Acta Agronomica Sinica ›› 2025, Vol. 51 ›› Issue (2): 347-357.doi: 10.3724/SP.J.1006.2025.42030
• CROP GENETICS & BREEDING · GERMPLASM RESOURCES · MOLECULAR GENETICS • Previous Articles Next Articles
LI Chun-Mei,CHEN Jie,LANG Xing-Xuan,ZHUANG Hai-Min,ZHU Jing,DU Zi-Jun,FENG Hao-Tian,JIN Han,ZHU Guo-Lin,LIU Kai*
[1] Wang Y H, Li J Y. Branching in rice. Curr Opin Plant Biol, 2011, 14: 94–99. [2] Wang B, Smith S M, Li J Y. Genetic regulation of shoot architecture. Annu Rev Plant Biol, 2018, 69: 437–468. [3] Li X Y, Qian Q, Fu Z M, Wang Y H, Xiong G S, Zeng D L, Wang X Q, Liu X F, Teng S, Hiroshi F, Yuan M, Luo D, Han B, Li J Y. Control of tillering in rice. Nature, 2003, 422: 618–621. [4] Lin Q B, Wang D, Dong H, Gu S H, Cheng Z J, Gong J, Qin R Z, Jiang L, Li G, Wang J L, Wu F Q, Guo X P, Zhang X, Lei C L, Wang H Y, Wan J M. Rice APC/CTE controls tillering by mediating the degradation of MONOCULM 1. Nat Commun, 2012, 3: 752. [5] Xu C, Wang Y H, Yu Y C, Duan J B, Liao Z G, Xiong G S, Meng X B, Liu G F, Qian Q, Li J Y. Degradation of MONOCULM 1 by APC/CTAD1 regulates rice tillering. Nat Commun, 2012, 3: 750. [6] Shao G N, Lu Z F, Xiong J S, Wang B, Jing Y H, Meng X B, Liu G F, Ma H Y, Liang Y, Chen F, Wang Y H, Li J Y, Yu H. Tiller bud formation regulators MOC1 and MOC3 cooperatively promote tiller bud outgrowth by activating FON1 expression in rice. Mol Plant, 2019, 12: 1090–1102. [7] Takeda T, Suwa Y, Suzuki M, Kitano H, Ueguchi-Tanaka M, Ashikari M, Matsuoka M, Ueguchi C. The OsTB1 gene negatively regulates lateral branching in rice. Plant J, 2003, 33: 513–520. [8] Minakuchi K, Kameoka H, Yasuno N, Umehara M, Luo L, Kobayashi K, Hanada A, Ueno K, Asami T, Yamaguchi S, Kyozuka J. FINE CULM1 (FC1) works downstream of strigolactones to inhibit the outgrowth of axillary buds in rice. Plant Cell Physiol, 2010, 51: 1127–1135. [9] Lu Z F, Yu H, Xiong G S, Wang J, Jiao Y Q, Liu G F, Jing Y H, Meng X B, Hu X M, Qian Q, Fu X D, Wang Y H, Li J Y. Genome-wide binding analysis of the transcription activator IDEAL PLANT ARCHITECTURE1 reveals a complex network regulating rice plant architecture. Plant Cell, 2013, 25: 3743–3759. [10] Song X G, Lu Z F, Yu H, Shao G N, Xiong J S, Meng X B, Jing Y H, Liu G F, Xiong G S, Duan J B, Yao X F, Liu C M, Li H Q, Wang Y H, Li J Y. IPA1 functions as a downstream transcription factor repressed by D53 in strigolactone signaling in rice. Cell Res, 2017, 27: 1128–1141. [11] Fang Z M, Ji Y Y, Hu J, Guo R K, Sun S Y, Wang X L. Strigolactones and brassinosteroids antagonistically regulate the stability of the D53-OsBZR1 complex to determine FC1 expression in rice tillering. Mol Plant, 2020, 13: 586–597. [12] Duan E C, Wang Y H, Li X H, Lin Q B, Zhang T, Wang Y P, Zhou C L, Zhang H, Jiang L, Wang J L, Lei C L, Zhang X, Guo X P, Wang H Y, Wan J M. OsSHI1 regulates plant architecture through modulating the transcriptional activity of IPA1 in rice. Plant Cell, 2019, 31: 1026–1042. [13] Janssen B J, Drummond R S M, Snowden K C. Regulation of axillary shoot development. Curr Opin Plant Biol, 2014, 17: 28–35. [14] Wang F, Han T W, Song Q X, Ye W X, Song X G, Chu J F, Li J Y, Chen Z J. The rice circadian clock regulates tiller growth and panicle development through strigolactone signaling and sugar sensing. Plant Cell, 2020, 32: 3124–3138. [15] Yu J, Xuan W, Tian Y L, Fan L, Sun J, Tang W J, Chen G M, Wang B X, Liu Y, Wu W, Liu X L, Jiang X Z, Zhou C, Dai Z Y, Xu D Y, Wang C M, Wan J M. Enhanced OsNLP4-OsNiR cascade confers nitrogen use efficiency by promoting tiller number in rice. Plant Biotechnol J, 2021, 19: 167–176. [16] Barbier F F, Dun E A, Kerr S C, Chabikwa T G, Beveridge C A. An update on the signals controlling shoot branching. Trends Plant Sci, 2019, 24: 220–236. [17] Jiang L, Liu X, Xiong G S, Liu H H, Chen F L, Wang L, Meng X B, Liu G F, Yu H, Yuan Y D, Yi W, Zhao L H, Ma H L, He Y Z, Wu Z S, Melcher K, Qian Q, Xu H E, Wang Y H, Li J Y. DWARF 53 acts as a repressor of strigolactone signalling in rice. Nature, 2013, 504: 401–405. [18] Zhou F, Lin Q B, Zhu L H, Ren Y L, Zhou K N, Shabek N, Wu F Q, Mao H B, Dong W, Gan L, Ma W W, Gao H, Chen J, Yang C, Wang D, Tan J J, Zhang X, Guo X P, Wang J L, Jiang L, Liu X, Chen W Q, Chu J F, Yan C Y, Ueno K, Ito S, Asami T, Cheng Z J, Wang J, Lei C L, Zhai H Q, Wu C Y, Wang H Y, Zheng N, Wan J M. D14-SCFD3-dependent degradation of D53 regulates strigolactone signalling. Nature, 2013, 504: 406–410. [19] Yao R F, Ming Z H, Yan L M, Li S H, Wang F, Ma S, Yu C T, Yang M, Chen L, Chen L H, Li Y W, Yan C, Miao D, Sun Z Y, Yan J B, Sun Y N, Wang L, Chu J F, Fan S L, He W, Deng H T, Nan F J, Li J Y, Rao Z H, Lou Z Y, Xie D X. DWARF14 is a non-canonical hormone receptor for strigolactone. Nature, 2016, 536: 469–473. [20] Arite T, Iwata H, Ohshima K, Maekawa M, Nakajima M, Kojima M, Sakakibara H, Kyozuka J. DWARF10, an RMS1/MAX4/DAD1 ortholog, controls lateral bud outgrowth in rice. Plant J, 2007, 51: 1019–1029. [21] Lin H, Wang R X, Qian Q, Yan M X, Meng X B, Fu Z M, Yan C Y, Jiang B, Su Z, Li J Y, Wang Y H. DWARF27, an iron-containing protein required for the biosynthesis of strigolactones, regulates rice tiller bud outgrowth. Plant Cell, 2009, 21: 1512–1525. [22] Liu L H, Xie T T, Peng P, Qiu H Y, Zhao J F, Fang J J, Patil S B, Wang Y Q, Fang S, Chu J F, Yuan S J, Zhang W H, Li X Y. Mutations in the MIT3 gene encoding a caroteniod isomerase lead to increased tiller number in rice. Plant Sci, 2018, 267: 1–10. [23] Liu X, Hu Q L, Yan J J, Sun K, Liang Y, Jia M R, Meng X B, Fang S, Wang Y Q, Jing Y H, Liu G F, Wu D X, Chu C C, Smith S M, Chu J F, Wang Y H, Li J Y, Wang B. ζ-carotene isomerase suppresses tillering in rice through the coordinated biosynthesis of strigolactone and abscisic acid. Mol Plant, 2020, 13: 1784–1801. [24] Liu L H, Ren M M, Peng P, Chun Y, Li L, Zhao J F, Fang J J, Peng L X, Yan J J, Chu J F, Wang Y Q, Yuan S J, Li X Y. MIT1, encoding a 15-cis-ζ-carotene isomerase, regulates tiller number and stature in rice. J Genet Genomics, 2021, 48: 88–91. [25] Zhou H, Yang M, Zhao L, Zhu Z F, Liu F X, Sun H Y, Sun C Q, Tan L B. HIGH-TILLERING AND DWARF 12 modulates photosynthesis and plant architecture by affecting carotenoid biosynthesis in rice. J Exp Bot, 2021, 72: 1212–1224. [26] Liao Z G, Yu H, Duan J B, Yuan K, Yu C J, Meng X B, Kou L Q, Chen M J, Jing Y H, Liu G F, Smith S M, Li J Y. SLR1 inhibits MOC1 degradation to coordinate tiller number and plant height in rice. Nat Commun, 2019, 10: 2738. [27] Lin Q B, Zhang Z, Wu F Q, Feng M, Sun Y, Chen W W, Cheng Z J, Zhang X, Ren Y L, Lei C L, Zhu S S, Wang J, Zhao Z C, Guo X P, Wang H Y, Wan J M. The APC/CTE E3 ubiquitin ligase complex mediates the antagonistic regulation of root growth and tillering by ABA and GA. Plant Cell, 2020, 32: 1973–1987. [28] Wu K, Wang S S, Song W Z, Zhang J Q, Wang Y, Liu Q, Yu J P, Ye Y F, Li S, Chen J F, Zhao Y, Wang J, Wu X K, Wang M Y, Zhang Y J, Liu B M, Wu Y J, Harberd N P, Fu X D. Enhanced sustainable green revolution yield via nitrogen-responsive chromatin modulation in rice. Science, 2020, 367: eaaz2046. [29] McCouch S R, Teytelman L, Xu Y B, Lobos K B, Clare K, Walton M, Fu B Y, Maghirang R, Li Z K, Xing Y Z, Zhang Q F, Kono I, Yano M, Fjellstrom R, DeClerck G, Schneider D, Cartinhour S, Ware D, Stein L. Development and mapping of 2240 new SSR markers for rice (Oryza sativa L.) (supplement). DNA Res, 2002, 9: 257–279. [30] Love M I, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol, 2014, 15: 550. [31] Conesa A, Götz S, García-Gómez J M, Terol J, Talón M, Robles M. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics, 2005, 21: 3674–3676. [32] Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res, 2000, 28: 27–30. [33] Kanehisa M. Toward understanding the origin and evolution of cellular organisms. Protein Sci, 2019, 28: 1947–1951. [34] Kanehisa M, Furumichi M, Sato Y, Kawashima M, Ishiguro-Watanabe M. KEGG for taxonomy-based analysis of pathways and genomes. Nucleic Acids Res, 2023, 51: D587–D592. [35] Zou J H, Chen Z X, Zhang S Y, Zhang W P, Jiang G H, Zhao X F, Zhai W X, Pan X B, Zhu L H. Characterizations and fine mapping of a mutant gene for high tillering and dwarf in rice (Oryza sativa L.). Planta, 2005, 222: 604–612. [36] Sun F L, Zhang W P, Xiong G S, Yan M X, Qian Q, Li J Y, Wang Y H. Identification and functional analysis of the MOC1 interacting protein 1. J Genet Genomics, 2010, 37: 69–77. [37] Umehara M, Hanada A, Yoshida S, Akiyama K, Arite T, Takeda-Kamiya N, Magome H, Kamiya Y, Shirasu K, Yoneyama K, Kyozuka J, Yamaguchi S. Inhibition of shoot branching by new terpenoid plant hormones. Nature, 2008, 455: 195–200. [38] Zou J H, Zhang S Y, Zhang WP, Li G, Chen Z X, Zhai W X, Zhao X F, Pan X B, Xie Q, Zhu L H. The rice HIGH-TILLERING DWARF1 encoding an ortholog of Arabidopsis MAX3 is required for negative regulation of the outgrowth of axillary buds. Plant J, 2006, 48: 687–698. [39] Zhang Y X, van Dijk A D J, Scaffidi A, Flematti G R, Hofmann M, Charnikhova T, Verstappen F, Hepworth J, van der Krol S, Leyser O, Smith S M, Zwanenburg B, Al-Babili S, Ruyter-Spira C, Bouwmeester H J. Rice cytochrome P450 MAX1 homologs catalyze distinct steps in strigolactone biosynthesis. Nat Chem Biol, 2014, 10: 1028–1033.
[40] 张丹, 潘银林, 毛毕刚, 陈东, 吴天昊, 孙远涛, 胡远艺, 韶也, 彭彦, 刘春林, 赵炳然. 水稻矮秆多分蘖突变体htd(t)的遗传分析与基因定位. 杂交水稻, 2018, 33(4): 71–75. [41] 王晓雯, 王媛媛, 冯蓓祺, 雷松翰, 范骏扬, 杨晶晶, 仝瑞建, 田维江, 桑贤春. 水稻矮化多蘖突变体mtd2/htd1-1的鉴定与图位克隆. 西南大学学报(自然科学版), 2024, 46(2): 2–12. Wang X W, Wang Y Y, Feng B Q, Lei S H, Fan J Y, Yang J J, Tong R J, Tian W J, Sang X C. Identification and map-based cloning of multi-tillering dwarf mutant mtd2/htd1-1 in rice (Oryza sativa L.). J Southwest Univ (Nat Sci Edn), 2024, 46(2): 2–12 (in Chinese with English abstract). [42] Kulkarni K P, Vishwakarma C, Sahoo S P, Lima J M, Nath M, Dokku P, Gacche R N, Mohapatra T, Robin S, Sarla N, Seshashayee M, Singh A K, Singh K, Singh N K, Sharma R P. A substitution mutation in OsCCD7 cosegregates with dwarf and increased tillering phenotype in rice. J Genet, 2014, 93: 389–401. [43] Wang Y X, Shang L G, Yu H, Zeng L J, Hu J, Ni S, Rao Y C, Li S F, Chu J F, Meng X B, Wang L, Hu P, Yan J J, Kang S J, Qu M H, Lin H, Wang T, Wang Q, Hu X M, Chen H Q, Wang B, Gao Z Y, Guo L B, Zeng D L, Zhu X D, Xiong G S, Li J Y, Qian Q. A strigolactone biosynthesis gene contributed to the green revolution in rice. Mol Plant, 2020, 13: 923–932. [44] Tsuchiya Y, Vidaurre D, Toh S, Hanada A, Nambara E, Kamiya Y, Yamaguchi S, McCourt P. A small-molecule screen identifies new functions for the plant hormone strigolactone. Nat Chem Biol, 2010, 6: 741–749.
[45] 祝四, 邓凤玲, 赵光, 朝洪波, 李春生, 顾建伟. 独脚金内酯对甘蓝型油菜种子的引发作用及其机制研究. 湖北农业科学, 2023, 62(9): 6–13. [46] Hu Z Y, Yan H F, Yang J H, Yamaguchi S, Maekawa M, Takamure I, Tsutsumi N, Kyozuka J, Nakazono M. Strigolactones negatively regulate mesocotyl elongation in rice during germination and growth in darkness. Plant Cell Physiol, 2010, 51: 1136–1142. [47] Hu Z Y, Yamauchi T, Yang J H, Jikumaru Y, Tsuchida-Mayama T, Ichikawa H, Takamure I, Nagamura Y, Tsutsumi N, Yamaguchi S, Kyozuka J, Nakazono M. Strigolactone and cytokinin act antagonistically in regulating rice mesocotyl elongation in darkness. Plant Cell Physiol, 2014, 55: 30–41. [48] Sun H W, Tao J Y, Hou M M, Huang S J, Chen S, Liang Z H, Xie T N, Wei Y Q, Xie X N, Yoneyama K, Xu G H, Zhang Y L. A strigolactone signal is required for adventitious root formation in rice. Ann Bot, 2015, 115: 1155–1162. [49] Ruyter-Spira C, Kohlen W, Charnikhova T, Zeijl A V, Bezouwen L V, Ruijter N D, Cardoso C, Lopez-Raez J A, Matusova R, Bours R, Verstappen F, Bouwmeester H. Physiological effects of the synthetic strigolactone analog GR24 on root system architecture in arabidopsis: another belowground role for strigolactones? Plant Physiol, 2011, 155: 721–734. |
[1] | ZHANG Zheng-Kang, SU Yan-Hong, RUAN Sun-Mei, ZHANG Min, ZHANG Pan, ZHANG Hui, ZENG Qian-Chun, LUO Qiong. Cloning and functional study of OgXa13 in Oryza meyeriana [J]. Acta Agronomica Sinica, 2025, 51(2): 334-346. |
[2] | HU Ya-Jie, GUO Jing-Hao, CONG Shu-Min, CAI Qin, XU Yi, SUN Liang, GUO Bao-Wei, XING Zhi-Peng, YANG Wen-Fei, ZHANG Hong-Cheng. Effect of low temperature and weak light stress during early grain filling on rice yield and quality [J]. Acta Agronomica Sinica, 2025, 51(2): 405-417. |
[3] | WANG Chong-Ming, LU Zhi-Feng, YAN Jin-Yao, SONG Yi, WANG Kun-Kun, FANG Ya-Ting, LI Xiao-Kun, REN Tao, CONG Ri-Huan, LU Jian-Wei. Effect of phosphorus fertilizer rates on crop yield, phosphorus uptake and its stability in rapeseed-rice rotation system [J]. Acta Agronomica Sinica, 2025, 51(2): 447-458. |
[4] | QIN Jin-Hua, HONG Wei-Yuan, FENG Xiang-Qian, LI Zi-Qiu, ZHOU Zi-Yu, WANG Ai-Dong, LI Rui-Jie, WANG Dan-Ying, ZHANG Yun-Bo, CHEN Song. Analysis of agronomic and physiological indicators of rice yield and grain quality under nitrogen fertilization management [J]. Acta Agronomica Sinica, 2025, 51(2): 485-502. |
[5] | ZHAO Li-Ming, DUAN Shao-Biao, XIANG Hong-Tao, ZHENG Dian-Feng, FENG Nai-Jie, SHEN Xue-Feng. Effects of alternate wetting and drying irrigation and plant growth regulators on photosynthetic characteristics and endogenous hormones of rice [J]. Acta Agronomica Sinica, 2025, 51(1): 174-188. |
[6] | JIA Shu-Han, HE Can, CHEN Min, LIU Jia-Xin, HU Wei-Min, HU Jin, GUAN Ya-Jing. Study on the quality differences of seeds with different pre-harvest sprouting levels and the grading of pre-harvest sprouting in hybrid rice [J]. Acta Agronomica Sinica, 2024, 50(9): 2310-2322. |
[7] | HU Li-Qin, XIAO Zheng-Wu, FANG Sheng-Liang, CAO Fang-Bo, CHEN Jia-Na, HUANG Min. Effects of planting season on digestive characteristics of high amylose content rice [J]. Acta Agronomica Sinica, 2024, 50(9): 2347-2357. |
[8] | LIU Chen, WANG Kun-Kun, LIAO Shi-Peng, YANG Jia-Qun, CONG Ri-Huan, REN Tao, LI Xiao-Kun, LU Jian-Wei. Effects of nitrogen fertilizer application levels on yield and nitrogen absorption and utilization of oilseed rape under maize-oilseed rape and rice-oilseed rape rotation fields [J]. Acta Agronomica Sinica, 2024, 50(8): 2067-2077. |
[9] | SONG Zhi-Wen, ZHAO Lei, BI Jun-Guo, TANG Qing-Yun, WANG Guo-Dong, LI Yu-Xiang. Effects of nitrogen fertilization levels on matter accumulation and nutrient uptake in rice cultivar with different nitrogen efficiency under drip irrigation [J]. Acta Agronomica Sinica, 2024, 50(8): 2025-2038. |
[10] | SHAO Mei-Hong, ZHAO Ling-Ling, CHENG Chu, CHENG Si-Ming, ZHU Shuang-Bing, ZHAI Lai-Yuan, CHEN Kai, XU Jian-Long. Screening, evaluation, and utilization of low nitrogen tolerance for the selected introgression lines in rice with Huanghuazhan background [J]. Acta Agronomica Sinica, 2024, 50(8): 1907-1919. |
[11] | HE Dan-Dan, SHU Ya-Zhou, ZHOU Hai-Lian, WU Song-Guo, WEI Xiao-Shuang, YANG Ming-Chong, LI Bo, WU Zheng-Dan, HAN Shi-Jian, YANG Juan, WANG Ji-Bin, WANG Ling-Qiang. OsRPTA18 participated in the regulation of leaf inclination in rice [J]. Acta Agronomica Sinica, 2024, 50(8): 1934-1947. |
[12] | GUO Chun-Lin, LIN Man-Hong, CHEN Ting, CHEN Hong-Fei, LIN Wen-Fang, LIN Wen-Xiong. Evolution characteristics of rhizosphere microorganisms in response to ratoon rice senescence and underlying carry-over effect mechanism [J]. Acta Agronomica Sinica, 2024, 50(8): 2039-2052. |
[13] | FU Jing, MA Meng-Juan, ZHANG Qi-Fei, DUAN Ju-Qi, WANG Yue-Tao, WANG Fu-Hua, WANG Sheng-Xuan, BAI Tao, YIN Hai-Qing, WANG Ya. Effects of alternate wetting and drying irrigation and different nitrogen application levels on photosynthetic characteristics and nitrogen absorption and utilization of japonica rice [J]. Acta Agronomica Sinica, 2024, 50(7): 1787-1804. |
[14] | CHENG Shuang, XING Zhi-Peng, TIAN Chao, HU Qun, WEI Hai-Yan, ZHANG Hong-Cheng. Effects of an integrated dryland tillage and soaking pattern on the reducing substances in rice field and early growth of machine transplanted rice [J]. Acta Agronomica Sinica, 2024, 50(7): 1762-1775. |
[15] | PEI Fa-Jing, ZHANG Wen-Xuan, ZHANG Xiao, WANG Xin-Yu, PENG Shao-Bing, MI Jia-Ming. Developing new rice lines with ultrashort-duration, long-grain, and fragrance [J]. Acta Agronomica Sinica, 2024, 50(7): 1684-1698. |
|