Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2025, Vol. 51 ›› Issue (4): 1110-1117.doi: 10.3724/SP.J.1006.2025.42042

• RESEARCH NOTES • Previous Articles     Next Articles

Phenotypic analysis and gene mapping of a floury endosperm mutant we2 in rice

ZHU Jian-Ping1,2,3(), LI Wen-Qi1,2,3, XU Yang1,2,3, WANG Fang-Quan1,2,3, LI Xia1,2,3, JIANG Yan-Jie1,2,3, FAN Fang-Jun1,2,3, TAO Ya-Jun1,2,3, CHEN Zhi-Hui1,2,3, WU Ying-Ying1,2,3, YANG Jie1,2,3,*()   

  1. 1Institute of Food Crops, Jiangsu Academy of Agricultural Sciences / Key Laboratory of Germplasm Innovation in Downstream of Huaihe River (Nanjing), Ministry of Agricultural and Rural Affairs / Nanjing Branch of Chinese National Center for Rice Improvement, Nanjing 210014, Jiangsu, China
    2Zhongshan Biological Breeding Laboratory, Nanjing 210014, Jiangsu, China
    3Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, Jiangsu, China
  • Received:2024-09-07 Accepted:2024-12-12 Online:2025-04-12 Published:2024-12-27
  • Contact: E-mail: yangjie168@aliyun.com
  • Supported by:
    National Natural Science Foundation of China(32201861);Jiangsu Provincial Key Research and Development Program(BE2023362);Project of Seeds Innovation in Jiangsu(JBGS (2021) 008)

Abstract:

A floury endosperm mutant, we2 (white endosperm2), was identified from a 60Co-irradiated mutant pool of the rice (Oryza sativa) variety Nipponbare. The phenotype and physicochemical properties of we2 were analyzed, and an F2 population derived from a cross between we2 and the indica variety 9311 was used for fine mapping of the target gene. Compared with the wild type, we2 exhibited a white endosperm phenotype with irregularly shaped, loosely packed compound starch granules. The 1000-grain weight, total starch content, and amylose content in we2 were significantly lower than those in the wild type, whereas the lipid content was higher. Genetic analysis revealed that the floury endosperm phenotype of we2 is controlled by a single nuclear recessive gene. For map-based cloning, the we2 mutant was crossed with 9311, and F2 individuals were analyzed. The WE2 locus was initially mapped to chromosome 6 and subsequently fine-mapped to a 244 kb genomic region containing 27 predicted open reading frames (ORFs). Quantitative real-time PCR (qRT-PCR) analysis demonstrated that the expression levels of several genes involved in starch biosynthesis were reduced in the we2 mutant. This study provides a foundation for the cloning and functional characterization of WE2, contributing to a deeper understanding of the genetic and molecular mechanisms underlying rice endosperm development.

Key words: rice, endosperm, starch, fine mapping

Table 1

Primers for fine mapping of WE2"

名称
Name
正向引物
Forward primer (5′-3′)
反向引物
Reverse primer (5′-3′)
P22 GACGACACGCACAGCATC GGGGGTTTATATTGATTTTTGCGA
P27 GGACATACCTAGCGCTAGC AGTACTCTGATCACCGTCAGT
P31 CGAGGACGACAGAACGAAGA CGTGTTGAGCCCCACCAG
P36 TGTTTGGAGAGAGTTGGAGATT GGATCGGTTTTCACAAACAGAC
P38 AACAATTCACTCGCCACAGC CGGCGGTTTTGGATTTGGAT
P39 AGCACAGTACTATCGACGGG GGCCATTTTGTGCTGGTACA

Fig. 1

Phenotypic analysis A and B: seeds of WT and we2. C and D: cross-sections of seeds of WT and we2. E: grain length, n = 20. F: grain width, n = 20. G: grain thickness, n = 20. Bars: 1 mm. Values are means ± SD, using Student’s t-test. ** indicates P < 0.01."

Fig. 2

Agronomic traits analysis A-D: 1000-grain weight, plant height, No. of tillers per plant and seed setting rate, n = 20. Values are means ± SD, using Student’s t-test. ** indicates P < 0.01."

Fig. 3

Physicochemical properties analysis A-D: starch content, amylose content, lipid content and protein content, n = 3. Values are means ± SD, using Student’s t-test. ** indicates P < 0.01."

Fig. 4

Scanning electron microscopic analysis Observation of cross-sections of seeds of WT (A-C) and we2 (D-F). A, D: bars: 1 mm; B, E: bars: 50 μm; C, F: bars: 10 μm."

Table 2

Genetic analysis"

杂交组合
Cross combination
野生型种子数
No. of wild type seeds
突变体种子数
No. of mutant seeds
χ2(3:1)
we2/wild type F2 127 40 0.050
Wild type/we2 F2 148 55 0.369

Fig. 5

Fine mapping of WE2 The WE2 was mapped to a 244 kb region with markers P38 and P39 on the long arm of chromosome 6, which contains 27 candidate genes."

Table 3

Candidate genes for WE2"

开放阅读框
ORFs
基因登录号
Locus ID
功能注释
Functional description
ORF1 Os06g0659400 Protein of unknown function DUF231, plant domain containing protein
ORF2 Os06g0659500 Similar to Glutaredoxin
ORF3 Os06g0659800 Conserved hypothetical protein
ORF4 Os06g0660200 Similar to Auxin efflux carrier protein
ORF5 Os06g0660400 Conserved hypothetical protein
ORF6 Os06g0660600 Homeodomain-like containing protein
ORF7 Os06g0660700 Similar to Ubiquitin-conjugating enzyme E2S
ORF8 Os06g0660800 Protein kinase domain containing protein
ORF9 Os06g0661000 Plant MuDR transposase domain containing protein
ORF10 Os06g0661400 ANTH domain containing protein
ORF11 Os06g0661500 Conserved hypothetical protein
ORF12 Os06g0661600 Zinc finger, DHP-type domain containing protein
ORF13 Os06g0661700 RabGAP/TBC domain containing protein
ORF14 Os06g0661800 Similar to Cryptochrome dash
ORF15 Os06g0661900 Protein of unknown function DUF266, plant family protein
ORF16 Os06g0662000 Conserved hypothetical protein
ORF17 Os06g0662200 Eukaryotic transcription factor, DNA-binding domain containing protein
ORF18 Os06g0662300 Pollen allergen Lol p2 family protein
ORF19 Os06g0662500 Pollen allergen Lol p2 family protein
ORF20 Os06g0662600 Pollen allergen Lol p2 family protein
ORF21 Os06g0662700 Pollen allergen Lol p2 family protein
ORF22 Os06g0662800 Pollen allergen Lol p2 family protein
ORF23 Os06g0662900 Pollen allergen/expansion, C-terminal domain containing protein
ORF24 Os06g0663100 Hypothetical protein
ORF25 Os06g0663200 Similar to Protein kinase APK1B, chloroplast precursor
ORF26 Os06g0663300 Pollen allergen Lol p2 family protein
ORF27 Os06g0663400 Serine/threonine protein kinase-like protein

Fig. 6

Expression of WE2 candidate genes"

Fig. 7

Expression analysis of representative genes coding for starch synthesis qRT-PCR assay of the expression of WE2 candidate genes in 12 DAF endosperm. Actin was used as control. n = 3. Values are means ± SD, using Student’s t-test. ** indicates P < 0.01."

[1] Shi J X, An G, Weber A P M, Zhang D B. Prospects for rice in 2050. Plant Cell Environ, 2023, 46: 1037-1045.
[2] 陈雅玲, 包劲松. 水稻胚乳淀粉合成相关酶的结构、功能及其互作研究进展. 中国水稻科学, 2017, 31: 1-12.
doi: 10.16819/j.1001-7216.2017.6132
Chen Y L, Bao J S. Progress in structures, functions and interactions of starch synthesis related enzymes in rice endosperm. Chin J Rice Sci, 2017, 31: 1-12 (in Chinese with English abstract).
doi: 10.16819/j.1001-7216.2017.6132
[3] 张昌泉, 赵冬生, 李钱峰, 顾铭洪, 刘巧泉. 稻米品质性状基因的克隆与功能研究进展. 中国农业科学, 2016, 49: 4267-4283.
doi: 10.3864/j.issn.0578-1752.2016.22.002
Zhang C Q, Zhao D S, Li Q F, Gu M H, Liu Q Q. Progresses in research on cloning and functional analysis of key genes involving in rice grain quality. Sci Agric Sin, 2016, 49: 4267-4283 (in Chinese with English abstract).
[4] Smith A M, Zeeman S C. Starch: a flexible, adaptable carbon store coupled to plant growth. Annu Rev Plant Biol, 2020, 71: 217-245.
doi: 10.1146/annurev-arplant-050718-100241 pmid: 32075407
[5] Huang L C, Tan H Y, Zhang C Q, Li Q F, Liu Q Q. Starch biosynthesis in cereal endosperms: an updated review over the last decade. Plant Commun, 2021, 2: 100237.
[6] 朱霁晖, 张昌泉, 顾铭洪, 刘巧泉. 水稻Wx基因的等位变异及育种利用研究进展. 中国水稻科学, 2015, 29: 431-438.
doi: 10.3969/j.issn.1001G7216.2015.04.013
Zhu J H, Zhang C Q, Gu M H, Liu Q Q. Progress in the allelic variation of Wx gene and its application in rice breeding. Chin J Rice Sci, 2015, 29: 431-438 (in Chinese with English abstract).
[7] Nakamura Y. Towards a better understanding of the metabolic system for amylopectin biosynthesis in plants: rice endosperm as a model tissue. Plant Cell Physiol, 2002, 43: 718-725.
doi: 10.1093/pcp/pcf091 pmid: 12154134
[8] Hirose T, Terao T. A comprehensive expression analysis of the starch synthase gene family in rice (Oryza sativa L.). Planta, 2004, 220: 9-16.
[9] Ohdan T, Francisco P B Jr, Sawada T, Hirose T, Terao T, Satoh H, Nakamura Y. Expression profiling of genes involved in starch synthesis in sink and source organs of rice. J Exp Bot, 2005, 56: 3229-3244.
doi: 10.1093/jxb/eri292 pmid: 16275672
[10] Utsumi Y, Utsumi C, Sawada T, Fujita N, Nakamura Y. Functional diversity of isoamylase oligomers: the ISA1 Homo-oligomer is essential for amylopectin biosynthesis in rice endosperm. Plant Physiol, 2011, 156: 61-77.
doi: 10.1104/pp.111.173435 pmid: 21436381
[11] 张习春, 鲁菲菲, 吕育松, 罗荣剑, 焦桂爱, 邬亚文, 唐绍清, 胡培松, 魏祥进. 两个垩白突变体的鉴定及突变基因的图位克隆. 中国水稻科学, 2017, 31: 568-579.
doi: 10.16819/j.1001-7216.2017.7003
Zhang X C, Lu F F, Lyu Y S, Luo R J, Jiao G A, Wu Y W, Tang S Q, Hu P S, Wei X J. Identification and gene mapping-based clone of two chalkiness mutants in rice. Chin J Rice Sci, 2017, 31: 568-579 (in Chinese with English abstract).
doi: 10.16819/j.1001-7216.2017.7003
[12] 杜溢墨, 潘天, 田云录, 刘世家, 刘喜, 江玲, 张文伟, 王益华, 万建民. 水稻粉质皱缩胚乳突变体fse4的表型分析与基因克隆. 中国水稻科学, 2019, 33: 499-512.
Du Y M, Pan T, Tian Y L, Liu S J, Liu X, Jiang L, Zhang W W, Wang Y H, Wan J M. Phenotypic analysis and gene cloning of rice floury endosperm mutant fse4. Chin J Rice Sci, 2019, 33: 499-512 (in Chinese with English abstract).
[13] 唐小涵, 刘世家, 刘喜, 田云录, 王云龙, 滕烜, 段二超, 张元燕, 江玲, 张文伟, 等. 色氨酰-tRNA合成酶基因WRS1调控水稻种子发育. 中国水稻科学, 2020, 34: 383-396.
doi: 10.16819/j.1001-7216.2020.0302
Tang X H, Liu S J, Liu X, Tian Y L, Wang Y L, Teng X, Duan E C, Zhang Y Y, Jiang L, Zhang W W, et al. Tryptophanyl-tRNA synthetase gene WRS1 regulates rice seed development. Chin J Rice Sci, 2020, 34: 383-396 (in Chinese with English abstract).
[14] She K C, Kusano H, Koizumi K, Yamakawa H, Hakata M, Imamura T, Fukuda M, Naito N, Tsurumaki Y, Yaeshima M, et al. A novel factor FLOURY ENDOSPERM2 is involved in regulation of rice grain size and starch quality. Plant Cell, 2010, 22: 3280-3294.
[15] Kang H G, Park S, Matsuoka M, An G. White-core endosperm floury endosperm-4 in rice is generated by knockout mutations in the C-type pyruvate orthophosphate dikinase gene (OsPPDKB). Plant J, 2005, 42: 901-911.
[16] Long W H, Dong B N, Wang Y H, Pan P Y, Wang Y L, Liu L L, Chen X L, Liu X, Liu S J, Tian Y L, et al. FLOURY ENDOSPERM8, encoding the UDP-glucose pyrophosphorylase 1, affects the synthesis and structure of starch in rice endosperm. J Plant Biol, 2017, 60: 513-522.
[17] You X M, Zhang W W, Hu J L, Jing R N, Cai Y, Feng Z M, Kong F, Zhang J, Yan H G, Chen W W, Chen X G, et al. FLOURY ENDOSPERM15 encodes a glyoxalase I involved in compound granule formation and starch synthesis in rice endosperm. Plant Cell Rep, 2019, 38: 345-359.
[18] Teng X, Zhong M S, Zhu X P, Wang C M, Ren Y L, Wang Y L, Zhang H, Jiang L, Wang D, Hao Y Y, et al. FLOURY ENDOSPERM16 encoding a NAD-dependent cytosolic malate dehydrogenase plays an important role in starch synthesis and seed development in rice. Plant Biotechnol J, 2019, 17: 1914-1927.
[19] Lei J, Teng X, Wang Y F, Jiang X K, Zhao H H, Zheng X M, Ren Y L, Dong H, Wang Y L, Duan E C, et al. Plastidic pyruvate dehydrogenase complex E1 component subunit Alpha1 is involved in galactolipid biosynthesis required for amyloplast development in rice. Plant Biotechnol J, 2022, 20: 437-453.
[20] Peng C, Wang Y H, Liu F, Ren Y L, Zhou K N, Lyu J, Zheng M, Zhao S L, Zhang L, Wang C M, et al. FLOURY ENDOSPERM6 encodes a CBM48 domain-containing protein involved in compound granule formation and starch synthesis in rice endosperm. Plant J, 2014, 77: 917-930.
[21] Zhang L, Ren Y L, Lu B Y, Yang C Y, Feng Z M, Liu Z, Chen J, Ma W W, Wang Y, Yu X W, et al. FLOURY ENDOSPERM7 encodes a regulator of starch synthesis and amyloplast development essential for peripheral endosperm development in rice. J Exp Bot, 2016, 67: 633-647.
doi: 10.1093/jxb/erv469 pmid: 26608643
[22] Yan H G, Zhang W W, Wang Y H, Jin J, Xu H C, Fu Y S, Shan Z Z, Wang X, Teng X, Li X, et al. Rice LIKE EARLY STARVATION1 cooperates with FLOURY ENDOSPERM6 to modulate starch biosynthesis and endosperm development. Plant Cell, 2024, 36: 1892-1912.
[23] Wu H M, Ren Y L, Dong H, Xie C, Zhao L, Wang X, Zhang F L, Zhang B L, Jiang X K, Huang Y S, et al. FLOURY ENDOSPERM24, a heat shock protein 101 (HSP101), is required for starch biosynthesis and endosperm development in rice. New Phytol, 2024, 242: 2635-2651.
doi: 10.1111/nph.19761 pmid: 38634187
[24] Yang H, Wang Y L, Tian Y L, Teng X, Lyu Z H, Lei J, Duan E C, Dong H, Yang X, Zhang Y Y, et al. Rice FLOURY ENDOSPERM22, encoding a pentatricopeptide repeat protein, is involved in both mitochondrial RNA splicing and editing and is crucial for endosperm development. J Integr Plant Biol, 2023, 65: 755-771.
[25] 于艳芳, 刘喜, 田云录, 刘世家, 陈亮明, 朱建平, 王云龙, 江玲, 张文伟, 王益华, 等. 水稻粉质胚乳fse3突变体的表型分析及基因定位. 中国农业科学, 2018, 51: 2023-2037.
doi: 10.3864/j.issn.0578-1752.2018.11.001
Yu Y F, Liu X, Tian Y L, Liu S J, Chen L M, Zhu J P, Wang Y L, Jiang L, Zhang W W, Wang Y H, et al. Phenotypic analysis and gene mapping of a floury and shrunken endosperm mutant fse3 in rice. Sci Agric Sin, 2018, 51: 2023-2037 (in Chinese with English abstract).
[26] 李景芳, 田云录, 刘喜, 刘世家, 陈亮明, 江玲, 张文伟, 徐大勇, 王益华, 万建民. 鸟苷酸激酶OsGK1对水稻种子发育至关重要. 中国水稻科学, 2018, 32: 415-426.
doi: 10.16819/j.1001-7216.2018.8003
Li J F, Tian Y L, Liu X, Liu S J, Chen L M, Jiang L, Zhang W W, Xu D Y, Wang Y H, Wan J M. The guanylate kinase OsGK1 is essential for seed development in rice. Chin J Rice Sci, 2018, 32: 415-426 (in Chinese with English abstract).
doi: 10.16819/j.1001-7216.2018.8003
[27] 潘鹏屹, 朱建平, 王云龙, 郝媛媛, 蔡跃, 张文伟, 江玲, 王益华, 万建民. 水稻粉质胚乳突变体ws的表型分析及基因克隆. 中国水稻科学, 2016, 30: 447-457.
doi: 10.16819/j.1001-7216.2016.6048
Pan P Y, Zhu J P, Wang Y L, Hao Y Y, Cai Y, Zhang W W, Jiang L, Wang Y H, Wan J M. Phenotyping and gene cloning of a floury endosperm mutant ws in rice. Chin J Rice Sci, 2016, 30: 447-457 (in Chinese with English abstract).
[28] Hu T T, Tian Y L, Zhu J P, Wang Y L, Jing R N, Lei J, Sun Y L, Yu Y F, Li J F, Chen X L, et al. OsNDUFA9 encoding a mitochondrial complex I subunit is essential for embryo development and starch synthesis in rice. Plant Cell Rep, 2018, 37: 1667-1679.
[29] Wang J C, Xu H, Zhu Y, Liu Q Q, Cai X L. OsbZIP58, a basic leucine zipper transcription factor, regulates starch biosynthesis in rice endosperm. J Exp Bot, 2013, 64: 3453-3466.
[30] Xiong Y F, Ren Y, Li W, Wu F S, Yang W J, Huang X L, Yao J L. NF-YC12 is a key multi-functional regulator of accumulation of seed storage substances in rice. J Exp Bot, 2019, 70: 3765-3780.
doi: 10.1093/jxb/erz168 pmid: 31211389
[31] Bello B K, Hou Y X, Zhao J, Jiao G A, Wu Y W, Li Z Y, Wang Y F, Tong X H, Wang W, Yuan W Y, et al. NF-YB1-YC12- bHLH144 complex directly activates Wx to regulate grain quality in rice (Oryza sativa L.). Plant Biotechnol J, 2019, 17: 1222-1235.
[32] Wang J, Chen Z C, Zhang Q, Meng S S, Wei C X. The NAC transcription factors OsNAC20 and OsNAC26 regulate starch and storage protein synthesis. Plant Physiol, 2020, 184: 1775-1791.
doi: 10.1104/pp.20.00984 pmid: 32989010
[33] Wu M W, Liu J X, Bai X, Chen W Q, Ren Y L, Liu J L, Chen M M, Zhao H, Yao X F, Zhang J D, et al. Transcription factors NAC20 and NAC26 interact with RPBF to activate albumin accumulations in rice endosperm. Plant Biotechnol J, 2023, 21: 890-892.
[1] XIAO Zheng-Wu, ZHANG Ke-Qian, CAO Fang-Bo, CHEN Jia-Na, ZHENG Hua-Bin, WANG Wei-Qin, HUANG Min. Relationships between cooking and eating quality of brown rice noodles and starch component contents and pasting properties of brown rice grains [J]. Acta Agronomica Sinica, 2025, 51(4): 1102-1109.
[2] PAN Ju-Zhong, WEI Ping, ZHU De-Ping, SHAO Sheng-Xue, CHEN Shan-Shan, WEI Ya-Qian, GAO Wei-Wei. Cloning and functional analysis of OsERF104 transcription factor in rice [J]. Acta Agronomica Sinica, 2025, 51(4): 900-913.
[3] HOU Tian-Yu, DU Xiao-Jing, ZHAO Zhi-Qiang, REYIM Anwar, YIDAYETULA Abula, BUHALIQIEMU Abulizi, YUAN Jie, ZHANG Yan-Hong, WANG Feng-Bin. Evaluation of cold tolerance of japonica rice varieties at germination stage and construction of identification system [J]. Acta Agronomica Sinica, 2025, 51(3): 812-822.
[4] YANG Cui-Hua, LI Shi-Hao, YI Xu-Xu, ZHENG Fei-Xiong, DU Xue-Zhu, SHENG Feng. Effects of poly-γ-glutamic acid on rice yield, quality, and nutrient uptake [J]. Acta Agronomica Sinica, 2025, 51(3): 785-796.
[5] XIONG Qiang-Qiang, SUN Chang-Hui, GU Wen-Fei, LU Yan-Yao, ZHOU Nian-Bing, GUO Bao-Wei, LIU Guo-Dong, WEI Hai-Yan, ZHU Jin-Yan, ZHANG Hong-Cheng. Comprehensive evaluation of 70 japonica glutinous rice varieties (lines) based on growth period, yield, and quality [J]. Acta Agronomica Sinica, 2025, 51(3): 728-743.
[6] SU Ming, WU Jia-Rui, HONG Zi-Qiang, LI Fan-Guo, ZHOU Tian, WU Hong-Liang, KANG Jian-Hong. Response of potato tuber starch formation and yield to phosphorus fertilizer reduction in the semi-arid region of Northwest China [J]. Acta Agronomica Sinica, 2025, 51(3): 713-727.
[7] SU Chang, MAN Fu-Yuan, WANG Jing-Bo, FENG Jing, JIANG Si-Xu, ZHAO Ming-Hui. Response of osalr3 mutant to exogenous organic acids and plant growth regulators under aluminum stress [J]. Acta Agronomica Sinica, 2025, 51(3): 676-686.
[8] LIU Jian-Guo, CHEN Dong-Dong, CHEN Yu-Yu, YI Qin-Qin, LI Qing, XU Zheng-Jin, QIAN Qian, SHEN Lan. Effects of different alleles and natural variations of OsMKK4, a member of the rice MKKs family gene, on grains [J]. Acta Agronomica Sinica, 2025, 51(3): 598-608.
[9] YAN Bing-Chun, WAN Xue, ZHONG Min, LIU Yu-Qi, ZHAO Yan-Ze, JIANG Hong-Fang, LIU Ya, LIU Hui-Ling, MA Qin-Chun, GAO Ji-Ping, ZHANG Wen-Zhong. Effects of nitrogen levels on quality and fine grinding powder characteristics of northern japonica rice [J]. Acta Agronomica Sinica, 2025, 51(2): 503-515.
[10] ZHANG Zheng-Kang, SU Yan-Hong, RUAN Sun-Mei, ZHANG Min, ZHANG Pan, ZHANG Hui, ZENG Qian-Chun, LUO Qiong. Cloning and functional study of OgXa13 in Oryza meyeriana [J]. Acta Agronomica Sinica, 2025, 51(2): 334-346.
[11] LI Chun-Mei, CHEN Jie, LANG Xing-Xuan, ZHUANG Hai-Min, ZHU Jing, DU Zi-Jun, FENG Hao-Tian, JIN Han, ZHU Guo-Lin, LIU Kai. Map-based cloning and functional analysis of Dwarf and Tillering 1 (DT1) gene in rice [J]. Acta Agronomica Sinica, 2025, 51(2): 347-357.
[12] HU Ya-Jie, GUO Jing-Hao, CONG Shu-Min, CAI Qin, XU Yi, SUN Liang, GUO Bao-Wei, XING Zhi-Peng, YANG Wen-Fei, ZHANG Hong-Cheng. Effect of low temperature and weak light stress during early grain filling on rice yield and quality [J]. Acta Agronomica Sinica, 2025, 51(2): 405-417.
[13] XIN Yu-Ning, REN Hao, WANG Hong-Zhang, LIANG Ming-Lei, YU Tao, LIU Peng. Effects of spraying 6-benzylaminopurine (6-BA) on grain filling and yield of summer maize under post-pollination high temperature stress [J]. Acta Agronomica Sinica, 2025, 51(2): 418-431.
[14] WANG Chong-Ming, LU Zhi-Feng, YAN Jin-Yao, SONG Yi, WANG Kun-Kun, FANG Ya-Ting, LI Xiao-Kun, REN Tao, CONG Ri-Huan, LU Jian-Wei. Effect of phosphorus fertilizer rates on crop yield, phosphorus uptake and its stability in rapeseed-rice rotation system [J]. Acta Agronomica Sinica, 2025, 51(2): 447-458.
[15] QIN Jin-Hua, HONG Wei-Yuan, FENG Xiang-Qian, LI Zi-Qiu, ZHOU Zi-Yu, WANG Ai-Dong, LI Rui-Jie, WANG Dan-Ying, ZHANG Yun-Bo, CHEN Song. Analysis of agronomic and physiological indicators of rice yield and grain quality under nitrogen fertilization management [J]. Acta Agronomica Sinica, 2025, 51(2): 485-502.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!