增产潜力. 中国农业科学, 1990, 23: 45-52.
doi: 10.3864/j.issn.0578-1752.1990-23-01-45-52
Gong Z T, Zhang X P, Wei Q P. Characteristics and yield- increasing potential of gleied paddy soils in China. Sci Agric Sin, 1990, 23: 45-52 (in Chinese).
[37] 金鑫. 秸秆还田对稻田土壤还原性物质和水稻生长的影响. 南京农业大学硕士学位论文, 江苏南京, 2013.
Jin X. Effects of Straw Returning on Reducing Substances in Paddy Soil and Rice Growth. MS Thesis of Nanjing Agricultural University, Nanjing, Jiangsu, China 2013 (in Chinese with English abstract).
[38] 丁昌璞. 低分子量有机还原性物质与土壤的相互作用: II. 低分子量有机还原性物质与土壤作用的化学反应. 土壤学报, 2011, 48: 957-963.
Ding C P. Interaction between low molecular weight organic reducing substances and soil: II. Chemical reaction of low molecular weight organic reducing substances with soil. Acta Pedol Sin, 2011, 48: 957-963 (in Chinese with English abstract).
[39] 张洪程, 胡雅杰, 杨建昌, 戴其根, 霍中洋, 许轲, 魏海燕, 高辉, 郭保卫, 邢志鹏, 胡群. 中国特色水稻栽培学发展与展望. 中国农业科学, 2021, 54: 1301-1321.
doi: 10.3864/j.issn.0578-1752.2021.07.001
Zhang H C, Hu Y J, Yang J C, Dai Q G, Huo Z Y, Xu K, Wei H Y, Gao H, Guo B W, Xing Z P, Hu Q. Development and prospect of rice cultivation with chinese characteristics. Sci Agric Sin, 2021, 54: 1301-1321 (in Chinese with English abstract).
[40] 浙江农业大学. 实用水稻栽培学. 上海: 上海科学技术出版社, 1981.
Zhejiang Agricultural University. Practical Rice Cultivation. Shanghai: Shanghai Scientific and Technical Publishers, 1981 (in Chinese).
[41] 李学垣, 韩德乾. 绿肥压青后水稻生育期间土壤中还原性物质的动态变化. 土壤学报, 1966, 14: 59-64.
Li X Y, Han D Q. The dynamic changes of reducing substances in soil during rice growth period after green manure pressing. Acta Pedol Sin, 1966, 14: 59-64 (in Chinese with English abstract).
[42] 陈娜, 廖敏, 张楠, 徐培智, 解开治, 徐昌旭, 刘光荣. Fe2+对水稻生长及土壤微生物活性的影响. 植物营养与肥料学报, 2014, 20: 651-660.
Chen N, Liao M, Zhang N, Xu P Z, Xie K Z, Xu C X, Liu G R. Effects of exogenous ferrous on rice growth and soil microbial activities. J Plant Nut Fert, 2014, 20: 651-660 (in Chinese with English abstract).
[43] 陈天祥, 杨顺瑛, 王书伟, 苏彦华. 水稻氮素利用效率的基因型差异与调控途径. 土壤, 2022, 54: 873-881.
Chen T X, Yang S Y, Wang S W, Su Y H. Genotypic differences and regulatory pathways of nitrogen use efficiency in rice. Soil, 2022, 54: 873-881 (in Chinese with English abstract).
[44] Liu K, Li T T, Chen Y, Huang J, Qiu Y Y, Li S Y, Wang H, Zhu A, Zhuo X X, Yu F, Zhang H, Gu J F, Liu L J, Yang J C. Effects of root morphology and physiology on the formation and regulation of large panicles in rice. Field Crops Res, 2020, 258: 107946.
[45] 杨文钰, 屠乃美. 作物栽培学各论(南方本). 北京: 中国农业出版社, 2011.
Yang W Y, Tu N M. Various Theories of Crop Cultivation, Southern edn. Beijing: China Agriculture Press, 2011 (in Chinese).
[1] LI Ming-Yue, ZHANG Wen-Ting, LI Yang, ZHANG Bao-Long, YANG Li-Ming, WANG Jin-Yan. Effects of small peptide Ospep5 on cadmium tolerance in rice [J]. Acta Agronomica Sinica, 2024, 50(1): 67-75.
[2] LEI Xin-Hui, WAN Chen-Xi, TAO Jin-Cai, LENG Jia-Jun, WU Yi-Xin, WANG Jia-Le, WANG Peng-Ke, YANG Qing-Hua, FENG Bai-Li, GAO Jin-Feng. Effects of soaking seeds with MT and EBR on germination and seedling growth in buckwheat under salt stress [J]. Acta Agronomica Sinica, 2022, 48(5): 1210-1221.
[3] LIANG Xi-Tong, GAO Xian-Yuan, ZHOU Lin, MU Chun, DU Ming-Wei, LI Fang-Jun, TIAN Xiao-Li, LI Zhao-Hu. High throughput identification of cotton gene via screening cotton cDNA library of virus induced gene silencing [J]. Acta Agronomica Sinica, 2022, 48(12): 2967-2977.
[4] Qing-Qing YAN,Ju-Song ZHANG,Xing-Xing LI,Yan-Ti WANG. Effects of salinity stress on seed germination and root growth of seedlings in island cotton [J]. Acta Agronomica Sinica, 2019, 45(1): 100-110.
[5] WANG Hai-Yue,JIANG Ming-Jin,SUN Yong-Jian*,GUO Chang-Chun,YIN Yao-Zhu,HE Yan,YAN Tian-Rong,YANG Zhi-Yuan,XU Hui,MA Jun . Effects of Conventional Urea Combined with Slow-release Urea Application on Phosphorus Uptake, Translocation and Distribution in Mechanically Transplanted Rice with Different Plant Spacings [J]. Acta Agron Sin, 2018, 44(01): 115-125.
[6] CHEN Jin,PANG Dang-Wei,HAN Ming-Ming,YIN Yan-Ping,ZHENG Meng-Jing,LUO Yong-Li,WANG Zhen-Lin*,LI Yong*. Effects of Tillage Patterns on Soil Biological Activity, Availability of Soil Nutrients and Grain Yield of Winter Wheat [J]. Acta Agron Sin, 2017, 43(08): 1245-1253.
[7] . Effect of Planting Density of Mechanically Transplanted Pot Seedlings on Yield, Plant Type and Lodging Resistance in Rice with Different Panicle Types [J]. Acta Agron Sin, 2015, 41(05): 743-757.
[8] LI Shao-Kun; WANG Ke-Ru; FENG Ju-Kai; XIE Rei-Zhi and GAO Shi-Ju. Factors Affecting Seeding Emergence in Winter Wheat under Different Tillage Patterns with Maize Stalk Mulching Returned to the Field [J]. Acta Agron Sin, 2006, 32(03): 463-465.
[9] HAN Long-Zhi;CAO Gui-Lan;YEA Jong-Doo;AN Yong-Ping;QIAO Yong-Li;HWANG Hung-Goo;KOH Hee-Jong. Relationship between Cold Tolerance at the Budbursting Period and Other Traits Related to Cold Tolerance in Rice [J]. Acta Agron Sin, 2004, 30(10): 990-995.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[2] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[3] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[4] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[5] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[6] Qi Zhixiang;Yang Youming;Zhang Cunhua;Xu Chunian;Zhai Zhixi. Cloning and Analysis of cDNA Related to the Genes of Secondary Wall Thickening of Cotton (Gossypium hirsutum L.) Fiber[J]. Acta Agron Sin, 2003, 29(06): 860 -866 .
[7] KE Li-Ping;ZHENG Tao;WU Xue-Long;HE Hai-Yan;CHEN Jin-Qing. Analysis of Self-Incompatibility Locus Gene in Brassica napus[J]. Acta Agron Sin, 2008, 34(05): 764 -769 .
[8] LÜ Li-Hua;TAO Hong-Bin;XIA Lai-Kun; HANG Ya-Jie;ZHAO Ming;ZHAO Jiu-Ran;WANG Pu;. Canopy Structure and Photosynthesis Traits of Summer Maize under Different Planting Densities[J]. Acta Agron Sin, 2008, 34(03): 447 -455 .
[9] Hu Yuqi;Liao Xiaohai. A STUDY ON THE COEFFICIENT OF LEAVES SHAPE OF MAIZE[J]. Acta Agron Sin, 1986, (01): 71 -72 .
[10] LIANG Tai-Bo;YIN Yan-Ping;CAI Rui-Guo;YAN Su-Hui;LI Wen-Yang;GENG Qing-Hui;WANG Ping;WANG Zhen-Lin. Starch Accumulation and Related Enzyme Activities in Superior and Inferior Grains of Large Spike Wheat[J]. Acta Agron Sin, 2008, 34(01): 150 -156 .