Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2024, Vol. 50 ›› Issue (7): 1750-1761.doi: 10.3724/SP.J.1006.2024.34171

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Functional analysis of flax LuWRI1a in response to drought and salt stresses

LI Wen-Juan(), WANG Li-Min, QI Yan-Ni, ZHAO Wei, XIE Ya-Ping, DANG Zhao, ZHAO Li-Rong, LI Wen, XU Chen-Meng, WANG Yan, ZHANG Jian-Ping*()   

  1. Institute of Crop Research, Gansu Academy of Agricultural Sciences, Lanzhou 730070, Gansu, China
  • Received:2023-10-19 Accepted:2024-01-30 Online:2024-07-12 Published:2024-02-20
  • Contact: *E-mail: zhangjpzw3@gsagr.ac.cn
  • Supported by:
    National Natural Science Foundation of China(31460388);National Natural Science Foundation of China(32360502);China Agriculture Research System(CARS-14-1-05);China Agriculture Research System of MOF and MARA(2022GAAS04);Science and Technology Program of Lanzhou(2023-3-37)

Abstract:

The AP2/ERF family of transcription factors is involved in the regulation of plant responses to biotic and abiotic stresses. Previously, we cloned LuWRI1a, a WRINKLED1 homologous gene from flax. Protein sequence analysis showed that LuWRI1a contained two AP2 DNA-binding domains and belonged to the AP2/ERF transcription factor family. The cis-acting elements of LuWRI1a were analyzed that pLuWRI1a was found containing multiple abiotic stress elements in response to light, drought, low temperature and hormones. In this study, the flax cultivar Longya 10 and LuWRI1a overexpression transgenic pure lines were used as the experimental materials, and salt stress and drought stress treatments were simulated with 200 mmol L-1 NaCl nutrient solution and 25% PEG nutrient solution. The results showed that the relative plant height, primary root length, lateral root number, and leaf number of transgenic plants were elevated after salt and drought stress treatments. The activities of three antioxidant enzymes were significantly higher than the control, while MDA content was lower. The relative expression levels of the abiotic stress-responsive genes, LuAREB, LuDREB, LuLEA, and LuNCED, were up-regulated. By exploring the biological function of LuWRI1a under adversity stress, it was found that LuWRI1a enhanced flax tolerance by resisting the inhibition of flax growth by salt stress and drought stress, enhancing the scavenging ability of reactive oxygen species, reducing the oxidative damage of membrane lipids, and activating the expression of adversity stress response genes. In summary, LuWRI1a may be a multifunctional gene, which was not only involved in fatty acid synthesis and metabolism pathway, but also may be involved in plant abiotic stress signaling pathway. This study provides a new genetic resource for the improvement of stress-tolerant varieties of flax.

Key words: flax, LuWRI1a, salt stress, drought stress, functional analysis

Table 1

Primers used for PCR"

基因名称
Gene name
上游引物
Forward primer sequence (5′-3′)
下游引物
Reverse primer sequence (5′-3′)
GAPDH
bar
LuWRI1a
LuAREB
LuDREB
LuLEA
LuNCED
CTTTACCCTCAGCAAATCCG
AGTCCAGCTGCCAGAAAC
GATGATCAAGAAGCAGCTG
GCATGGAGAGACTCCAGCAA
TATGACACGGCGGTTTTCCA
GCCCGCAACTGTGAAGAAAG
GCTCCTTACCTCCATGCCTC
AGGTTCTTCCCGCTCTCAAT
GGTCAACTTCCGTACCGA
CATTGCCACCTCAGCGGCC
GCAGTATCTATCTGCGGCGA
GGATGAGACCCCTCCTTCCT
TCCTGTTCTCGGGTCTGGAA
CCCTCTTGAGATGGTGAGCG

Fig. 1

Cis-acting elements of LuWRI1a gene promoter in flax Different colored boxes indicate different cis-acting elements in the scale at the bottom."

Table 2

Predicted cis-acting elements of LuWRI1a gene promoter"

调控元件
Cis-element
核心序列
Sequence (5′-3′)
位置
Position
功能
Function
ACE CTAACGTATT -1239 光响应顺式作用元件
Cis-acting element involved in light responsiveness
AE-box AGAAACAA +144 光响应模块的组成部分
Part of a module for light response
ARE AAACCA -1057, -1801, +2406 厌氧诱导必需的顺式作用调控元件
Cis-acting regulatory element essential for the anaerobic induction
Box 4 ATTAAT +579, -2178 光响应保守模块的一部分
Part of a conserved DNA module involved in light responsiveness
CGTCA-motif CGTCA +963, +1169 MeJA响应顺式作用元件
Cis-acting regulatory element involved in the MeJA-responsiveness
GT1-motif GGTTAA(T) +17, -679, -680 光响应元件
Light responsive element
Gap-box CAAATGAA(A/G)A +524, +1038 光响应元件的一部分
Part of a light responsive element
LTR CCGAAA +1983 低温响应顺式作用元件
Cis-acting element involved in low-temperature responsiveness
MBS CAACTG +2127 参与干旱诱导的MYB结合位点
MYB binding site involved in drought-inducibility
MBSI aaaAaaC(G/C)GTTA -2215 参与干旱诱导的MYB结合位点
MYB binding site involved in flavonoid biosynthetic genes regulation
MYB CAACCA, TAACCA -16, +391, +681, -759, +1853, +2105, +2123 干旱、盐、ABA 和低温响应
Drought, salt, ABA, and low-temperature responsive
MYC CATTTG +73, +267, -524, -569, -1038, -1363 干旱和ABA响应
Drought and ABA responsive
O2-site GATGATGTGG +350 参与玉米醇溶蛋白新陈代谢调节的顺式调控元件
Cis-acting regulatory element involved in zein metabolism regulation
STRE AGGGG +1024, -1548, -1580, +1604, +2307 由热激、渗透应激、低pH值和营养缺乏激活的元件
Activated by heat shock, osmotic stress, low pH, and nutrient starvation
ERE ATTTTAAA, ATTTCATA +1439, -1905 乙烯响应元件
Ethylene-responsive element
TCA-element CCATCTTTTT +2343 水杨酸响应的顺式作用元件
Cis-acting element involved in salicylic acid responsiveness
TGACG-motif TGACG -963, -1169 MeJA 响应顺式作用元件
Cis-acting regulatory element involved in the MeJA-responsiveness

Fig. 2

Acquisition of transgenic flax A: agrobacterium tumefaciens infected the hypocotyl of flax; B: the adventitious bud formation induced by hypocotyl; C: rooting; D: transplanting of transformed seedlings."

Fig. 3

Molecular identification of transgenic flax A: PCR detection transgenic flax plants LuWRI1a; M: DL2000 DNA marker; 1-24: transgenic plants. B: the relative expression level of LuWRI1a genes; WT: wild type (flax cultivar Longya 10) and LuWRI1a over-expressed Longya 10 (OE-2, OE-20, and OE-22)."

Fig. 4

Performances of WT and transgenic flax under drought and salt stresses Performances of WT and transgenic flax after treatment of 25% PEG-6000 and 250 mmol L-1 NaCl for 14 days. WT: CK (Longya 10); OE-2, OE-20, and OE-22: LuWRI1a transgenic lines."

Fig. 5

Characteristics of transgenic plants under salt and drought stresses * and ** mean significant difference at the 0.05 and 0.01 probability levels, respectively."

Fig. 6

Detection of enzyme activity of LuWRI1a-overexpressing flax * and ** mean significant difference at the 0.05 and 0.01 probability levels, respectively."

Fig. 7

Relative expression level of stress response genes in transgenic flax under drought and salt stresses * and ** mean significant difference at the 0.05 and 0.01 probability levels, respectively."

[1] Huis R, Hawkins S, Neutelings G. Selection of reference genes for quantitative gene expression normalization in flax (Linum usitatissimum L.). BMC Plant Biol, 2010, 10: 14.
[2] Zheng J, Cui B, Yan Y H, Gao B, Wu Y F, Wang H D, Wang P, Xu B Q, Zhao Z, Cao Y, Zhang Y P. Agronomic cultivation measures on productivity of oilseed flax: a review. Oil Crop Sci, 2022, 7: 53-62.
[3] Zare S, Mirlohi A, Saeidi G, Ataii E. Water stress intensified the relation of seed color with lignan content and seed yield components in flax (Linum usitatissimum L.). Sci Rep, 2021, 11: 23958.
[4] Fila G, Bagatta M, Maestrini C, Potenza E, Matteo R. Linseed as a dual-purpose crop: evaluation of cultivar suitability and analysis of yield determinants. J Agric Sci, 2018, 156: 162-176.
[5] Zhang J, Liao J, Ling Q, Xi Y, Qian Y. Genome-wide identification and expression profiling analysis of maize AP2/ERF superfamily genes reveal essential roles in abiotic stress tolerance. BMC Genomics, 2022, 23: 125.
doi: 10.1186/s12864-022-08345-7 pmid: 35151253
[6] Yadav B, Kaur V, Narayan O P, Yadav S K, Kumar A, Wankhede D P. Integrated omics approaches for flax improvement under abiotic and biotic stress: current status and future prospects. Front Plant Sci, 2022, 13: 931275.
[7] Paliwal S, Tripathi M K, Tiwari S, Tripathi N, Payasi D K, Tiwari P N, Singh K, Yadav R K, Asati R, Chauhan S. Molecular advances to combat different biotic and abiotic stresses in Linseed (Linum usitatissimum L.): a comprehensive review. Genes (Basel), 2023, 14: 1461.
[8] 刘莹莹, 李玥, 吴兵. 胡麻籽粒产量形成对干旱胁迫的响应及其模拟模型研究. 作物研究, 2023, 37: 14-21.
Liu Y Y, Li Y, Wu B. Response of kernel yield formation to drought stress and its simulation modeling in flaxseed. Crop Res, 2023, 37: 14-21 (in Chinese with English abstract).
[9] Kariuki L W, Masinde P, Githiri S, Onyango A N. Effect of water stress on growth of three linseed (Linum usitatissimum L.) varieties. SpringerPlus, 2016, 5: 1-16.
doi: 10.1186/s40064-015-1659-2 pmid: 26759740
[10] EL-Afry M M, EL-Okkiah S A F, EL-Kady E-S A F, EL-Yamanee G S A. Exogenous application of ascorbic acid for alleviation the adverse effects of salinity stress in flax (Linum usitatissimum L.). Middle East J Agric Res, 2018, 7: 716-739.
[11] Nasri N, Maatallah S, Saidi I, Lachal M. Influence of salinity on germination, seedling growth, ion content and acid phosphatase activities of Linum usitatissimum L. J Anim Plant Sci, 2017, 27: 517-521.
[12] Datir S. Salt-induced physiological and biochemical changes in two varieties of Linum usitatissimum L. Int J Curr Microbiol Appl Sci, 2015, 4: 296-304.
[13] Demir Kaya M, Day S, Cikili Y, Arslan N. Classification of some linseed (Linum usitatissimum L.) genotypes for salinity tolerance using germination, seedling growth, and ion content. Chilean J Agric Res, 2012, 72: 27-32.
[14] 于莹, 陈宏宇, 程莉莉, 赵东升, 袁红梅, 吴广文, 关凤芝. 亚麻MAPK基因克隆及盐碱胁迫下的表达分析. 东北农业大学学报, 2015, 46(3): 8.
Yu Y, Chen H Y, Cheng L L, Zhao D S, Yuan H M, Wu G W, Guan F Z. Flax MAPK gene cloning and expression analysis under saline and alkaline stress. J Northeast Agric Univ, 2015, 46(3): 8 (in Chinese with English abstract).
[15] Yu Y, Chen H, Yang Y Y, Lou D, Liang C, Yuan H, Wu G W, Xu C. Identification and characterization of differentially expressed microRNAs and target gene related to flax stem development. J Nat Fibers, 2021, 19: 5974-5990.
[16] Guo R, Zhou J, Ren G X, Hao W. Physiological responses of linseed seedlings to iso osmotic polyethylene glycol, salt, and alkali stresses. Agron J, 2013, 105: 764.
[17] 郭晋艳, 郑晓瑜, 邹翠霞, 李秋莉. 植物非生物胁迫诱导启动子顺式元件及转录因子研究进展. 生物技术通报, 2011, 23(4): 16-20.
Guo J Y, Zheng X Y, Zou C X, Li Q L. Progress of abiotic stress-induced promoter cis-elements and transcription factors in plants. Biotechnol Bull, 2011, 23(4): 16-20 (in Chinese with English abstract).
[18] Riechmann J L, Heard J, Martin G, Reuber L, Jiang C, Keddie J, Adam L, Pineda O, Ratcliffe O J, Samaha R R, Creelman R, Pilgrim M, Broun P, Zhang J Z, Ghandehari D, Sherman B K, Yu G. Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science, 2000, 290: 2105-2110.
doi: 10.1126/science.290.5499.2105 pmid: 11118137
[19] Iwase A, Mitsuda N, Koyama T, Hiratsu K, Kojima M, Arai T, Inoue Y, Seki M, Sakakibara H, Sugimoto K, Ohme-Takagi M. The AP2/ERF transcription factor WIND1 controls cell dedifferentiation in Arabidopsis. Curr Biol, 2011, 21: 508-514.
[20] Jofuku K D, den Boer B G, Van Montagu M, Okamuro J K. Control of Arabidopsis flower and seed development by the homeotic gene APETALA2. Plant Cell, 1994, 6: 1211-1225.
doi: 10.1105/tpc.6.9.1211 pmid: 7919989
[21] Jaglo-Ottosen K R, Gilmour S J, Zarka D G, Schabenberger O, Thomashow M F. Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance. Science, 1998, 280: 104-116.
doi: 10.1126/science.280.5360.104 pmid: 9525853
[22] Yamaguchi-Shinozaki K, Shinozaki K. Improving plant drought, salt and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Novartis Found Symp, 2001, 290: 2105-2110.
[23] Chandler J W, Cole M, Flier A, Grewe B, Werr W. The AP2 transcription factors DORNROSCHEN and DORNROSCHEN-LIKE redundantly control Arabidopsis embryo patterning via interaction with PHAVOLUTA. Development, 2007, 134: 1653-1662.
doi: 10.1242/dev.001016 pmid: 17376809
[24] Aoyama T, Hiwatashi Y, Shigyo M, Kofuji R, Kubo M, Ito M, Hasebe M. AP2-type transcription factors determine stem cell identity in the moss Physcomitrella patens. Development, 2012, 139: 3120-3129.
doi: 10.1242/dev.076091 pmid: 22833122
[25] De Boer K, Tilleman S, Pauwels L, Vanden Bossche R, De Sutter V, Vanderhaeghen R, Hilson P, Hamill J D, Goossens A. APETALA2/ETHYLENE RESPONSE FACTOR and basic helix-loop-helix tobacco transcription factors cooperatively mediate jasmonate-elicited nicotine biosynthesis. Plant J, 2011, 66: 1053-1065.
[26] Finkelstein R R, Wang M L, Lynch T J, Rao S, Goodman H M. The Arabidopsis abscisic acid response locus ABI4 encodes an APETALA 2 domain protein. Plant Cell, 1998, 10: 1043-1054.
doi: 10.1105/tpc.10.6.1043 pmid: 9634591
[27] Lorenzo O, Piqueras R, Sánchez-Serrano J J, Solano R. ETHYLENE RESPONSE FACTOR1 integrates signals from ethylene and jasmonate pathways in plant defense. Plant Cell, 2003, 15: 165-178.
doi: 10.1105/tpc.007468 pmid: 12509529
[28] Cook D, Fowler S, Fiehn O, Thomashow M F. A prominent role for the CBF cold response pathway in configuring the low-temperature metabolome of Arabidopsis. Proc Natl Acad Sci USA, 2004, 101: 15243-15258.
[29] Cheng M C, Hsieh E J, Chen J H, Chen H Y, Lin T P. Arabidopsis RGLG2, functioning as a RING E3 ligase, interacts with AtERF53 and negatively regulates the plant drought stress response. Plant Physiol, 2012, 158: 363-375.
[30] Oh S J, Kim Y S, Kwon C W, Park H K, Jeong J S, Kim J K. Overexpression of the transcription factor AP37 in rice improves grain yield under drought conditions. Plant Physiol, 2009, 150: 1368-1379.
[31] Chen X, Guo Z. Tobacco OPBP1 enhances salt tolerance and disease resistance of transgenic rice. Int J Mol Sci, 2008, 9: 2601-2613.
doi: 10.3390/ijms9122601 pmid: 19330095
[32] Seo Y J, Park J B, Cho Y J, Jung C, Seo H S, Park S K, Nahm B H, Song J T. Overexpression of the ethylene-responsive factor gene BrERF4 from Brassica rapa increases tolerance to salt and drought in Arabidopsis plants. Mol Cells, 2010, 30: 271-277.
[33] Song C P, Galbraith D W. AtSAP18, an orthologue of human SAP18, is involved in the regulation of salt stress and mediates transcriptional repression in Arabidopsis. Plant Mol Biol, 2006, 60: 241-257.
[34] Schmidt R, Mieulet D, Hubberten H M, Obata T, Hoefgen R, Fernie A R, Fisahn J, San Segundo B, Guiderdoni E, Schippers J H, Mueller-Roeber B. Salt-responsive ERF1 regulates reactive oxygen species-dependent signaling during the initial response to salt stress in rice. Plant Cell, 2013, 25: 2115-2131.
[35] Wessler S R. Homing into the origin of the AP2 DNA binding domain. Trends Plant Sci, 2005, 10: 54-66.
doi: 10.1016/j.tplants.2004.12.007 pmid: 15708341
[36] Xu Z S, Cheng M, Li L C, Ma Y Z. Functions and application of the AP2/ERF transcription factor family in crop improvement. J Integr Plant Biol, 2011, 53: 570-585.
[37] 靳鹏, 黄立钰, 王迪, 吴慧敏, 朱苓华, 傅彬英. 水稻AP2/EREBP转录因子响应非生物胁迫的表达谱分析. 中国农业科学, 2009, 42: 3765-3773.
Jin P, Huang L Y, Wang D, Wu H M, Zhu L H, Fu B Y. Expression profiling of rice AP2/EREBP transcription factors in response to abiotic stress. Sci Agric Sin, 2009, 42: 3765-3773 (in Chinese with English abstract).
[38] Xu Z S, Ni Z Y, Liu L, Nie L N, Li L C, Chen M, Ma Y Z. Characterization of the TaAIDFa gene encoding a CRT/DRE-binding factor responsive to drought, high-salt, and cold stress in wheat. Mol Genet Genomics, 2008, 280: 497-508.
[39] Zhang G, Chen M, Chen X, Xu Z, Guan S, Li L C, Li A, Guo J, Mao L, Ma Y. Phylogeny, gene structures, and expression patterns of the ERF gene family in soybean (Glycine max L.). J Exp Bot, 2008, 59: 4095-4107.
[40] Licausi F, Giorgi F M, Zenoni S, Osti F, Pezzotti M, Perata P. Genomic and transcriptomic analysis of the AP2/ERF superfamily in Vitis vinifera. BMC Genomics, 2010, 11: 719.
[41] Sakuma Y, Liu Q, Dubouzet J G, Abe H, Shinozaki K, Yamaguchi-Shinozaki K. DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration- and cold-inducible gene expression. Biochem Biophys Res Commun, 2002, 290: 998-1009.
[42] Kagaya Y, Ohmiya K, Hattori T. RAV1, a novel DNA-binding protein, binds to bipartite recognition sequence through two distinct DNA-binding domains uniquely found in higher plants. Nucleic Acids Res, 1999, 27: 470-478.
doi: 10.1093/nar/27.2.470 pmid: 9862967
[43] Gao S, Zhang H, Tian Y, Li F, Zhang Z, Lu X, Chen X, Huang R. Expression of TERF1 in rice regulates expression of stress-responsive genes and enhances tolerance to drought and high-salinity. Plant Cell Rep, 2008, 27: 1787-1795.
[44] Zhang G, Chen M, Li L, Xu Z, Chen X, Guo J, Ma Y. Overexpression of the soybean GmERF3 gene, an AP2/ERF type transcription factor for increased tolerances to salt, drought, and diseases in transgenic tobacco. J Exp Bot, 2009, 60: 3781-3796.
[45] Zhang H, Liu W, Wan L, Li F, Dai L, Li D, Zhang Z, Huang R. Functional analyses of ethylene response factor JERF3 with the aim of improving tolerance to drought and osmotic stress in transgenic rice. Transgenic Res, 2010, 19: 809-818.
doi: 10.1007/s11248-009-9357-x pmid: 20087656
[46] Eun J S, Woon B S, Hwan K S, Sung S J, Bin Y H, Shic K Y, Kon K J. Overexpression of OsERF83, a vascular tissue-specific transcription factor gene, confers drought tolerance in rice. Int J Mol Sci, 2021, 22: 7656.
[47] Wang Z, Zhao X, Ren Z, Abou-Elwafa S F, Pu X, Zhu Y, Dou D, Su H, Cheng H, Liu Z, Chen Y, Wang E, Shao R, Ku L. ZmERF21 directly regulates hormone signaling and stress-responsive gene expression to influence drought tolerance in maize seedlings. Plant Cell Environ, 2022, 45: 312-328.
[48] Lu L L, Qanmber G, Li J, Pu M L, Chen G Q, Li S D, Liu L, Qin W Q, Ma S Y, Wang Y, Chen Q J, Liu Z. Identification and characterization of the ERF subfamily B3 group revealed GhERF13.12 improves salt tolerance in upland cotton. Front Plant Sci, 2021, 12: 705883.
[49] Li Y, Zhang H, Zhang Q, Liu Q, Zhai H, Zhao N, He S. An AP2/ERF gene, IbRAP2-12, from sweetpotato is involved in salt and drought tolerance in transgenic Arabidopsis. Plant Sci, 2019, 281: 19-30.
[50] Fei W, Yang S, Hu J, Yang F, Qu G, Peng D, Zhou B. Research advances of WRINKLED1 (WRI1) in plants. Funct Plant Biol, 2020, 47: 185-194.
doi: 10.1071/FP19225 pmid: 31968206
[51] Cernac A, Benning C. WRINKLED1 encodes an AP2/EREB domain protein involved in the control of storage compound biosynthesis in Arabidopsis. Plant J, 2004, 40: 575-585.
doi: 10.1111/j.1365-313X.2004.02235.x pmid: 15500472
[52] Liu J, Hua W, Zhan G, Wei F, Wang X, Liu G, Wang H. Increasing seed mass and oil content in transgenic Arabidopsis by the overexpression of wri1-like gene from Brassica napus. Plant Physiol Biochem, 2010, 48: 9-15.
[53] Yang Y, Munz J, Cass C, Zienkiewicz A, Kong Q, Ma W, Sedbrook J, Benning C. Ectopic expression of WRINKLED1 affects fatty acid homeostasis in brachypodium distachyon vegetative tissues. Plant Physiol, 2015, 169: 1836-1847.
doi: 10.1104/pp.15.01236 pmid: 26419778
[54] Sun R, Ye R, Gao L, Zhang L, Wang R, Mao T, Zheng Y, Li D, Lin Y. Characterization and ectopic expression of coWRI1, an AP2/EREBP domain-containing transcription factor from Coconut (Cocos nucifera L.) endosperm, changes the seeds oil content in transgenic Arabidopsis thaliana and rice (Oryza sativa L.). Front Plant Sci, 2017, 8: 63.
[55] Ye J, Wang C, Sun Y, Qu J, Mao H, Chua N-H. Overexpression of a transcription factor increases lipid content in a woody perennial Jatropha curcas. Front Plant Sci, 2018, 9: 1479.
[56] Li W, Wang L, Qi Y, Xie Y, Zhao W, Dang Z, Zhang J. Overexpression of WRINKLED1 improves the weight and oil content in seeds of flax (Linum usitatissimum L.). Front Plant Sci, 2022, 13: 1003758.
[57] 陈芳. 亚麻FAD3基因的克隆及载体构建与遗传转化. 甘肃省农业大学硕士学位论文, 甘肃兰州, 2014.
Chen F. Cloning and Vector Construction and Genetic Transformation of Flax FAD3 Gene. MS Thesis of Gansu Agricultural University, Lanzhou, Gansu, China, 2014 (in Chinese with English abstract).
[58] 陈芳, 党占海, 张建平, 李闻娟, 郝荣楷, 张琼, 张瑜, 宋军生. 不同基因型亚麻下胚轴不定芽诱导的研究. 作物杂志, 2014, (3): 39-43.
Chen F, Dang Z H, Zhang J P, Li W J, Hao R K, Zhang Q, Zhang Y, Song J S. Studies on the induction of adventitious shoots in hypocotyls of flax from different genotypes. Crops, 2014, (3): 39-43 (in Chinese with English abstract).
[59] 李闻娟, 齐燕妮, 王利民, 党照, 赵利, 赵玮, 谢亚萍, 王斌, 张建平, 李淑洁. 不同胡麻品种TAG合成途径关键基因表达与含油量、脂肪酸组分的相关性分析. 草业学报, 2019, 28(1): 138-149.
doi: 10.11686/cyxb2018321
Li W J, Qi Y N, Wang L M, Dang Z, Zhao L, Zhao W, Xie Y P, Wang B, Zhang J P, Li S J. Correlation analysis between the expression of key genes of TAG synthesis pathway and oil content and fatty acid fractions in different caraway varieties. Acta Pratac Sin, 2019, 28(1): 138-149 (in Chinese with English abstract).
[60] 范鑫, 赵雷霖, 翟红红, 王远, 孟志刚, 梁成真, 张锐, 郭三堆, 孙国清. AtNEK6在棉花旱盐胁迫响应中的表达分析研究. 中国农业科学, 2018, 51: 4230-4240.
doi: 10.3864/j.issn.0578-1752.2018.22.002
Fan X, Zhao L L, Zhai H H, Wang Y, Meng Z G, Liang C Z, Zhang R, Guo S D, Sun G Q. Study on expression analysis of AtNEK6 in response to drought and salt stress in cotton. Sci Agric Sin, 2018, 51: 4230-4240 (in Chinese with English abstract).
[61] Fahad S, Bajwa A A, Nazir U, Anjum S A, Farooq A, Zohaib A, Sadia S, Nasim W, Adkins S, Saud S, Ihsan M Z, Alharby H, Wu C, Wang D, Huang J. Crop production under drought and heat stress: plant responses and management options. Front Plant Sci, 2017, 8: 1147.
doi: 10.3389/fpls.2017.01147 pmid: 28706531
[62] Shen B, Allen W B, Zheng P, Li C, Glassman K, Ranch J, Nubel D, Tarczynski M C. Expression of ZmLEC1 and ZmWRI1 increases seed oil production in maize. Plant Physiol, 2010, 153: 980-987.
doi: 10.1104/pp.110.157537 pmid: 20488892
[63] 邵宇鹏, 杨明明, 包格格, 孙英楠, 杨强, 李文滨, 王志坤. 大豆GmWRI1a基因启动子克隆及其功能分析. 中国油料作物学报, 2019, 41: 517-523.
doi: 10.7505/j.issn.1007-9084.2019.04.005
Shao Y P, Yang M M, Bao G G, Sun Y N, Yang Q, Li W B, Wang Z K. Cloning of soybean GmWRI1a gene promoter and its functional analysis. Chin J Oil Crop Sci, 2019, 41: 517-523 (in Chinese with English abstract).
[64] 闫丽, 杨强, 邵宇鹏, 李丹丹, 王志坤, 李文滨. 大豆GmWRI1a基因启动子克隆及序列分析. 作物杂志, 2017, (2): 51-58.
Yan L, Yang Q, Shao Y P, Li D D, Wang Z K, Li W B. Cloning and sequence analysis of soybean GmWRI1a gene promoter. Crops, 2017, (2): 51-58 (in Chinese with English abstract).
[65] 李丹丹, 闫丽, 常健敏, 王志坤, 李文滨. 大豆GmWRI1基因在糖,植物激素及盐胁迫下的表达分析. 作物杂志, 2015, (4): 41-46.
Li D D, Yan L, Chang J M, Wang Z K, Li W B. Expression analysis of soybean GmWRI1 gene under sugar, phytohormone and salt stress. Crops, 2015, (4): 41-46 (in Chinese with English abstract).
[66] 郝翠翠. 花生转录因子AhWRI1基因的克隆与功能研究. 青岛科技大学硕士学位论文, 山东青岛, 2018.
Hao C C. Cloning and Functional Study of Peanut Transcription Factor AhWRI1 Gene. MS Thesis of Qingdao University of Science and Technology, Qingdao, Shandong, China, 2018 (in Chinese with English abstract).
[67] Arias-Moreno D M, Jiménez-Bremont J F, Maruri-López I, Delgado-Sánchez P. Effects of catalase on chloroplast arrangement in Opuntia streptacantha chlorenchyma cells under salt stress. Sci Rep, 2017, 7: 8656.
doi: 10.1038/s41598-017-08744-x pmid: 28819160
[68] Choudhury F K, Rivero R M, Blumwald E, Mittler R. Reactive oxygen species, abiotic stress and stress combination. Plant J, 2017, 90: 856-867.
[69] Xing X, Zhou Q, Xing H, Jiang H, Wang S. Early abscisic acid accumulation regulates ascorbate and glutathione metabolism in soybean leaves under progressive water stress. J Plant Growth Regul, 2016, 35: 865-876.
[70] 牟舒敏, 张丽娟, 李红兵, 关月明, 可庆波, 张岁岐, 郭尚洙, 邓西平. 三种转基因甘薯响应PEG-6000模拟干旱胁迫的生理性差异. 植物生理学报, 2023, 59: 1339-1350.
Mou S M, Zhang L J, Li H B, Guan Y M, Ke Q B, Zhang S Q, Guo S Z, Deng X P. Physiological differences among three transgenic sweetpotatoes in response to PEG-6000-mimicked drought stress. J Plant Physiol, 2023, 59: 1339-1350 (in Chinese with English abstract).
[1] LI Xu-Juan, LI Chun-Jia, TIAN Chun-Yan, KONG Chun-Yan, XU Chao-Hua, LIU Xin-Long. Identification of nitrate transporter protein 1/peptide transporter protein family 6.4 gene (ScNPF6.4) and functional analysis of its regulation of tillering in sugarcane [J]. Acta Agronomica Sinica, 2024, 50(8): 2131-2142.
[2] WANG Long, LI Jing, QIAN Chen, LIN Guo-Bing, LI Yi-Yang, YANG Guang, ZUO Qing-Song. Effects of salt stress on yield, quality, and physiology in rapeseed [J]. Acta Agronomica Sinica, 2024, 50(6): 1597-1607.
[3] QIAO Zhi-Xin, ZHANG Jie-Dao, WANG Yu, GUO Qi-Fang, LIU Yan-Jing, CHEN Rui, HU Wen-Hao, SUN Ai-Qing. Difference in germination characteristics of different winter wheat cultivars under drought stress [J]. Acta Agronomica Sinica, 2024, 50(6): 1568-1583.
[4] SHE Meng, ZHENG Deng-Yu, KE Zhao, WU Zhong-Yi, ZOU Hua-Wen, ZHANG Zhong-Bao. Cloning and functional analysis of ZmGRAS13 gene in maize [J]. Acta Agronomica Sinica, 2024, 50(6): 1420-1434.
[5] LI Hai-Fen, LU Qing, LIU Hao, WEN Shi-Jie, WANG Run-Feng, HUANG Lu, CHEN Xiao-Ping, HONG Yan-Bin, LIANG Xuan-Qiang. Genome-wide identification and expression analysis of AhGA3ox gene family in peanut (Arachis hypogaea L.) [J]. Acta Agronomica Sinica, 2024, 50(4): 932-943.
[6] ZHANG Bao-Hua, LIU Jia-Jing, TIAN Xiao, TIAN Xu-Zhao, DONG Kuo, WU Yu-Jie, XIAO Kai, LI Xiao-Juan. Cloning, expression, and functional analysis of wheat (Triticum aestivum L.) TaSPX1 gene in low nitrogen stress tolerance [J]. Acta Agronomica Sinica, 2024, 50(3): 576-589.
[7] GUO Jia-Xin, YE Yang, GUO Hui-Juan, MIN Wei. Effects and variability analysis of different salt and alkali stresses on the proteome of cotton leaves [J]. Acta Agronomica Sinica, 2024, 50(1): 219-236.
[8] YANG Chuang, WANG Ling, QUAN Cheng-Tao, YU Liang-Qian, DAI Cheng, GUO Liang, FU Ting-Dong, MA Chao-Zhi. Relative expression profiles of genes response to salt stress and constructions of gene co-expression networks in Brassica napus L. [J]. Acta Agronomica Sinica, 2024, 50(1): 237-250.
[9] XIAO Sheng-Hua, LU Yan, LI An-Zi, QIN Yao-Bin, LIAO Ming-Jing, BI Zhao-Fu, ZHUO Gan-Feng, ZHU Yong-Hong, ZHU Long-Fu. Function analysis of an AP2/ERF transcription factor GhTINY2 in cotton negatively regulating salt tolerance [J]. Acta Agronomica Sinica, 2024, 50(1): 126-137.
[10] WANG Heng-Bo, FENG Chun-Yan, ZHANG Yi-Xing, XIE Wan-Jie, DU Cui-Cui, WU Ming-Xing, ZHANG Ji-Sen. Genome-wide identification of NAP transcription factors subfamily in Saccharum spontaneum and functional analysis of SsNAP2a involvement in leaf senescence [J]. Acta Agronomica Sinica, 2024, 50(1): 110-125.
[11] WANG Li-Ping, WANG Xiao-Yu, FU Jing-Ye, WANG Qiang. Functional identification of maize transcription factor ZmMYB12 to enhance drought resistance and low phosphorus tolerance in plants [J]. Acta Agronomica Sinica, 2024, 50(1): 76-88.
[12] XU Yang, ZHANG Dai, KANG Tao, WEN Sai-Qun, ZHANG Guan-Chu, DING Hong, GUO Qing, QIN Fei-Fei, DAI Liang-Xiang, ZHANG Zhi-Meng. Effects of salt stress on ion dynamics and the relative expression level of salt tolerance genes in peanut seedlings [J]. Acta Agronomica Sinica, 2023, 49(9): 2373-2384.
[13] CHEN Li, WANG Jing, QIU Xiao, SUN Hai-Lian, ZHANG Wen-Hao, WANG Tian-Zuo. Differences of physiological responses and transcriptional regulation of alfalfa with different drought tolerances under drought stresses [J]. Acta Agronomica Sinica, 2023, 49(8): 2122-2132.
[14] DAI Shu-Tao, ZHU Can-Can, MA Xiao-Qian, QIN Na, SONG Ying-Hui, WEI Xin, WANG Chun-Yi, LI Jun-Xia. Genome-wide identification of the HAK/KUP/KT potassium transporter family in foxtail millet and its response to K+ deficiency and high salt stress [J]. Acta Agronomica Sinica, 2023, 49(8): 2105-2121.
[15] WEI Zheng-Xin, LIU Chang-Yan, CHEN Hong-Wei, LI Li, SUN Long-Qing, HAN Xue-Song, JIAO Chun-Hai, SHA Ai-Hua. Analysis of ASPAT gene family based on drought-stressed transcriptome sequencing in Vicia faba L. [J]. Acta Agronomica Sinica, 2023, 49(7): 1871-1881.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] XING Guang-Nan, ZHOU Bin, ZHAO Tuan-Jie, YU De-Yue, XING Han, HEN Shou-Yi, GAI Jun-Yi. Mapping QTLs of Resistance to Megacota cribraria (Fabricius) in Soybean[J]. Acta Agronomica Sinica, 2008, 34(03): 361 -368 .
[2] LÜ Li-Hua;TAO Hong-Bin;XIA Lai-Kun; HANG Ya-Jie;ZHAO Ming;ZHAO Jiu-Ran;WANG Pu;. Canopy Structure and Photosynthesis Traits of Summer Maize under Different Planting Densities[J]. Acta Agron Sin, 2008, 34(03): 447 -455 .
[3] Hu Yuqi;Liao Xiaohai. A STUDY ON THE COEFFICIENT OF LEAVES SHAPE OF MAIZE[J]. Acta Agron Sin, 1986, (01): 71 -72 .
[4] WANG Cheng-Zhang;HAN Jin-Feng;SHI Ying-Hua;LI Zhen-Tian;LI De-Feng. Production Performance in Alfalfa with Different Classes of Fall Dormancy[J]. Acta Agron Sin, 2008, 34(01): 133 -141 .
[5] A JIA La-Tie;ZENG Long-Jun;XUE Da-Wei;HU Jiang;ZENG Da-Li;GAO Zhen-Yu;GUO Long-Biao;LI Shi-Gui;QIAN Qian
. QTL Analysis for Chlorophyll Content in Four Grain-Filling Stage in Rice[J]. Acta Agron Sin, 2008, 34(01): 61 -66 .
[6] SHAO Rui-Xin;SHANG-GUAN Zhou-Ping. Effects of Exogenous Nitric Oxide Donor Sodium Nitroprusside on Photosynthetic Pigment Content and Light Use Capability of PS II in Wheat under Water Stress[J]. Acta Agron Sin, 2008, 34(05): 818 -822 .
[7] CHEN Guang-Yao;WANG Guo-Huai;LUO Feng;NIE Ming-Jian. Effects of Endogenous Hormones on Pre-harvest Sprouting in Siliqua of Rapeseed (Brassica napus L.)[J]. Acta Agron Sin, 2007, 33(08): 1324 -1328 .
[8] HE Liang;LI Fu-Hua;SHA Li-Na;FU Feng-Ling;LI Wan-Chen. Activity of Serine/Threonine Protein Phosphatase Type-2C (PP2C) and Its Relationships to Drought Tolerance in Maize[J]. Acta Agron Sin, 2008, 34(05): 899 -903 .
[9] LIU Shan-Shan;TIAN Fu-Dong;GAO Li-Hui;WANG Zhi-Kun;GE Yu-Jun;DIAO Gui-Zhu;LI Wen-Bin;. Effect of Subunit Composition of 7S Globulin on Soybean Quality Cha- racteristics[J]. Acta Agron Sin, 2008, 34(05): 909 -913 .
[10] YIN Jing;WANG Guang-Jin;ZHANG Hong-Ji;SUN Yan;DIAO Yan-Ling;HUANG Jing-Hua;GUO Qiang;XIAO Jia-Lei;Ma Feng-Ming;SUN Guang-Zu. Genetic Analysis and SSR Mapping of Stem Rust Resistance Gene from Wheat Mutant D51[J]. Acta Agron Sin, 2007, 33(08): 1262 -1266 .