Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2025, Vol. 51 ›› Issue (4): 1091-1101.doi: 10.3724/SP.J.1006.2025.43032

;

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Effects of salt stress on photosynthetic performance and dry matter accumulation and distribution in leaves of different salt-tolerant maize varieties

LI Xue-Ting1(), REN Hao1, WANG Hong-Zhang1, ZHANG Ji-Wang1, ZHAO Bin1, REN Bai-Zhao1, LIU Ying2, YAO Hai-Yan3, LIU Peng1,*()   

  1. 1College of Agriculture, Shandong Agricultural University / Huang-Huai-Hai Regional Maize Technology Innovation Center, Tai’an 271018, Shandong, China
    2Binzhou Polytechnic, Binzhou 256603, Shandong, China
    3Agriculture and Rural Bureau of Wudi County, Wudi 251900, Shandong, China
  • Received:2024-07-25 Accepted:2024-10-25 Online:2025-04-12 Published:2024-11-11
  • Contact: E-mail: liup@sdau.edu.cn
  • Supported by:
    Key Research and Development Project of Shandong Province(LJNY202103);Shandong Province Key Agricultural Project for Application Technology Innovation(SDAIT-02-08);Major Scientific and Technological Innovation Project in Shandong Province(2021CXGC010804-05);National Key Research and Development Program of China(2022YFD1201700)

Abstract:

The effects of salt stress on photosynthetic performance, dry matter accumulation, and distribution characteristics in different salt-tolerant maize varieties were investigated to provide a theoretical basis for breeding salt-tolerant maize and optimizing high-yield, stress-resistant cultivation in mildly and moderately saline-alkali soils. The experiments were conducted from 2022 to 2023 using the salt-tolerant maize variety Wansheng 69 (WS69) and the salt-sensitive variety Denghai 605 (DH605), with non-saline conditions as the control (CK). Two salt concentrations—low (1.5‰, MS) and high (3.0‰, HS)—were used to assess the effects of soil salinity on the material production performance of these maize varieties. Salt stress significantly reduced the leaf area index, chlorophyll content (SPAD value), and leaf photosynthetic potential of summer maize. Under high salt stress, the average photosynthetic rate (Pn), stomatal conductance (Gs), and transpiration rate (E) of DH605 and WS69 leaves decreased by 22.11%, 19.99%, 11.63%, and 13.51%, 13.42%, 8.81%, respectively, compared to CK, while the intercellular carbon dioxide concentration (Ci) increased by 19.83% and 10.79%. Salt stress also impeded dry matter accumulation in summer maize, significantly reducing plant biomass, the maximum growth rate (Wmax), and the maximum accumulation rate (Rmax), while increasing the number of days required to reach the maximum accumulation rate (Tmax). The proportion of dry matter accumulation after anthesis increased in salt-tolerant varieties but decreased in salt-sensitive varieties. Additionally, salt stress reduced the dry matter distribution to reproductive organs, leading to yield reduction. Under MS and HS treatments, the average yield of DH605 was 16.12% and 27.42% lower than CK, respectively, while the yield of WS69 decreased by 6.90% and 9.12%. After salt stress, salt-tolerant varieties maintained higher leaf area indices, SPAD values, and photosynthetic potential, with less reduction in photosynthetic performance, which helped sustain the accumulation of photosynthetic products. Overall, salt stress significantly decreased dry matter accumulation and distribution to reproductive organs after anthesis, reducing the harvest index and ultimately resulting in lower yields.

Key words: maize (Zea mays L.), salt stress, leaf photosynthetic performance, dry matter accumulation

Fig. 1

Effects of salt stress on the leaf area index of summer maize with different salt tolerance Different lowercase letters indicate significant differences between varieties at the level of P < 0.05. DH605: Denghai 605; WS69: Wansheng 69; CK: no salt treatment; MS: 1.5‰ salt stress; HS: 3.0‰ salt stress. V6: 6th-leaf fully expanded stage, V12: 12th-leaf fully expanded stage, VT: tasseling, R3: milk stage, R5: dough stage."

Fig. 2

Effects of salt stress on SPAD value of summer maize with different salt tolerance Different lowercase letters indicate significant differences between varieties at P < 0.05. Abbreviations and treatments are the same as those given in Fig. 1."

Table 1

Effects of salt stress on leaf area duration (LAD) of summer maize with different salt tolerance"

年份
Year
品种
Variety
处理
Treatment
光合势LAD (m2 d m−2)
花前 Pre-VT 花后Post-VT 总光合势
VE-V12 V12-VT 总计Total VT-R3 R3-R6 总计Total Total photosynthetic potential
2022 登海605 DH605 CK 84.58±2.58 a 65.94±2.08 a 150.51±4.31 a 124.06±3.18 a 70.94±1.13 a 195.00±4.00 a 345.51±6.54 a
MS 79.04±1.85 b 61.70±0.75 b 140.74±2.45 b 111.83±1.84 b 61.38±1.90 b 173.21±3.63 b 313.95±6.06 b
HS 54.80±2.63 c 45.93±0.55 c 100.73±2.77 c 96.40±1.87 c 58.34±1.33 c 154.75±2.81 c 255.48±4.49 c
万盛69 WS69 CK 89.37±1.05 a 71.18±0.80 a 160.55±1.24 a 135.81±0.39 a 77.52±1.33 a 213.32±0.99 a 373.88±1.65 a
MS 87.73±0.43 b 69.55±0.45 b 157.28±0.75 b 130.81±1.69 b 73.82±1.19 b 204.63±2.88 b 361.91±3.33 b
HS 84.78±0.44 c 67.65±0.15 c 152.43±0.34 c 126.92±0.86 c 71.07±0.77 c 197.98±1.55 c 350.42±1.23 c
2023 登海605 DH605 CK 87.81±2.03 a 67.34±1.18 a 155.15±3.19 a 124.59±1.51 a 70.92±1.31 a 195.50±2.69 a 350.65±4.41 a
MS 55.20±2.96 b 52.58±1.04 b 107.77±3.93 b 109.67±1.45 b 61.14±1.08 b 170.82±2.48 b 278.59±5.87 b
HS 41.17±1.36 c 44.8±1.13 c 85.97±2.29 c 101.61±1.05 c 57.79±0.60 c 159.39±0.72 c 245.37±2.35 c
万盛69 WS69 CK 92.69±1.98 a 70.84±1.38 a 163.53±3.31 a 130.48±1.36 a 74.13±0.78 a 204.61±1.76 a 368.14±4.95 a
MS 78.59±0.56 b 64.45±0.21 b 143.04±0.38 b 123.49±1.28 b 69.29±1.49 b 192.78±2.68 b 335.82±2.53 b
HS 71.71±1.86 c 56.27±1.23 c 127.98±3.09 c 111.08±2.50 c 66.27±1.84 c 177.34±4.31 c 305.33±7.29 c
ANOVA 年份 Y ** ** ** ** ** ** **
品种 V ** ** ** ** ** ** **
处理 T ** ** ** ** ** ** **
年份×品种 Y×V ** ** NS ** ** ** **
年份×处理 Y×T ** ** ** NS NS NS **
品种×处理 V×T ** ** ** ** ** ** **
年份×品种×处理 Y×V×T ** ** ** ** NS ** **

Fig. 3

Effects of salt stress on gas exchange parameters in ear leaves of summer maize with different salt tolerance Different lowercase letters indicate significant differences between varieties at P < 0.05. Abbreviations and treatments are the same as those given in Fig. 1."

Table 2

Effects of salt stress on biomass accumulation and its proportion before and after flowering stage of summer maize with different salt tolerance"

年份Year 品种Variety 处理
Treatment
生物量Biomass (g plant-1) 所占比例 Proportion (%)
花前Pre-VT 花后Post-VT 花前Pre-VT 花后Post-VT
2022 登海605 DH605 CK 132.68±9.77 a 178.13±9.94 a 42.69 57.31
MS 115.36±7.11 b 137.87±10.38 b 45.56 54.44
HS 97.43±2.09 c 122.00±6.04 b 44.40 55.60
万盛69 WS69 CK 143.57±4.10 a 222.24±8.01 a 39.25 60.75
MS 132.35±4.72 b 219.33±11.80 ab 37.63 62.37
HS 124.03±2.86 c 205.77±6.40 b 37.61 62.39
2023 登海605 DH605 CK 149.70±11.17 a 209.16±12.35 a 41.72 58.28
MS 110.01±5.62 b 140.25±6.36 b 43.96 56.04
HS 99.20±3.12 c 127.21±9.85 b 43.81 56.19
万盛69 WS69 CK 147.32±9.88 a 208.75±6.58 a 41.37 58.63
MS 121.35±7.81 b 206.63±7.67 ab 35.10 64.90
HS 106.47±6.99 c 181.81±9.12 b 36.93 63.07

Table 3

Effects of salt stress on population dry matter accumulation parameters of summer maize with different salt tolerance"

年份Year 品种Variety 处理
Treatment
生长曲线方程
Growth curve
parametric equation
相关系数Correlation coefficient Tmax
(d)
Wmax
(t hm-2)
Rmax
(t hm-2 d-1)
2022 登海605 DH605 CK Y=21.54/(1+82.84e-0.07x) 0.999 63.83 10.77 0.37
MS Y=17.48/(1+61.85e-0.06x) 0.993 64.35 8.74 0.28
HS Y=14.75/(1+156.94e-0.08x) 0.999 64.99 7.38 0.29
万盛69 WS69 CK Y=26.66/(1+46.88e-0.06x) 0.995 69.70 13.33 0.37
MS Y=25.45/(1+66.67e-0.06x) 0.998 70.82 12.73 0.38
HS Y=23.30/(1+77.42e-0.06x) 0.997 70.95 11.65 0.36
2023 登海605 DH605 CK Y=25.03/(1+57.88e-0.06x) 0.996 63.91 12.52 0.40
MS Y=16.88/(1+151.00e-0.08x) 0.998 64.00 8.44 0.33
HS Y=15.39/(1+154.04e-0.08x) 0.099 64.09 7.70 0.30
万盛69 WS69 CK Y=24.40/(1+131.69e-0.08x) 0.999 63.55 12.20 0.47
MS Y=23.74/(1+193.53e-0.08x) 0.999 64.93 11.87 0.48
HS Y=19.80/(1+200.10e-0.08x) 0.999 65.10 9.90 0.40

Fig. 4

Effects of salt stress on biomass allocation of summer maize with different salt tolerance Different lowercase letters indicate significant differences between varieties at P < 0.05. Abbreviations and treatments are the same as those given in Fig. 1 and Table 1."

Table 4

Effects of salt stress on yield components, yield, and harvest index of summer maize"

年份
Year
品种
Variety
处理
Treatment
单位面积穗数
Ears number
(×104 ear hm-2)
穗粒数
Grains per ear
千粒重
1000-grain weight (g)
产量
Yield
(t hm-2)
收获指数Harvest index (%)
2022 登海605 DH605 CK 6.75±0.01 a 592.20±12.63 a 405.995±3.356 a 13.79±0.13 a 50.31±1.65 a
MS 6.75±0.02 a 501.12±18.26 b 396.981±1.485 b 11.41±0.05 b 45.76±1.72 b
HS 6.75±0.02 a 424.06±35.07 c 396.355±3.096 b 9.45±0.08 c 44.49±0.50 b
万盛69 WS69 CK 6.75±0.01 a 590.37±14.79 a 344.047±2.888 b 11.89±0.08 a 48.75±0.77 a
MS 6.75±0.01 a 557.19±16.63 b 349.292±2.557 b 11.17±0.09 b 47.89±0.79 a
HS 6.75±0.02 a 510.18±18.79 c 358.613±3.744 a 10.92±0.07 c 46.18±1.76 a
2023 登海605 DH605 CK 6.75±0.02 a 617.50±10.31 a 332.231±4.274 a 13.69±0.26 a 49.68±1.97 a
MS 6.75±0.02 a 533.51±24.53 b 327.062±5.851 ab 11.64±0.63 b 44.97±1.55 ab
HS 6.75±0.02 a 490.12±10.73 c 326.899±0.499 b 10.49±0.23 c 43.02±4.75 b
2023 万盛69 WS69 CK 6.75±0.01 a 617.33±21.34 a 301.421±5.953 a 12.41±0.43 a 48.31±1.72 a
MS 6.75±0.01 a 562.96±8.24 ab 304.589±5.208 a 11.45±0.69 ab 46.34±1.77 a
HS 6.75±0.02 a 544.49±6.47 b 307.161±2.174 a 11.16±0.15 b 45.61±1.68 a
方差分析
ANOVA
年份 Y NS ** ** * NS
品种 V NS ** ** ** NS
处理 T NS ** * ** **
年份×品种 Y×V NS NS ** NS NS
年份×处理 Y×T NS NS ** NS NS
品种×处理 V×T NS * ** ** NS
年份×品种×处理 Y×V×T NS NS ** ** NS
[1] 农发行粮棉油部. 2023-2024年度玉米行业及农发行玉米信贷业务分析. 农业发展与金融, 2024, (2): 66-70.
Analysis of corn industry and agricultural development bank’s corn credit business in 2023-2024. Agric Dev Finance, 2024, (2): 66-70 (in Chinese).
[2] 孙照华, 任昊, 王洪章, 王子强, 姚海燕, 辛爱美, 赵斌, 张吉旺, 任佰朝, 刘鹏. 叶面喷施硅制剂对滨海盐碱地夏玉米叶片光合性能及籽粒产量的影响. 作物学报, 2024, 50: 2383-2395.
doi: 10.3724/SP.J.1006.2024.43001
Sun Z H, Ren H, Wang H Z, Wang Z Q, Yao H Y, Xin A M, Zhao B, Zhang J W, Ren B Z, Liu P. Effects of foliar silicon sprays on leaf photosynthetic performance and grain yield of summer maize in coastal saline-alkali soil. Acta Agron Sin, 2024, 50: 2383-2395 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2024.43001
[3] 于芳宇. 盐碱地改良技术在农业生产中的作用. 农业开发与装备, 2019, (9): 57-58.
Yu F Y. The role of saline-alkali land improvement technology in agricultural production. Agric Dev Equip, 2019, (9): 57-58 (in Chinese).
[4] 辛承松, 董合忠, 唐薇, 张冬梅, 罗振, 李维江. 滨海盐渍土抗虫棉养分吸收和干物质积累特点. 作物学报, 2008, 34: 2033-2040.
doi: 10.3724/SP.J.1006.2008.02033
Xin C S, Dong H Z, Tang W, Zhang D M, Luo Z, Li W J. Characteristics of nutrient assimilation and dry matter accumulation of Bt cotton (Gossypium hirsutum L.) in coastal saline soil. Acta Agron Sin, 2008, 34: 2033-2040 (in Chinese with English abstract).
[5] 严青青, 张巨松, 李星星, 王燕提. 盐碱胁迫对海岛棉种子萌发及幼苗根系生长的影响. 作物学报, 2019, 45: 100-110.
doi: 10.3724/SP.J.1006.2019.84067
Yan Q Q, Zhang J S, Li X X, Wang Y T. Effects of salinity stress on seed germination and root growth of seedlings in island cotton. Acta Agron Sin, 2019, 45: 100-110 (in Chinese with English abstract).
[6] 雷新慧, 万晨茜, 陶金才, 冷佳俊, 吴怡欣, 王家乐, 王鹏科, 杨清华, 冯佰利, 高金锋. 褪黑素与2,4-表油菜素内酯浸种对盐胁迫下荞麦发芽与幼苗生长的促进效应. 作物学报, 2022, 48: 1210-1221.
doi: 10.3724/SP.J.1006.2022.11040
Lei X H, Wan C X, Tao J C, Leng J J, Wu Y X, Wang J L, Wang P K, Yang Q H, Feng B L, Gao J F. Effects of soaking seeds with MT and EBR on germination and seedling growth in buckwheat under salt stress. Acta Agron Sin, 2022, 48: 1210-1221 (in Chinese with English abstract).
[7] 宁丽华, 张大勇, 刘佳, 何晓兰, 万群, 徐照龙, 黄益洪, 邵宏波. 盐胁迫下苗期栽培大豆生理响应及Na+动态平衡关键基因的表达. 中国农业科学, 2016, 49: 4714-4725.
doi: 10.3864/j.issn.0578-1752.2016.24.004
Ning L H, Zhang D Y, Liu J, He X L, Wan Q, Xu Z L, Huang Y H, Shao H B. Effect of salt stress on physiological responses and the expression of key genes involved in Na+ homeostasis of soybean seedlings. Sci Agric Sin, 2016, 49: 4714-4725 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2016.24.004
[8] 胡涛, 张鸽香, 郑福超, 曹钰. 植物盐胁迫响应的研究进展. 分子植物育种, 2018, 16: 3006-3015.
Hu T, Zhang G X, Zheng F C, Cao Y. Research progress in plant salt stress response. Mol Plant Breed, 2018, 16: 3006-3015 (in Chinese with English abstract).
[9] 刘鸿, 张富来, 田慧娟, 胡梦婷, 丁舒琦, 乔楠, 张丹. 不同玉米品种对盐胁迫的响应及耐盐性筛选. 玉米科学, 2024, 32(4): 39-45.
Liu H, Zhang F L, Tian H J, Hu M T, Ding S Q, Qiao N, Zhang D. Response of different maize varieties to salt stress and screening of salt tolerance. J Maize Sci, 2024, 32(4): 39-45 (in Chinese with English abstract).
[10] Kong X Q, Luo Z, Dong H Z, Eneji A E, Li W J. H2O2 and ABA signaling are responsible for the increased Na+ efflux and water uptake in Gossypium hirsutum L. roots in the non-saline side under non-uniform root zone salinity. J Exp Bot, 2016, 67: 2247-2261.
[11] El-Esawi M A, Alaraidh I A, Alsahli A A, Alamri S A, Ali H M, Alayafi A A. Bacillus firmus (SW5) augments salt tolerance in soybean (Glycine max L.) by modulating root system architecture, antioxidant defense systems and stress-responsive genes expression. Plant Physiol Biochem, 2018, 132: 375-384.
[12] Guo H J, Huang Z J, Li M Q, Hou Z N. Growth, ionic homeostasis, and physiological responses of cotton under different salt and alkali stresses. Sci Rep, 2020, 10: 21844.
doi: 10.1038/s41598-020-79045-z pmid: 33318587
[13] Hu D D, Dong S T, Zhang J W, Zhao B, Ren B Z, Liu P. Endogenous hormones improve the salt tolerance of maize (Zea mays L.) by inducing root architecture and ion balance optimizations. J Agron Crop Sci, 2022, 208: 662-674.
[14] 周振玲, 林兵, 周群, 杨波, 刘艳, 周天阳, 王宝祥, 顾骏飞, 徐大勇, 杨建昌. 耐盐性不同水稻品种对盐胁迫的响应及其生理机制. 中国水稻科学, 2023, 37: 153-165.
doi: 10.16819/j.1001-7216.2023.221005
Zhou Z L, Lin B, Zhou Q, Yang B, Liu Y, Zhou T Y, Wang B X, Gu J F, Xu D Y, Yang J C. Responses of rice varieties differing in salt tolerance to salt stress and their physiological mechanisms. Chin J Rice Sci, 2023, 37: 153-165 (in Chinese with English abstract).
doi: 10.16819/j.1001-7216.2023.221005
[15] 顾逸彪, 颜佳倩, 薛张逸, 束晨晨, 张伟杨, 张耗, 刘立军, 王志琴, 周振玲, 徐大勇, 杨建昌, 顾骏飞. 耐盐性不同水稻品种根系对盐胁迫的响应差异及其机理研究. 作物杂志, 2023, (2): 67-76.
Gu Y B, Yan J Q, Xue Z Y, Shu C C, Zhang W Y, Zhang H, Liu L J, Wang Z Q, Zhou Z L, Xu D Y, Yang J C, Gu J F. Different responses of roots of rice varieties to salt stress and the underlying mechanisms. Crops, 2023, (2): 67-76 (in Chinese with English abstract).
[16] 赵莹, 杨克军, 赵长江, 李佐同, 王玉凤, 付健, 郭亮, 李文胜. 外源糖调控玉米光合系统和活性氧代谢缓解盐胁迫. 中国农业科学, 2014, 47: 3962-3972.
doi: 10.3864/j.issn.0578-1752.2014.20.004
Zhao Y, Yang K J, Zhao C J, Li Z T, Wang Y F, Fu J, Guo L, Li W S. Alleviation of the adverse effects of salt stress by regulating photosynthetic system and active oxygen metabolism in maize seedlings. Sci Agric Sin, 2014, 47: 3962-3972 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2014.20.004
[17] 王龙, 李静, 钱晨, 林国冰, 李亦扬, 杨光, 左青松. 盐胁迫对油菜生理特征和菜籽产量品质的影响. 作物学报, 2024, 50: 1597-1607.
Wang L, Li J, Qian C, Lin G B, Li Y Y, Yang G, Zuo Q S. Effects of salt stress on yield, quality, and physiology in rapeseed. Acta Agron Sin, 2024, 50: 1597-1607 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2024.34137
[18] 陈志豪, 王艳杰, 常旭虹, 王德梅, 刘希伟, 杨玉双, 石书兵, 赵广才. 干旱胁迫对冬小麦物质转运和不同小穗位籽粒产量的影响. 植物营养与肥料学报, 2024, 30: 1211-1221.
Chen Z H, Wang Y J, Chang X H, Wang D M, Liu X W, Yang Y S, Shi S B, Zhao G C. Effects of drought stress on material transportation and grain yield at different panicle positions of winter wheat. J Plant Nutr Fert, 2024, 30: 1211-1221 (in Chinese with English abstract).
[19] 李刚, 李超, 王焱栋, 付凯勇, 魏加练, 曾天云, 李诚, 李春艳. 外源L-谷氨酸对花后干旱胁迫下小麦干物质积累分配、籽粒灌浆特性及品质形成的调控效应. 植物营养与肥料学报, 2024, 30: 848-862.
Li G, Li C, Wang Y D, Fu K Y, Wei J L, Zeng T Y, Li C, Li C Y. Effects of exogenous L-glutamic acid on dry matter accumulation distribution, grain filling characteristic and quality formation under post-anthesis drought stress in wheat. J Plant Nutr Fert, 2024, 30: 848-862 (in Chinese with English abstract).
[20] 韦还和, 张徐彬, 葛佳琳, 陈熙, 孟天瑶, 杨洋, 熊飞, 陈英龙, 戴其根. 盐胁迫对水稻颖花形成及籽粒充实的影响. 作物学报, 2021, 47: 2471-2480.
doi: 10.3724/SP.J.1006.2021.02083
Wei H H, Zhang X B, Ge J L, Chen X, Meng T Y, Yang Y, Xiong F, Chen Y L, Dai Q G. Effects of salinity stress on spikelets formation and grains filling in rice (Oryza sativa L.). Acta Agron Sin, 2021, 47: 2471-2480 (in Chinese with English abstract).
[21] 郭瑞, 田秀平, 杜锦, 马小俊, 杨雨欣. 水杨酸对盐胁迫下糯玉米幼苗生理和光合特性的影响. 玉米科学, 2024, 32(2): 77-83.
Guo R, Tian X P, Du J, Ma X J, Yang Y X. Effects of salicylic acid on physiological and photosynthetic characteristics of waxy corn seedlings under salt stress. J Maize Sci, 2024, 32(2): 77-83 (in Chinese with English abstract).
[22] 张红, 董树亭. 玉米对盐胁迫的生理响应及抗盐策略研究进展. 玉米科学, 2011, 19(1): 64-69.
Zhang H, Dong S T. Research progress on the physiological and biochemistry responses of salt tolerance and strategies of salt resistance in maize. J Maize Sci, 2011, 19(1): 64-69 (in Chinese with English abstract).
[23] 杨建军, 张国斌, 郁继华, 胡琳莉, 罗石磊, 牛童, 张婧. 盐胁迫下内源NO对黄瓜幼苗活性氧代谢和光合特性的影响. 中国农业科学, 2017, 50: 3778-3788.
doi: 10.3864/j.issn.0578-1752.2017.19.014
Yang J J, Zhang G B, Yu J H, Hu L L, Luo S L, Niu T, Zhang J. Effects of endogenous NO on reactive oxygen metabolism and photosynthetic characteristics of cucumber seedlings under salt stress. Sci Agric Sin, 2017, 50: 3778-3788 (in Chinese with English abstract).
[24] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制. 作物学报, 2022, 48: 1463-1475.
doi: 10.3724/SP.J.1006.2022.12027
Yan J Q, Gu Y B, Xue Z Y, Zhou T Y, Ge Q Q, Zhang H, Liu L J, Wang Z Q, Gu J F, Yang J C, Zhou Z L, Xu D Y. Different responses of rice cultivars to salt stress and the underlying mechanisms. Acta Agron Sin, 2022, 48: 1463-1475 (in Chinese with English abstract).
[25] 杨淑萍, 危常州, 梁永超. 盐胁迫对不同基因型海岛棉光合作用及荧光特性的影响. 中国农业科学, 2010, 43: 1585-1593.
doi: 10.3864/j.issn.0578-1752.2010.08.006
Yang S P, Wei C Z, Liang Y C. Effects of NaCl stress on the characteristics of photosynthesis and chlorophyll fluorescence at seedlings stage in different sea island cotton genotypes. Sci Agric Sin, 2010, 43: 1585-1593 (in Chinese with English abstract).
[26] 吕川根, 李霞, 陈国祥. 超级杂交稻两优培九高产的光合特性及其生理基础. 中国农业科学, 2017, 50: 4055-4071.
doi: 10.3864/j.issn.0578-1752.2017.21.001
Lyu C G, Li X, Chen G X. Photosynthetic characteristics and its physiological basis of super high-yielding hybrid rice Liangyoupeijiu. Sci Agric Sin, 2017, 50: 4055-4071 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2017.21.001
[27] 史晓龙, 郭佩, 任婧瑶, 张鹤, 董奇琦, 赵新华, 周宇飞, 张正, 万书波, 于海秋. 基于花生//高粱间作模式的花生盐胁迫耐受性效应研究. 中国农业科学, 2022, 55: 2927-2937.
doi: 10.3864/j.issn.0578-1752.2022.15.005
Shi X L, Guo P, Ren J Y, Zhang H, Dong Q Q, Zhao X H, Zhou Y F, Zhang Z, Wan S B, Yu H Q. A salt stress tolerance effect study in peanut based on peanut//Sorghum intercropping system. Sci Agric Sin, 2022, 55: 2927-2937 (in Chinese with English abstract).
[28] Leogrande R, Vitti C. Use of organic amendments to reclaim saline and sodic soils: a review. Arid Land Res Manag, 2019, 33: 1-21.
doi: 10.1080/15324982.2018.1498038
[29] Sahab S, Suhani I, Srivastava V, Chauhan P S, Singh R P, Prasad V. Potential risk assessment of soil salinity to agroecosystem sustainability: current status and management strategies. Sci Total Environ, 2021, 764: 144164.
[30] 韦还和, 张翔, 朱旺, 耿孝宇, 马唯一, 左博源, 孟天瑶, 高平磊, 陈英龙, 许轲, 戴其根. 盐胁迫对水稻籽粒灌浆特性及产量形成的影响. 作物学报, 2024, 50: 734-746.
doi: 10.3724/SP.J.1006.2024.32021
Wei H H, Zhang X, Zhu W, Geng X Y, Ma W Y, Zuo B Y, Meng T Y, Gao P L, Chen Y L, Xu K, Dai Q G. Effects of salinity stress on grain-filling characteristics and yield of rice. Acta Agron Sin, 2024, 50: 734-746 (in Chinese with English abstract).
[1] PAN Ju-Zhong, WEI Ping, ZHU De-Ping, SHAO Sheng-Xue, CHEN Shan-Shan, WEI Ya-Qian, GAO Wei-Wei. Cloning and functional analysis of OsERF104 transcription factor in rice [J]. Acta Agronomica Sinica, 2025, 51(4): 900-913.
[2] YANG Cui-Hua, LI Shi-Hao, YI Xu-Xu, ZHENG Fei-Xiong, DU Xue-Zhu, SHENG Feng. Effects of poly-γ-glutamic acid on rice yield, quality, and nutrient uptake [J]. Acta Agronomica Sinica, 2025, 51(3): 785-796.
[3] HUO Ru-Xue, GE Xiang-Han, SHI Jia, LI Xue-Rui, DAI Sheng-Jie, LIU Zhen-Ning, LI Zong-Yun. Functional analysis of the sweetpotato histidine kinase protein IbHK5 in response to drought and salt stresses [J]. Acta Agronomica Sinica, 2025, 51(3): 650-666.
[4] LIANG Miao, LI Pan, ZHAO Lian-Hao, FAN Zhi-Long, HU Fa-Long, FAN Hong, HE Wei, CHAI Qiang, YIN Wen. Effect of soil conditioner and slow-release nitrogen fertilizer on dry matter accumulation and yield of wheat [J]. Acta Agronomica Sinica, 2025, 51(2): 470-484.
[5] XIN Ming-Hua, MI Ya-Di, WANG Guo-Ping, LI Xiao-Fei, LI Ya-Bing, DONG He-Lin, HAN Ying-Chun, FENG Lu. Effect of row spacing configuration and density regulation on dry matter production and yield in cotton [J]. Acta Agronomica Sinica, 2025, 51(1): 221-232.
[6] MENG Fan-Hua, LIU Min, SHEN Ao, LIU Wei. Preliminary investigation of the SiLTP1: a lipid transfer protein gene involved in the salt tolerance of foxtail millet [J]. Acta Agronomica Sinica, 2025, 51(1): 58-67.
[7] ZHANG Jun, HU Chuan, ZHOU Qi-Hui, REN Kai-Ming, DONG Shi-Yan, LIU Ao-Han, WU Jin-Zhi, HUANG Ming, LI You-Jun. Effects of nitrogen reduction and organic fertilizer substitution on dry matter accumulation, translocation, distribution, and yield of dryland winter wheat [J]. Acta Agronomica Sinica, 2025, 51(1): 207-220.
[8] SONG Zhi-Wen, ZHAO Lei, BI Jun-Guo, TANG Qing-Yun, WANG Guo-Dong, LI Yu-Xiang. Effects of nitrogen fertilization levels on matter accumulation and nutrient uptake in rice cultivar with different nitrogen efficiency under drip irrigation [J]. Acta Agronomica Sinica, 2024, 50(8): 2025-2038.
[9] LI Wen-Juan, WANG Li-Min, QI Yan-Ni, ZHAO Wei, XIE Ya-Ping, DANG Zhao, ZHAO Li-Rong, LI Wen, XU Chen-Meng, WANG Yan, ZHANG Jian-Ping. Functional analysis of flax LuWRI1a in response to drought and salt stresses [J]. Acta Agronomica Sinica, 2024, 50(7): 1750-1761.
[10] WANG Fei-Er, GUO Yao, LI Pan, WEI Jin-Gui, FAN Zhi-Long, HU Fa-Long, FAN Hong, HE Wei, YIN Wen, CHEN Gui-Ping. Compensation mechanism of increased maize density on yield with water and nitrogen reduction supply in oasis irrigation areas [J]. Acta Agronomica Sinica, 2024, 50(6): 1616-1627.
[11] SHE Meng, ZHENG Deng-Yu, KE Zhao, WU Zhong-Yi, ZOU Hua-Wen, ZHANG Zhong-Bao. Cloning and functional analysis of ZmGRAS13 gene in maize [J]. Acta Agronomica Sinica, 2024, 50(6): 1420-1434.
[12] WANG Long, LI Jing, QIAN Chen, LIN Guo-Bing, LI Yi-Yang, YANG Guang, ZUO Qing-Song. Effects of salt stress on yield, quality, and physiology in rapeseed [J]. Acta Agronomica Sinica, 2024, 50(6): 1597-1607.
[13] ZHANG Zhen, ZHAO Jun-Ye, SHI Yu, ZHANG Yong-Li, YU Zhen-Wen. Effects of different sowing space on photosynthetic characteristics after anthesis and grain yield of wheat [J]. Acta Agronomica Sinica, 2024, 50(4): 981-990.
[14] WANG Lyu, WU Yu-Hong, QIN Yu-Hang, DAN Ya-Bin, CHEN Hao, HAO Xing-Shun, TIAN Xiao-Hong. Effects of rice straw mulching combined with green manure retention and nitrogen reduction applications on dry matter quality accumulation, nitrogen transport and grain yield of rice [J]. Acta Agronomica Sinica, 2024, 50(3): 756-770.
[15] SHANG Yong-Pan, YU Ai-Zhong, WANG Yu-Long, WANG Peng-Fei, LI Yue, CHAI Jian, LYU Han-Qiang, YANG Xue-Hui, WANG Feng. Effects of green manure application methods on dry matter accumulation, distribution, and yield of maize in oasis irrigation area [J]. Acta Agronomica Sinica, 2024, 50(3): 686-694.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!