Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2024, Vol. 50 ›› Issue (12): 2950-2961.doi: 10.3724/SP.J.1006.2024.44057

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Metabolome and transcriptome analysis of flavonoids in peanut testa

JIN Xin-Xin(), SU Qiao, SONG Ya-Hui, YANG Yong-Qing, LI Yu-Rong, WANG Jin()   

  1. Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences / Hebei Key Laboratory of Crop Genetics and Breeding, Shijiazhuang 050035, Hebei, China
  • Received:2024-04-08 Accepted:2024-08-15 Online:2024-12-12 Published:2024-08-27
  • Contact: *E-mail: wangjinnky@163.com
  • Supported by:
    China Agriculture Research System of MOF and MARA(CARS-13);Hebei Agriculture Research System(HBCT2024040101);Hebei Agriculture Research System(HBCT2024040204);Science and Technology Innovation Team of Modern Peanut Seed Industry(21326316D);Talents Construction Project of Science and Technology Innovation of Hebei Academy of Agriculture and Forestry Sciences(2022KJCXZX-LYS-11)

Abstract:

To explore the regulatory mechanisms of flavonoid components and anthocyanin biosynthesis in the color formation of peanut testa, we conducted a study using five peanut cultivars with different testa colors: pink, red, white, black, and speckled (red and white). The key metabolites and genes related to anthocyanin biosynthesis were identified using flavonoid metabolomics and transcriptomics. Our results revealed the identification of 329 flavonoid metabolites in peanut testa, with flavonols being the most abundant in both relative content and variety. We detected 19 types of anthocyanidins, including cyanidin, delphinidin, and petunidin. Most anthocyanidins were modified with glucoside, morbuside, rutin, galactoside, and other glycosides. Notably, the anthocyanin content in black testa was 22.60-66.72 times higher than that in other testa colors, with cyanidin-3-O-sambutin being the most prevalent in black testa. Different metabolites were significantly enriched in anthocyanin biosynthesis, flavonoid biosynthesis, flavone and flavonol biosynthesis, and isoflavone biosynthesis pathways in colored testa compared to white testa. The high expression levels of structural genes in the flavonoid and anthocyanin biosynthesis pathways promoted anthocyanin accumulation in colored testa. Anthocyanin reductase (ANR) and glycosyltransferase (UGT) emerged as candidate genes involved in testa pigmentation, with the competition and activity of UGT and ANR against substrate anthocyanin determining the color pattern of peanut testa. These findings elucidate the regulatory mechanisms of flavonoid substances in peanut testa color, providing valuable references for the breeding of special peanut varieties and the utilization of their nutritional value based on color differences.

Key words: peanut, testa, flavonoids, metabolome, transcriptome

Fig. 1

Phenotypic differences of the five color testa in peanut PT: pink testa; WT: white testa; RT: red testa; CT: multicolor testa; BT: black testa."

Fig. 2

Classification (A) and relative contents (B) of flavonoids metabolites in peanut testa of different cultivars PT: pink testa; WT: white testa; RT: red testa; CT: multicolor testa; BT: black testa."

Fig. 3

Relative contents of the anthocyanins in the testa of different peanut cultivars PT: pink testa; WT: white testa; RT: red testa; CT: multicolor testa; BT: black testa. Different lowercase letters in the figure indicate significant differences between samples at the 0.05 probability level."

Fig. 4

Number of DEMs (A) and DEGs (B) in WT vs BT, WT vs CT, WT vs RT, WT vs PT comparisons PT: pink testa; WT: white testa; RT: red testa; CT: multicolor testa; BT: black testa."

Fig. 5

KEGG enrichment pathway of DEMs (A) and DEGs (B) in WT vs BT, WT vs CT, WT vs RT, WT vs PT comparisons PT: pink testa; WT: white testa; RT: red testa; CT: multicolor testa; BT: black testa."

Fig. 6

Content heatmap of DEMs enriched in the flavonoid and anthocyanin biosynthesis pathway (A) and correlation heatmap of the DEMs and DEGs (B) PT: pink testa; WT: white testa; RT: red testa; CT: multicolor testa; BT: black testa."

Table 1

FPKM-value of DEGs enriched by flavonoid and anthocyanin biosynthesis pathway"

酶种类
Enzyme class
差异表达基因
DEGs
黑皮
BT
花斑皮
CT
粉皮
PT
红皮
RT
白皮
WT
查尔酮合成酶
Chalcone synthase (CHS)
A01g004662 0.60 0.87 0.92 0.20 0.95
A03g016137 176.29 177.86 68.54 59.53 30.44
A05g024845 25.61 16.35 1.10 3.62 0.38
B01g052224 1.05 0.25 0.57 0.59 1.14
B03g067612 188.56 213.25 96.22 78.82 46.62
B05g078749 1.75 0.45 0.24 0.14 0
B05g078750 3.59 1.19 0.38 0.31 0.03
B06g084455 163.86 37.62 101.96 109.79 72.33
Scaffold6g107977 0.19 1.03 0.45 0.13 0.19
Scaffold6g107983 0.66 1.87 1.58 0.48 1.01
novel.4300 0.48 1.10 0.66 0.24 0.35
novel.4302 0.38 1.14 1.05 0.21 0.77
查尔酮异构酶
Chalcone isomerase (CHI)
A04g020659 1.73 1.35 2.09 1.76 0.03
A09g041790 0.32 0.47 0.60 0.38 0.22
A10g048771 46.61 27.58 23.76 15.80 12.38
B02g057981 3.31 1.62 3.35 7.69 4.10
B09g099540 21.24 13.24 10.51 9.67 4.56
B10g104123 67.03 47.14 36.85 32.85 20.07
novel.5812 0.79 0.31 0.73 2.07 0.70
黄烷酮羟化酶
Flavanone 3-hydroxylase (F3H)
A01g003995 81.12 59.87 14.24 10.71 1.85
novel.3235 52.47 47.26 14.83 10.56 1.32
类黄酮羟化酶
Flavonoid 3'-hydroxylase (F3'H)
A10g047831 56.48 26.57 12.05 7.12 4.27
B10g105286 146.62 49.23 34.29 15.90 3.87
二氢黄酮醇还原酶
Dihydroflavonol reductase (DFR)
B06g086139 135.00 130.73 26.27 28.59 19.30
黄酮醇合成酶
Flavonol synthetase (FLS)
A07g032578 5.63 27.24 13.56 16.49 12.47
B10g102931 1.79 2.23 3.64 1.65 1.69
无色花青素还原酶
Leucocyanidin reductase (LAR)
A05g022192 28.44 15.87 0.94 0.09 0.02
B05g076540 24.65 12.28 0.82 0.09 0
花青素合成酶
Anthocyanidin synthase (ANS)
B10g102589 0.22 0.30 0.59 0.36 0.95
Scaffold1g106620 26.42 17.92 6.72 3.46 0.18
花青素还原酶
Anthocyanin reductase (ANR)
A03g011741 5.71 1.73 6.06 0.36 0.11
A03g016167 0.82 0.06 0.39 0.10 0.34
A04g018753 6.46 3.74 3.46 4.53 3.07
B03g067636 4.05 0.81 1.97 0.96 1.64
novel.367 22.70 0.43 4.77 0.18 0.11
糖基转移酶
UDP-glycosyltransferases (UGT)
A03g015165 5.32 8.97 2.54 1.92 0.01
B10g101189 0 1.32 0 0.16 0.17

Fig. 7

Expression pattern of anthocyanin biosynthesis"

[1] Wang X, Liu Y, Ou-Yang L, Yao R N, He D L, Han Z K, Li W T, Ding Y B, Wang Z H, Kang Y P, Yan L Y, Chen Y N, Huai D X, Jiang H F, Lei Y, Liao B S. Metabolomics combined with transcriptomics analyses of mechanism regulating testa pigmentation in peanut. Front Plant Sci, 2022, 13: 1065049.
[2] 李佳伟, 马钰聪, 杨鑫雷, 王梅, 崔顺立, 侯名语, 刘立峰, 胡梦蝶, 蒋晓霞, 穆国俊. 花生种皮色素合成相关通路的转录组- 代谢组学联合分析. 植物遗传资源学报, 2022, 23: 240-254.
doi: 10.13430/j.cnki.jpgr.20210524001
Li J W, Ma Y C, Yang X L, Wang M, Cui S L, Hou M Y, Liu L F, Hu M D, Jiang X X, Mu G J. Transcriptomics-metabolomics combined analysis highlight the mechanism of testa pigment formation in peanut (Arachis hypogaea L.). J Plant Genet Resour, 2022, 23: 240-254 (in Chinese with English abstract).
[3] Zhang K, Yuan M, Xia H, He L Q, Ma J, Wang M X, Zhao H L, Hou L, Zhao S Z, Li P C, Tian R Z, Pan J W, Li G H, Thudi M, Ma C L, Wang X J, Zhao C Z. BSA-seq and genetic mapping reveals AhRt2 as a candidate gene responsible for red testa of peanut. Theor Appl Genet, 2022, 135: 1529-1540.
doi: 10.1007/s00122-022-04051-w pmid: 35166897
[4] Chen L, Yan F F, Chen W B, Zhao L, Zhang J L, Lu Q, Liu R. Procyanidin from peanut skin induces antiproliferative effect in human prostate carcinoma cells DU145. Chem Biol Interact, 2018, 288: 12-23.
[5] Zhu F. Anthocyanins in cereals: composition and health effects. Food Res Int, 2018, 109: 232-249.
doi: S0963-9969(18)30285-0 pmid: 29803446
[6] Tsuda T. Dietary anthocyanin-rich plants: Biochemical basis and recent progress in health benefits studies. Mol Nutr Food Res, 2012, 56: 159-170.
doi: 10.1002/mnfr.201100526 pmid: 22102523
[7] Attree R, Du B, Xu B J. Distribution of phenolic compounds in seed coat and Cotyledon, and their contribution to antioxidant capacities of red and black seed coat peanuts (Arachis hypogaea L.). Ind Crops Prod, 2015, 67: 448-456.
[8] Alseekh S, de Souza L P, Benina M, Fernie A R. The style and substance of plant flavonoid decoration; towards defining both structure and function. Phytochemistry, 2020, 174: 112347.
doi: 10.1016/j.phytochem.2020.112347 pmid: 32203741
[9] Iwashina T. Flavonoid function and activity to plants and other organisms. Biol Sci Space, 2003, 17: 24-44.
doi: 10.2187/bss.17.24 pmid: 12897458
[10] Tanaka Y, Brugliera F, Chandler S. Recent progress of flower colour modification by biotechnology. Int J Mol Sci, 2009, 10: 5350-5369.
doi: 10.3390/ijms10125350 pmid: 20054474
[11] Wen W W, Alseekh S, Fernie A R. Conservation and diversification of flavonoid metabolism in the plant kingdom. Curr Opin Plant Biol, 2020, 55: 100-108.
doi: S1369-5266(20)30044-3 pmid: 32422532
[12] Wang X, Zhang X C, Hou H X, Ma X, Sun S L, Wang H W, Kong L R. Metabolomics and gene expression analysis reveal the accumulation patterns of phenylpropanoids and flavonoids in different colored-grain wheats (Triticum aestivum L.). Food Res Int, 2020, 138: 109711.
[13] Grotewold E. The genetics and biochemistry of floral pigments. Annu Rev Plant Biol, 2006, 57: 761-780.
pmid: 16669781
[14] Duan H R, Wang L R, Cui G X, Zhou X H, Duan X R, Yang H S. Identification of the regulatory networks and hub genes controlling alfalfa floral pigmentation variation using RNA-sequencing analysis. BMC Plant Biol, 2020, 20: 110.
[15] 吴紫萱, 薛其勤, 杨会, 刘风珍. 花生种皮颜色研究进展. 山东农业科学, 2022, 54(1): 152-156.
Wu Z X, Xue Q Q, Yang H, Liu F Z. Research progress on testa color of peanut. Shandong Agric Sci, 2022, 54(1): 152-156 (in Chinese with English abstract).
[16] Hu M D, Li J W, Hou M Y, Liu X Q, Cui S L, Yang X L, Liu L F, Jiang X X, Mu G J. Transcriptomic and metabolomic joint analysis reveals distinct flavonoid biosynthesis regulation for variegated testa color development in peanut (Arachis hypogaea L.). Sci Rep, 2021, 11: 10721.
[17] Huang J Y, Xing M H, Li Y, Cheng F, Gu H H, Yue C P, Zhang Y J. Comparative transcriptome analysis of the skin-specific accumulation of anthocyanins in black peanut (Arachis hypogaea L.). J Agric Food Chem, 2019, 67: 1312-1324.
[18] Wan L Y, Li B, Lei Y, Yan L Y, Huai D X, Kang Y P, Jiang H F, Tan J Z, Liao B S. Transcriptomic profiling reveals pigment regulation during peanut testa development. Plant Physiol Biochem, 2018, 125: 116-125.
[19] Lou Q, Liu Y L, Qi Y Y, Jiao S Z, Tian F F, Jiang L, Wang Y J. Transcriptome sequencing and metabolite analysis reveals the role of delphinidin metabolism in flower colour in grape hyacinth. J Exp Bot, 2014, 65: 3157-3164.
doi: 10.1093/jxb/eru168 pmid: 24790110
[20] Wu Q, Wu J, Li S S, Zhang H J, Feng C Y, Yin D D, Wu R Y, Wang L S. Transcriptome sequencing and metabolite analysis for revealing the blue flower formation in waterlily. BMC Genomics, 2016, 17: 897.
pmid: 27829354
[21] Xia H, Zhu L, Zhao C Z, Li K, Shang C L, Hou L, Wang M X, Shi J, Fan S J, Wang X J. Comparative transcriptome analysis of anthocyanin synthesis in black and pink peanut. Plant Signal Behav, 2020, 15: 1721044.
[22] Koes R, Verweij W, Quattrocchio F. Flavonoids: a colorful model for the regulation and evolution of biochemical pathways. Trends Plant Sci, 2005, 10: 236-242.
doi: 10.1016/j.tplants.2005.03.002 pmid: 15882656
[23] Labbé D, Provencal M, Lamy S, Boivin D, Gingras D, Béliveau R. The flavonols quercetin, kaempferol, and myricetin inhibit hepatocyte growth factor-induced medulloblastoma cell migration. J Nutr, 2009, 139: 646-652.
doi: 10.3945/jn.108.102616 pmid: 19244381
[24] Kuang Q J, Yu Y Y, Attree R, Xu B J. A comparative study on anthocyanin, saponin, and oil profiles of black and red seed coat peanut (Arachis hypogacea) grown in China. Int J Food Prop, 2017, 20: S131-S140.
[25] Nabavi S M, Šamec D, Tomczyk M, Milella L, Russo D, Habtemariam S, Suntar I, Rastrelli L, Daglia M, Xiao J B, Giampieri F, Battino M, Sobarzo-Sanchez E, Nabavi S F, Yousefi B, Jeandet P, Xu S W, Shirooie S. Flavonoid biosynthetic pathways in plants: Versatile targets for metabolic engineering. Biotechnol Adv, 2020, 38: 107316.
[26] Zhou C B, Mei X, Rothenberg D O, Yang Z B, Zhang W T, Wan S H, Yang H J, Zhang L Y. Metabolome and transcriptome analysis reveals putative genes involved in anthocyanin accumulation and coloration in white and pink tea (Camellia sinensis) flower. Molecules, 2020, 25: 190.
[27] Khlestkina E K, Shoeva O Y, Gordeeva E I. Flavonoid biosynthesis genes in wheat. Russ J Genet Appl Res, 2015, 5: 268-278.
[28] 苏俏, 金欣欣, 李玉荣, 程增书, 宋亚辉, 杨永庆, 王瑾. 影响多彩花生种皮颜色的关键代谢物及ANS基因分析. 华北农学报, 2022, 37(增刊): 19-25.
Su Q, Jin X X, Li Y R, Cheng Z S, Song Y H, Yang Y Q, Wang J. Analysis of key metabolites and ANS genes affecting seed testa color of peanut. Acta Agric Boreali-Sin, 2022, 37(S1): 19-25 (in Chinese with English abstract).
doi: 10.7668/hbnxb.20193143
[29] Zhao Z L, Wu M, Zhan Y L, Zhan K H, Chang X L, Yang H S, Li Z M. Characterization and purification of anthocyanins from black peanut (Arachis hypogaea L.) skin by combined column chromatography. J Chromatogr A, 2017, 1519: 74-82.
[1] GUO Fei-Xiang, LI Chun-Xia, ZHOU Shuang, GUO Bin-Bin, ZHANG Jun, MA Chao. Identification of the R2R3-MYB transcription factor family and screening of genes regulating flavonoid synthesis in mung bean [J]. Acta Agronomica Sinica, 2025, 51(1): 117-133.
[2] YE Liang, ZHU Ye-Lin, PEI Lin-Jing, ZHANG Si-Ying, ZUO Xue-Qian, LI Zheng-Zhen, LIU Fang, TAN Jing. Screening candidate resistance genes to ear rot caused by Fusarium verticillioides in maize by combined GWAS and transcriptome analysis [J]. Acta Agronomica Sinica, 2024, 50(9): 2279-2296.
[3] YU Hai-Long, WU Wen-Xue, PEI Xing-Xu, LIU Xiao-Yu, DENG Gen-Wang, LI Xi-Chen, ZHEN Shi-Cong, WANG Jun-Sen, ZHAO Yong-Tao, XU Hai-Xia, CHENG Xi-Yong, ZHAN Ke-Hui. Transcriptome sequencing and genome-wide association study of wheat stem traits [J]. Acta Agronomica Sinica, 2024, 50(9): 2187-2206.
[4] LIU Yong-Hui, SHEN Yi, SHEN Yue, LIANG Man, SHA Qin, ZHANG Xu-Yao, CHEN Zhi-De. Cloning and functional analysis of drought-inducible promoter AhMYB44-11- Pro in peanut (Arachis hypogaea L.) [J]. Acta Agronomica Sinica, 2024, 50(9): 2157-2166.
[5] ZHU Rong-Yu, ZHAO Meng-Jie, YAO Yun-Feng, LI Yan-Hong, LI Xiang-Dong, LIU Zhao-Xin. Effects of straw returning methods and sowing depth on soil physical properties and emergence characteristics of summer peanut [J]. Acta Agronomica Sinica, 2024, 50(8): 2106-2121.
[6] XIAO Ming-Kun, YAN Wei, SONG Ji-Ming, ZHANG Lin-Hui, LIU Qian, DUAN Chun-Fang, LI Yue-Xian, JIANG Tai-Ling, SHEN Shao-Bin, ZHOU Ying-Chun, SHEN Zheng-Song, XIONG Xian-Kun, LUO Xin, BAI Li-Na, LIU Guang-Hua. Comparative transcriptome profiling of leaf in curled-leaf cassava and its mutant [J]. Acta Agronomica Sinica, 2024, 50(8): 2143-2156.
[7] YANG Qi-Rui, LI Lan-Tao, ZHANG Duo, WANG Ya-Xian, SHENG Kai, WANG Yi-Lun. Effect of phosphorus application on yield, quality, light temperature physiological characteristics, and root morphology in summer peanut [J]. Acta Agronomica Sinica, 2024, 50(7): 1841-1854.
[8] ZHAO Na, LIU Yu-Xi, ZHANG Chao-Shu, SHI Ying. Transcriptomic analysis of differences in the starch content of different potatoes [J]. Acta Agronomica Sinica, 2024, 50(6): 1503-1513.
[9] CAO Song, YAO Min, REN Rui, JIA Yuan, XIANG Xing-Ru, LI Wen, HE Xin, LIU Zhong-Song, GUAN Chun-Yun, QIAN Lun-Wen, XIONG Xing-Hua. A combination of genome-wide association and transcriptome analysis reveal candidate genes affecting seed oil accumulation in Brassica napus [J]. Acta Agronomica Sinica, 2024, 50(5): 1136-1146.
[10] SONG Meng-Yuan, GUO Zhong-Xiao, SU Yu-Fei, DENG Kun-Peng, LAN Tian-Jiao, CHENG Yu-Xin, BAO Shu-Ying, WANG Gui-Fang, DOU Jin-Guang, JIANG Ze-Kai, WANG Ming-Hai, XU Ning. Transcriptome analysis of a stigma exsertion mutant in mungbean [J]. Acta Agronomica Sinica, 2024, 50(4): 957-968.
[11] LI Yang-Yang, WU Dan, XU Jun-Hong, CHEN Zhuo-Yong, XU Xin-Yuan, XU Jin-Pan, TANG Zhong-Lin, ZHANG Ya-Ru, ZHU Li, YAN Zhuo-Li, ZHOU Qing-Yuan, LI Jia-Na, LIU Lie-Zhao, TANG Zhang-Lin. Identification of candidate genes associated with drought tolerance based on QTL and transcriptome sequencing in Brassica napus L. [J]. Acta Agronomica Sinica, 2024, 50(4): 820-835.
[12] LI Hai-Fen, LU Qing, LIU Hao, WEN Shi-Jie, WANG Run-Feng, HUANG Lu, CHEN Xiao-Ping, HONG Yan-Bin, LIANG Xuan-Qiang. Genome-wide identification and expression analysis of AhGA3ox gene family in peanut (Arachis hypogaea L.) [J]. Acta Agronomica Sinica, 2024, 50(4): 932-943.
[13] ZHANG Hui, ZHANG Xin-Yu, YUAN Xu, CHEN Wei-Da, YANG Ting. Transcriptome analysis of tobacco in response to cadmium stress [J]. Acta Agronomica Sinica, 2024, 50(4): 944-956.
[14] LU Qing, LIU Hao, LI Hai-Fen, WANG Run-Feng, HUANG Lu, LIANG Xuan-Qiang, CHEN Xiao-Ping, HONG Yan-Bin, LIU Hai-Yan, LI Shao-Xiong. Research on oil content screen with genomic selection and near infrared ray in peanut (Arachis hypogaea L.) [J]. Acta Agronomica Sinica, 2024, 50(4): 969-980.
[15] ZHANG Yue, WANG Zhi-Hui, HUAI Dong-Xin, LIU Nian, JIANG Hui-Fang, LIAO Bo-Shou, LEI Yong. Research progress on genetic basis and QTL mapping of oil content in peanut seed [J]. Acta Agronomica Sinica, 2024, 50(3): 529-542.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[4] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .
[5] XING Guang-Nan, ZHOU Bin, ZHAO Tuan-Jie, YU De-Yue, XING Han, HEN Shou-Yi, GAI Jun-Yi. Mapping QTLs of Resistance to Megacota cribraria (Fabricius) in Soybean[J]. Acta Agronomica Sinica, 2008, 34(03): 361 -368 .
[6] ZHENG Yong-Mei;DING Yan-Feng;WANG Qiang-Sheng;LI Gang-Hua;WANG Hui-Zhi;WANG Shao-Hua. Effect of Nitrogen Applied before Transplanting on Tillering and Nitrogen Utilization in Rice[J]. Acta Agron Sin, 2008, 34(03): 513 -519 .
[7] QIN En-Hua;YANG Lan-Fang;. Selenium Content in Seedling and Selenium Forms in Rhizospheric Soil of Nicotiana tabacum L.[J]. Acta Agron Sin, 2008, 34(03): 506 -512 .
[8] LÜ Li-Hua;TAO Hong-Bin;XIA Lai-Kun; HANG Ya-Jie;ZHAO Ming;ZHAO Jiu-Ran;WANG Pu;. Canopy Structure and Photosynthesis Traits of Summer Maize under Different Planting Densities[J]. Acta Agron Sin, 2008, 34(03): 447 -455 .
[9] Zhang Shubiao;Yang Rencui. Some Biological Character of eui-hybrid Rice[J]. Acta Agron Sin, 2003, 29(06): 919 -924 .
[10] SHAO Rui-Xin;SHANG-GUAN Zhou-Ping. Effects of Exogenous Nitric Oxide Donor Sodium Nitroprusside on Photosynthetic Pigment Content and Light Use Capability of PS II in Wheat under Water Stress[J]. Acta Agron Sin, 2008, 34(05): 818 -822 .