Acta Agronomica Sinica ›› 2024, Vol. 50 ›› Issue (12): 2950-2961.doi: 10.3724/SP.J.1006.2024.44057
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
JIN Xin-Xin(), SU Qiao, SONG Ya-Hui, YANG Yong-Qing, LI Yu-Rong, WANG Jin(
)
[1] | Wang X, Liu Y, Ou-Yang L, Yao R N, He D L, Han Z K, Li W T, Ding Y B, Wang Z H, Kang Y P, Yan L Y, Chen Y N, Huai D X, Jiang H F, Lei Y, Liao B S. Metabolomics combined with transcriptomics analyses of mechanism regulating testa pigmentation in peanut. Front Plant Sci, 2022, 13: 1065049. |
[2] |
李佳伟, 马钰聪, 杨鑫雷, 王梅, 崔顺立, 侯名语, 刘立峰, 胡梦蝶, 蒋晓霞, 穆国俊. 花生种皮色素合成相关通路的转录组- 代谢组学联合分析. 植物遗传资源学报, 2022, 23: 240-254.
doi: 10.13430/j.cnki.jpgr.20210524001 |
Li J W, Ma Y C, Yang X L, Wang M, Cui S L, Hou M Y, Liu L F, Hu M D, Jiang X X, Mu G J. Transcriptomics-metabolomics combined analysis highlight the mechanism of testa pigment formation in peanut (Arachis hypogaea L.). J Plant Genet Resour, 2022, 23: 240-254 (in Chinese with English abstract). | |
[3] |
Zhang K, Yuan M, Xia H, He L Q, Ma J, Wang M X, Zhao H L, Hou L, Zhao S Z, Li P C, Tian R Z, Pan J W, Li G H, Thudi M, Ma C L, Wang X J, Zhao C Z. BSA-seq and genetic mapping reveals AhRt2 as a candidate gene responsible for red testa of peanut. Theor Appl Genet, 2022, 135: 1529-1540.
doi: 10.1007/s00122-022-04051-w pmid: 35166897 |
[4] | Chen L, Yan F F, Chen W B, Zhao L, Zhang J L, Lu Q, Liu R. Procyanidin from peanut skin induces antiproliferative effect in human prostate carcinoma cells DU145. Chem Biol Interact, 2018, 288: 12-23. |
[5] |
Zhu F. Anthocyanins in cereals: composition and health effects. Food Res Int, 2018, 109: 232-249.
doi: S0963-9969(18)30285-0 pmid: 29803446 |
[6] |
Tsuda T. Dietary anthocyanin-rich plants: Biochemical basis and recent progress in health benefits studies. Mol Nutr Food Res, 2012, 56: 159-170.
doi: 10.1002/mnfr.201100526 pmid: 22102523 |
[7] | Attree R, Du B, Xu B J. Distribution of phenolic compounds in seed coat and Cotyledon, and their contribution to antioxidant capacities of red and black seed coat peanuts (Arachis hypogaea L.). Ind Crops Prod, 2015, 67: 448-456. |
[8] |
Alseekh S, de Souza L P, Benina M, Fernie A R. The style and substance of plant flavonoid decoration; towards defining both structure and function. Phytochemistry, 2020, 174: 112347.
doi: 10.1016/j.phytochem.2020.112347 pmid: 32203741 |
[9] |
Iwashina T. Flavonoid function and activity to plants and other organisms. Biol Sci Space, 2003, 17: 24-44.
doi: 10.2187/bss.17.24 pmid: 12897458 |
[10] |
Tanaka Y, Brugliera F, Chandler S. Recent progress of flower colour modification by biotechnology. Int J Mol Sci, 2009, 10: 5350-5369.
doi: 10.3390/ijms10125350 pmid: 20054474 |
[11] |
Wen W W, Alseekh S, Fernie A R. Conservation and diversification of flavonoid metabolism in the plant kingdom. Curr Opin Plant Biol, 2020, 55: 100-108.
doi: S1369-5266(20)30044-3 pmid: 32422532 |
[12] | Wang X, Zhang X C, Hou H X, Ma X, Sun S L, Wang H W, Kong L R. Metabolomics and gene expression analysis reveal the accumulation patterns of phenylpropanoids and flavonoids in different colored-grain wheats (Triticum aestivum L.). Food Res Int, 2020, 138: 109711. |
[13] |
Grotewold E. The genetics and biochemistry of floral pigments. Annu Rev Plant Biol, 2006, 57: 761-780.
pmid: 16669781 |
[14] | Duan H R, Wang L R, Cui G X, Zhou X H, Duan X R, Yang H S. Identification of the regulatory networks and hub genes controlling alfalfa floral pigmentation variation using RNA-sequencing analysis. BMC Plant Biol, 2020, 20: 110. |
[15] | 吴紫萱, 薛其勤, 杨会, 刘风珍. 花生种皮颜色研究进展. 山东农业科学, 2022, 54(1): 152-156. |
Wu Z X, Xue Q Q, Yang H, Liu F Z. Research progress on testa color of peanut. Shandong Agric Sci, 2022, 54(1): 152-156 (in Chinese with English abstract). | |
[16] | Hu M D, Li J W, Hou M Y, Liu X Q, Cui S L, Yang X L, Liu L F, Jiang X X, Mu G J. Transcriptomic and metabolomic joint analysis reveals distinct flavonoid biosynthesis regulation for variegated testa color development in peanut (Arachis hypogaea L.). Sci Rep, 2021, 11: 10721. |
[17] | Huang J Y, Xing M H, Li Y, Cheng F, Gu H H, Yue C P, Zhang Y J. Comparative transcriptome analysis of the skin-specific accumulation of anthocyanins in black peanut (Arachis hypogaea L.). J Agric Food Chem, 2019, 67: 1312-1324. |
[18] | Wan L Y, Li B, Lei Y, Yan L Y, Huai D X, Kang Y P, Jiang H F, Tan J Z, Liao B S. Transcriptomic profiling reveals pigment regulation during peanut testa development. Plant Physiol Biochem, 2018, 125: 116-125. |
[19] |
Lou Q, Liu Y L, Qi Y Y, Jiao S Z, Tian F F, Jiang L, Wang Y J. Transcriptome sequencing and metabolite analysis reveals the role of delphinidin metabolism in flower colour in grape hyacinth. J Exp Bot, 2014, 65: 3157-3164.
doi: 10.1093/jxb/eru168 pmid: 24790110 |
[20] |
Wu Q, Wu J, Li S S, Zhang H J, Feng C Y, Yin D D, Wu R Y, Wang L S. Transcriptome sequencing and metabolite analysis for revealing the blue flower formation in waterlily. BMC Genomics, 2016, 17: 897.
pmid: 27829354 |
[21] | Xia H, Zhu L, Zhao C Z, Li K, Shang C L, Hou L, Wang M X, Shi J, Fan S J, Wang X J. Comparative transcriptome analysis of anthocyanin synthesis in black and pink peanut. Plant Signal Behav, 2020, 15: 1721044. |
[22] |
Koes R, Verweij W, Quattrocchio F. Flavonoids: a colorful model for the regulation and evolution of biochemical pathways. Trends Plant Sci, 2005, 10: 236-242.
doi: 10.1016/j.tplants.2005.03.002 pmid: 15882656 |
[23] |
Labbé D, Provencal M, Lamy S, Boivin D, Gingras D, Béliveau R. The flavonols quercetin, kaempferol, and myricetin inhibit hepatocyte growth factor-induced medulloblastoma cell migration. J Nutr, 2009, 139: 646-652.
doi: 10.3945/jn.108.102616 pmid: 19244381 |
[24] | Kuang Q J, Yu Y Y, Attree R, Xu B J. A comparative study on anthocyanin, saponin, and oil profiles of black and red seed coat peanut (Arachis hypogacea) grown in China. Int J Food Prop, 2017, 20: S131-S140. |
[25] | Nabavi S M, Šamec D, Tomczyk M, Milella L, Russo D, Habtemariam S, Suntar I, Rastrelli L, Daglia M, Xiao J B, Giampieri F, Battino M, Sobarzo-Sanchez E, Nabavi S F, Yousefi B, Jeandet P, Xu S W, Shirooie S. Flavonoid biosynthetic pathways in plants: Versatile targets for metabolic engineering. Biotechnol Adv, 2020, 38: 107316. |
[26] | Zhou C B, Mei X, Rothenberg D O, Yang Z B, Zhang W T, Wan S H, Yang H J, Zhang L Y. Metabolome and transcriptome analysis reveals putative genes involved in anthocyanin accumulation and coloration in white and pink tea (Camellia sinensis) flower. Molecules, 2020, 25: 190. |
[27] | Khlestkina E K, Shoeva O Y, Gordeeva E I. Flavonoid biosynthesis genes in wheat. Russ J Genet Appl Res, 2015, 5: 268-278. |
[28] | 苏俏, 金欣欣, 李玉荣, 程增书, 宋亚辉, 杨永庆, 王瑾. 影响多彩花生种皮颜色的关键代谢物及ANS基因分析. 华北农学报, 2022, 37(增刊): 19-25. |
Su Q, Jin X X, Li Y R, Cheng Z S, Song Y H, Yang Y Q, Wang J. Analysis of key metabolites and ANS genes affecting seed testa color of peanut. Acta Agric Boreali-Sin, 2022, 37(S1): 19-25 (in Chinese with English abstract).
doi: 10.7668/hbnxb.20193143 |
|
[29] | Zhao Z L, Wu M, Zhan Y L, Zhan K H, Chang X L, Yang H S, Li Z M. Characterization and purification of anthocyanins from black peanut (Arachis hypogaea L.) skin by combined column chromatography. J Chromatogr A, 2017, 1519: 74-82. |
[1] | GUO Fei-Xiang, LI Chun-Xia, ZHOU Shuang, GUO Bin-Bin, ZHANG Jun, MA Chao. Identification of the R2R3-MYB transcription factor family and screening of genes regulating flavonoid synthesis in mung bean [J]. Acta Agronomica Sinica, 2025, 51(1): 117-133. |
[2] | YE Liang, ZHU Ye-Lin, PEI Lin-Jing, ZHANG Si-Ying, ZUO Xue-Qian, LI Zheng-Zhen, LIU Fang, TAN Jing. Screening candidate resistance genes to ear rot caused by Fusarium verticillioides in maize by combined GWAS and transcriptome analysis [J]. Acta Agronomica Sinica, 2024, 50(9): 2279-2296. |
[3] | YU Hai-Long, WU Wen-Xue, PEI Xing-Xu, LIU Xiao-Yu, DENG Gen-Wang, LI Xi-Chen, ZHEN Shi-Cong, WANG Jun-Sen, ZHAO Yong-Tao, XU Hai-Xia, CHENG Xi-Yong, ZHAN Ke-Hui. Transcriptome sequencing and genome-wide association study of wheat stem traits [J]. Acta Agronomica Sinica, 2024, 50(9): 2187-2206. |
[4] | LIU Yong-Hui, SHEN Yi, SHEN Yue, LIANG Man, SHA Qin, ZHANG Xu-Yao, CHEN Zhi-De. Cloning and functional analysis of drought-inducible promoter AhMYB44-11- Pro in peanut (Arachis hypogaea L.) [J]. Acta Agronomica Sinica, 2024, 50(9): 2157-2166. |
[5] | ZHU Rong-Yu, ZHAO Meng-Jie, YAO Yun-Feng, LI Yan-Hong, LI Xiang-Dong, LIU Zhao-Xin. Effects of straw returning methods and sowing depth on soil physical properties and emergence characteristics of summer peanut [J]. Acta Agronomica Sinica, 2024, 50(8): 2106-2121. |
[6] | XIAO Ming-Kun, YAN Wei, SONG Ji-Ming, ZHANG Lin-Hui, LIU Qian, DUAN Chun-Fang, LI Yue-Xian, JIANG Tai-Ling, SHEN Shao-Bin, ZHOU Ying-Chun, SHEN Zheng-Song, XIONG Xian-Kun, LUO Xin, BAI Li-Na, LIU Guang-Hua. Comparative transcriptome profiling of leaf in curled-leaf cassava and its mutant [J]. Acta Agronomica Sinica, 2024, 50(8): 2143-2156. |
[7] | YANG Qi-Rui, LI Lan-Tao, ZHANG Duo, WANG Ya-Xian, SHENG Kai, WANG Yi-Lun. Effect of phosphorus application on yield, quality, light temperature physiological characteristics, and root morphology in summer peanut [J]. Acta Agronomica Sinica, 2024, 50(7): 1841-1854. |
[8] | ZHAO Na, LIU Yu-Xi, ZHANG Chao-Shu, SHI Ying. Transcriptomic analysis of differences in the starch content of different potatoes [J]. Acta Agronomica Sinica, 2024, 50(6): 1503-1513. |
[9] | CAO Song, YAO Min, REN Rui, JIA Yuan, XIANG Xing-Ru, LI Wen, HE Xin, LIU Zhong-Song, GUAN Chun-Yun, QIAN Lun-Wen, XIONG Xing-Hua. A combination of genome-wide association and transcriptome analysis reveal candidate genes affecting seed oil accumulation in Brassica napus [J]. Acta Agronomica Sinica, 2024, 50(5): 1136-1146. |
[10] | SONG Meng-Yuan, GUO Zhong-Xiao, SU Yu-Fei, DENG Kun-Peng, LAN Tian-Jiao, CHENG Yu-Xin, BAO Shu-Ying, WANG Gui-Fang, DOU Jin-Guang, JIANG Ze-Kai, WANG Ming-Hai, XU Ning. Transcriptome analysis of a stigma exsertion mutant in mungbean [J]. Acta Agronomica Sinica, 2024, 50(4): 957-968. |
[11] | LI Yang-Yang, WU Dan, XU Jun-Hong, CHEN Zhuo-Yong, XU Xin-Yuan, XU Jin-Pan, TANG Zhong-Lin, ZHANG Ya-Ru, ZHU Li, YAN Zhuo-Li, ZHOU Qing-Yuan, LI Jia-Na, LIU Lie-Zhao, TANG Zhang-Lin. Identification of candidate genes associated with drought tolerance based on QTL and transcriptome sequencing in Brassica napus L. [J]. Acta Agronomica Sinica, 2024, 50(4): 820-835. |
[12] | LI Hai-Fen, LU Qing, LIU Hao, WEN Shi-Jie, WANG Run-Feng, HUANG Lu, CHEN Xiao-Ping, HONG Yan-Bin, LIANG Xuan-Qiang. Genome-wide identification and expression analysis of AhGA3ox gene family in peanut (Arachis hypogaea L.) [J]. Acta Agronomica Sinica, 2024, 50(4): 932-943. |
[13] | ZHANG Hui, ZHANG Xin-Yu, YUAN Xu, CHEN Wei-Da, YANG Ting. Transcriptome analysis of tobacco in response to cadmium stress [J]. Acta Agronomica Sinica, 2024, 50(4): 944-956. |
[14] | LU Qing, LIU Hao, LI Hai-Fen, WANG Run-Feng, HUANG Lu, LIANG Xuan-Qiang, CHEN Xiao-Ping, HONG Yan-Bin, LIU Hai-Yan, LI Shao-Xiong. Research on oil content screen with genomic selection and near infrared ray in peanut (Arachis hypogaea L.) [J]. Acta Agronomica Sinica, 2024, 50(4): 969-980. |
[15] | ZHANG Yue, WANG Zhi-Hui, HUAI Dong-Xin, LIU Nian, JIANG Hui-Fang, LIAO Bo-Shou, LEI Yong. Research progress on genetic basis and QTL mapping of oil content in peanut seed [J]. Acta Agronomica Sinica, 2024, 50(3): 529-542. |
|