Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2025, Vol. 51 ›› Issue (4): 1118-1130.doi: 10.3724/SP.J.1006.2025.41044

• RESEARCH NOTES • Previous Articles    

Evaluation of stress tolerance and physiological response of cold-type wheat under heat stress

LI Pei-Hua1(), LI Jie1, MENG Xiang-Yu1, SUN Yu-Chen1, FENG Yong-Jia1, LI Yun-Li1, DIAO Deng-Chao1, ZHAO Wen1, WU Wei1, HAN De-Jun1, ZHANG Song-Wu2, ZHENG Wei-Jun1,*()   

  1. 1College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
    2College of Science, Northwest A&F University, Yangling 712100, Shaanxi, China
  • Received:2024-06-24 Accepted:2024-12-12 Online:2025-04-12 Published:2024-12-19
  • Contact: E-mail: zhengweijun@nwafu.edu.cn
  • Supported by:
    Science and Technology Innovation 2030 Major Projects(2023ZD04026);Key Research and Development Program of Shaanxi(2023-YBNY-026)

Abstract:

This study aimed to investigate the effects of high-temperature stress on wheat varieties with different temperature adaptations and to assess the stress resistance of cold-type wheat. Two cold-type wheat varieties (Lengzi 857 and Lengzi 863), two warm-type wheat varieties (Nuanzi 58 and Nuanzi 979), and the control variety Bainong 207 were selected as research materials. Photosynthetic parameters, antioxidant enzyme activities, and yield were measured during the grain-filling stage under high-temperature stress. The results showed that high-temperature stress reduced the net photosynthetic rate, transpiration rate, and stomatal conductance in all varieties, while intercellular CO2 concentration increased. The decline in net photosynthetic rate was most severe in the warm-type varieties (Nuanzi 979 and Nuanzi 58) and least pronounced in the cold-type varieties (Lengzi 857 and Lengzi 863). Antioxidant enzyme activity was generally higher in the cold-type varieties compared to the warm-type ones. High-temperature stress also shortened the grain-filling period by advancing the rapid filling phase, resulting in reduced thousand-grain weight and overall yield. However, yield losses in cold-type varieties were comparatively smaller, reflecting their stronger resistance to high-temperature stress. A positive correlation was observed between antioxidant enzyme activity and photosynthetic performance, suggesting that antioxidant enzyme activity is a key indicator for evaluating yield potential and stress resistance in wheat. In conclusion, this study underscores the superior stress resistance of cold-type wheat during the grain-filling stage under high-temperature stress, providing a scientific basis for breeding cold-type wheat varieties and advancing the understanding of stress resistance mechanisms in wheat.

Key words: cold-type wheat, high temperature stress, photosynthetic characteristics, antioxidant enzyme activity, yield

Fig. 1

Experimental temperature under high temperature stress in 2022 and 2023 Fig. A and B show the temperature differences between greenhouses and natural environments in 2022 and 2023, respectively. *: significant difference (P ≤ 0.05); **: highly significant difference (P ≤ 0.01); ns: no significant difference."

Fig. 2

Changes in canopy temperature of different thermotypes of wheat varieties under high temperature stress and normal growth conditions The horizontal axis represents the days after treatment, and the vertical axis represents the canopy temperature difference between Bainong 207 and wheat materials. (A): under normal growth conditions (2022); (B): under shed conditions (2022); (C): under normal growth conditions (2023); (D): under the shed condition (2023)."

Fig. 3

Effects of high temperature stress on photosynthetic characteristics of different thermotypes of wheat varieties I: net photosynthetic rate; II: transpiration rate; III: stomatal opening; IV: intercellular carbon dioxide concentration. A: Lengzi 857; B: Lengzi 863; C: Nuanzi 58; D: Nuanzi 979; E: Bainong 207."

Table 1

Effects of high temperature stress on activities of different antioxidant enzymes during grain filling in 2022"

抗氧化酶Antioxidant enzyme 品种
Variety
处理第1天
Day 1
处理第6天
Day 6
处理第11天
Day 11
对照CK 热处理HT 对照CK 热处理HT 对照CK 热处理HT
超氧化物歧化酶
SOD
(U g-1)
暖资58
Nuanzi 58
286.36 ± 6.41 ab 291.31 ± 6.29 a 284.95 ± 5.30 a 265.76 ± 8.80 a 240.81 ± 3.84 a 226.67 ± 2.98 a
暖资979 Nuanzi 979 291.92 ±1.83 b 297.68 ± 2.29 ab 293.54 ± 6.24 a 278.99 ± 6.30 b 260.40 ± 5.36 b 239.60 ± 6.07 b
百农207 Bainong 207 279.60 ± 6.82 a 287.27 ± 0.91 a 285.25 ± 1.40 a 287.68 ± 2.82 bc 252.83 ± 13.57 ab 239.29 ± 3.65 b
冷资857 Lengzi 857 286.57 ± 3.79 ab 307.47 ± 12.76 b 286.36 ± 8.40 a 293.84 ± 6.48 c 258.48 ± 7.87 ab 257.47 ± 5.39 c
冷资863 Lengzi 863 289.80 ± 5.39 b 311.01 ± 8.87 b 285.66 ± 4.44 a 292.42 ± 7.47 c 267.88 ± 12.08 b 269.19 ± 1.56 d
过氧化物酶POD
(U g-1)
暖资58
Nuanzi 58
117.12 ± 11.66 ab 125.80 ± 10.03 a 139.17 ± 9.03 b 113.83 ± 12.39 ab 126.86 ± 10.33 b 100.67 ± 5.18 a
暖资979 Nuanzi 979 132.43 ± 9.30 b 123.77 ± 5.30 a 111.99 ± 5.86 a 108.64 ± 11.53 a 126.65 ± 2.02 b 103.50 ± 14.00 b
百农207 Bainong 207 111.39 ± 4.54 a 116.99 ± 4.58 a 106.75 ± 5.94 a 111.14 ± 4.47 a 95.48 ± 5.03 a 88.09 ± 7.11 a
冷资857 Lengzi 857 113.07 ± 11.92 a 128.91 ± 5.75 a 129.36 ± 11.61 b 119.78 ± 4.20 ab 123.69 ± 11.45 b 107.14 ± 4.69 b
冷资863 Lengzi 863 112.63 ± 7.91 a 121.78 ± 2.44 a 139.39 ± 5.08 b 129.92 ± 11.54 bb 111.61 ± 9.29 b 107.81 ± 0.62 b
过氧化氢酶CAT
(U g-1)
暖资58
Nuanzi 58
117.71 ± 2.46 bc 100.23 ± 4.25 ab 107.26 ± 2.79 b 90.28 ± 1.65 a 94.72 ± 1.35 ab 85.48 ± 2.04 a
暖资979 Nuanzi 979 109.70 ± 3.62 a 97.09 ± 5.34 a 102.04 ± 2.23 a 89.80 ± 4.08 a 89.75 ± 3.81 a 81.25 ± 2.60 a
百农207 Bainong 207 111.22 ± 3.12 ab 98.12 ± 3.70 a 104.39 ± 1.55 ab 91.86 ± 1.62 a 96.00 ± 2.82 b 87.20 ± 6.39 a
冷资857 Lengzi 857 121.36 ± 4.78 c 112.42 ± 4.07 c 112.36 ± 2.12 c 105.56 ± 0.56 c 106.27 ± 3.59 c 102.62 ± 3.27 c
冷资863 Lengzi 863 113.80 ± 3.48 ab 107.08 ± 0.27 bc 104.05 ± 2.85 ab 99.17 ± 2.40 b 98.04 ± 2.85 b 94.96 ± 3.07 b
抗氧化酶Antioxidant enzyme 品种
Variety
处理第16天
Day 16
处理第21天
Day 21
处理第26天
Day 26
对照CK 热处理HT 对照CK 热处理HT 对照CK 热处理HT
超氧化物歧化酶
SOD
(U g-1)
暖资58
Nuanzi 58
212.63 ± 8.65 a 182.73 ± 14.71 a 179.70 ± 7.90 ab 152.02 ± 12.06 a 146.87 ± 7.79 a 121.60 ± 10.59 a
暖资979 Nuanzi 979 220.00 ± 1.09 ab 179.80 ± 10.04 a 170.30 ± 11.65 a 153.23 ± 19.16 a 158.79 ± 10.01 a 120.91 ± 7.59 a
百农207 Bainong 207 227.07 ± 12.28 b 178.79 ± 7.50 a 187.78 ± 5.22 b 167.17 ± 9.56 a 160.00 ± 8.42 a 135.45 ± 14.86 ab
冷资857 Lengzi 857 248.08 ± 3.04 c 216.06 ± 1.39 b 217.37 ± 6.68 c 202.53 ± 10.85 b 187.37 ± 11.85 b 167.78 ± 18.10 c
冷资863 Lengzi 863 254.04 ± 6.40 c 219.19 ± 10.22 b 226.26 ± 11.02 c 199.80 ± 2.91 b 191.82 ± 3.64 b 158.08 ± 13.46 bc
过氧化物酶POD
(U g-1)
暖资58
Nuanzi 58
103.56 ± 12.95 a 91.41 ± 11.27 abc 93.08 ± 8.11 abc 62.41 ± 8.24 a 82.80 ± 7.93 b 55.05 ± 11.04 a
暖资979 Nuanzi 979 100.71 ± 9.31 a 82.51 ± 3.65 a 82.43 ± 9.13 a 88.66 ± 3.41 b 60.62 ± 1.93 a 72.40 ± 5.80 ab
百农207 Bainong 207 90.87 ± 8.04 a 87.44 ± 9.06 ab 84.05 ± 12.41 ab 81.28 ± 8.40 ab 77.93 ± 4.03 b 73.29 ± 7.81 ab
冷资857 Lengzi 857 107.43 ± 11.22 a 99.59 ± 9.27 bc 103.68 ± 5.78 c 98.11 ± 13.63 b 88.36 ± 14.96 b 84.12 ± 5.05 b
冷资863 Lengzi 863 101.94 ± 8.52 a 106.12 ± 4.52 c 100.29 ± 5.41 bc 92.01 ± 17.63 b 86.30 ± 5.74 b 82.88 ± 15.20 b
过氧化氢酶CAT
(U g-1)
暖资58
Nuanzi 58
87.97 ± 2.23 ab 73.13 ± 1.04 a 82.65 ± 2.83 b 70.83 ± 1.28 a 75.70 ± 0.54 b 65.17 ± 0.80 ab
暖资979 Nuanzi 979 84.48 ± 1.11 a 71.35 ± 1.62 a 74.67 ± 1.31 a 71.29 ± 2.55 a 70.53 ± 3.28 a 63.82 ± 1.23 a
百农207 Bainong 207 87.70 ± 1.90 ab 72.89 ± 0.67 a 75.91 ± 3.26 a 70.69 ± 1.25 a 73.24 ± 1.13 ab 68.20 ± 2.29 b
冷资857 Lengzi 857 96.56 ± 0.96 c 91.79 ± 2.58 c 91.50 ± 4.81 c 82.66 ± 1.59 c 83.04 ± 2.47 c 76.09 ± 2.13 c
冷资863 Lengzi 863 91.47 ± 3.46 b 84.62 ± 4.26 b 86.34 ± 2.81 bc 77.22 ± 1.70 b 80.51 ± 2.33 c 76.23 ± 3.32 c

Table 2

Effects of high temperature stress on activities of different antioxidant enzymes during grain filling in 2023"

抗氧化酶Antioxidant enzyme 品种
Variety
处理第1天
Day 1
处理第6天
Day 6
处理第11天
Day 11
对照CK 热处理HT 对照CK 热处理HT 对照CK 热处理HT
超氧化物歧化酶
SOD
(U g-1)
暖资58
Nuanzi 58
234.86 ± 2.16 a 255.86 ± 4.41 a 234.77 ± 1.44 a 242.34 ± 4.41 a 231.17 ± 5.59 a 233.33 ± 5.32 a
暖资979 Nuanzi 979 251.35 ± 12.97 b 272.16 ± 3.24 b 247.12 ± 9.10 b 257.75 ± 4.14 b 244.68 ± 11.53 a 247.84 ± 1.89 b
百农207 Bainong 207 248.74 ± 3.96 b 268.29 ± 3.87 b 253.24 ± 2.97 b 259.28 ± 4.5 b 241.98 ± 8.29 a 245.77 ± 7.48 b
冷资857 Lengzi 857 249.82 ± 5.59 b 289.10 ± 3.60 c 253.42 ± 4.41 b 279.19 ± 4.05 c 244.95 ± 8.56 a 262.97 ± 9.46 c
冷资863 Lengzi 863 250.00 ± 5.14 b 285.77 ± 4.77 c 251.80 ± 5.77 b 273.15 ± 3.87 c 244.77 ± 7.12 a 260.54 ± 2.97 c
过氧化物酶POD
(U g-1)
暖资58
Nuanzi 58
134.32 ± 8.69 ab 146.22 ± 8.43 ab 127.14 ± 7.35 ab 131.88 ± 2.48 ab 123.80 ± 8.49 a 111.54 ± 9.33 ab
暖资979 Nuanzi 979 126.36 ± 8.77 ab 135.26 ± 8.98 ab 122.29 ± 8.97 ab 124.21 ± 5.06 ab 115.04 ± 9.11 a 106.54 ± 7.45 a
百农207 Bainong 207 119.40 ± 14.63 a 129.65 ± 13.71 a 113.32 ± 9.08 a 116.73 ± 15.79 a 114.85 ± 7.19 a 111.63 ± 11.57 ab
冷资857 Lengzi 857 144.19 ± 4.01 b 163.73 ± 7.82 c 142.28 ± 6.88 b 151.44 ± 4.86 c 147.35 ± 20.28 b 145.64 ± 14.89 c
冷资863 Lengzi 863 135.86 ± 9.55 ab 152.31 ± 4.70 bc 128.10 ± 13.07 ab 139.54 ± 9.43 bc 131.06 ± 4.90 ab 130.39 ± 1.84 bc
过氧化氢酶CAT
(U g-1)
暖资58
Nuanzi 58
106.81 ± 5.73 ab 96.64 ± 1.79 a 100.15 ± 6.21 a 91.86 ± 2.00 a 89.22 ± 4.82 a 83.93 ± 8.12 a
暖资979 Nuanzi 979 100.48 ± 4.50 a 94.84 ± 2.60 a 101.37 ± 3.70 a 91.63 ± 1.75 a 89.63 ± 16.83 a 83.78 ± 7.91 a
百农207 Bainong 207 104.99 ± 5.83 ab 98.68 ± 2.20 ab 98.06 ± 3.18 a 91.56 ± 2.11 a 94.07 ± 7.14 a 87.22 ± 5.00 a
冷资857 Lengzi 857 115.07 ± 9.94 b 107.34 ± 1.94 c 110.85 ± 4.26 b 104.41 ± 1.53 c 105.93 ± 14.80 a 102.67 ± 3.80 b
冷资863 Lengzi 863 106.98 ± 4.33 ab 101.21 ± 3.06 b 104.00 ± 2.25 ab 97.04 ± 1.59 b 91.63 ± 4.63 a 91.11 ± 2.94 a
抗氧化酶Antioxidant enzyme 品种
Variety
处理第16天
Day 16
处理第21天
Day 21
处理第26天
Day 26
对照CK 热处理HT 对照CK 热处理HT 对照CK 热处理HT
超氧化物歧化酶SOD
(U g-1)
暖资58
Nuanzi 58
214.86 ± 5.68 a 201.53 ± 3.60 ab 184.23 ± 1.17 a 175.05 ± 2.25 ab 155.95 ± 5.41 a 150.00 ± 14.32 a
暖资979 Nuanzi 979 227.12 ± 12.07 ab 196.13 ± 3.60 a 190.81 ± 3.78 a 169.46 ± 5.14 a 164.68 ± 1.53 ab 140.09 ± 5.32 a
百农207 Bainong 207 223.06 ± 7.75 ab 210.54 ± 4.86 b 189.19 ± 3.24 a 185.95 ± 6.22 b 166.22 ± 5.68 ab 164.41 ± 8.02 b
冷资857 Lengzi 857 234.05 ± 0.54 b 234.50 ± 13.33 c 213.96 ± 9.01 b 220.36 ± 8.74 c 177.21 ± 5.77 b 172.34 ± 3.06 b
冷资863 Lengzi 863 235.50 ± 12.34 b 230.99 ± 4.14 c 219.46 ± 7.84 b 220.72 ± 6.76 c 174.77 ± 3.87 b 174.50 ± 6.04 b
过氧化物酶POD
(U g-1)
暖资58
Nuanzi 58
111.70 ± 5.01 bc 99.67 ± 9.27 ab 98.39 ± 10.38 ab 91.73 ± 7.16 bc 74.21 ± 12.57 a 69.58 ± 6.51 ab
暖资979 Nuanzi 979 97.70 ± 6.54 a 90.73 ± 5.77 a 83.14 ± 21.32 a 79.91 ± 5.74 ab 68.93 ± 14.41 a 64.14 ± 6.03 a
百农207 Bainong 207 101.30 ± 9.46 ab 94.91 ± 10.50 a 85.25 ± 4.32 ab 77.72 ± 4.06 a 79.40 ± 2.87 a 66.31 ± 9.00 a
冷资857 Lengzi 857 126.55 ± 7.53 d 124.65 ± 21.59 c 112.91 ± 19.98 b 106.45 ± 9.91 d 91.78 ± 15.48 a 82.91 ± 5.72 b
冷资863 Lengzi 863 121.17 ± 4.62 cd 120.43 ± 9.01 bc 108.64 ± 5.69 ab 100.37 ± 6.32 cd 92.67 ± 13.07 a 83.10 ± 7.98 b
过氧化氢酶CAT
(U g-1)
暖资58
Nuanzi 58
83.07 ± 1.84 a 76.29 ± 3.45 a 78.83 ± 3.41 a 73.16 ± 0.96 a 71.45 ± 1.57 a 69.82 ± 1.25 b
暖资979 Nuanzi 979 80.58 ± 2.29 a 72.96 ± 1.70 a 74.14 ± 3.72 a 71.07 ± 2.16 a 71.67 ± 1.79 a 67.98 ± 1.00 a
百农207 Bainong 207 83.32 ± 1.49 a 77.23 ± 3.56 a 77.40 ± 2.72 a 72.46 ± 1.33 a 74.91 ± 1.61 a 70.06 ± 0.59 b
冷资857 Lengzi 857 100.18 ± 6.92 b 95.67 ± 2.56 c 91.88 ± 2.61 c 87.06 ± 1.56 c 85.88 ± 2.23 c 82.15 ± 0.25 d
冷资863 Lengzi 863 88.29 ± 4.74 a 86.48 ± 2.57 b 85.08 ± 2.02 b 82.02 ± 1.94 b 82.21 ± 2.20 b 80.20 ± 0.75 c

Fig. 4

1000-grain weight growth curves of different thermotypes of wheat varieties under natural growth and heat stress"

Fig. 5

Changing trends of grain filling rate of different wheat varieties under natural growth and heat stress treatment conditions A: results in 2022; B: results in 2023."

Table 3

Yield and its components of different wheat varieties after high temperature treatment in 2022"

品种
Variety
处理
Treatment
单株穗数
Spikes per plant
穗粒数
Grains per spike
千粒重
1000-grain weight (g)
产量
Yield (kg hm-2)
减产幅度
Decrease rate
(%)
平均值
Average value
F
F-value
平均值
Average value
F
F-value
平均值
Average value
F
F-value
平均值
Average value
F
F-value
冷资857
Lengzi 857
对照CK 4.20 1.60 36.91 0.67 49.36 66.29** 9183.60 11.90* 7.04
热处理HT 4.17 36.57 47.15 8536.95
百农207
Bainong 207
对照CK 4.20 12.25* 38.46 3.71 42.45 41.36** 8227.35 66.99** 12.66
热处理HT 4.08 37.34 39.28 7186.05
暖资979
Nuanzi 979
对照CK 4.03 0.45 37.31 1.81 42.15 285.74** 7613.25 27.88** 13.04
热处理HT 3.98 36.28 38.20 6620.10
暖资58
Nuanzi 58
对照CK 4.08 3.50 35.85 1.81 44.50 281.90** 7816.35 77.31** 11.94
热处理HT 3.97 35.05 41.26 6883.20
冷资863
Lengzi 863
对照CK 4.15 4.00 37.59 0.11 50.44 42.60** 9441.00 16.73* 5.57
热处理HT 4.08 37.43 48.60 8914.80

Table 4

Yield and its components of different wheat varieties after high temperature treatment in 2023"

品种
Variety
处理
Treatment
单株穗数
Spikes per plant
穗粒数
Grains per spike
千粒重
1000-grain weight (g)
产量
Yield (kg hm-2)
减产幅度
Decrease rate (%)
平均值
Average value
F
F-value
平均值
Average value
F
F-value
平均值
Average value
F
F-value
平均值
Average value
F
F-value
冷资857
Lengzi 857
对照CK 4.18 0.02 36.69 0.31 46.46 147.89** 8554.65 0.59 5.61
热处理HT 4.15 36.32 44.65 8075.10
百农207
Bainong 207
对照CK 4.01 0.11 38.37 5.26 39.31 73.16** 7266.15 8.41* 8.66
热处理HT 3.98 37.58 37.02 6637.20
暖资979
Nuanzi 979
对照CK 3.96 0.94 36.25 3.98 39.30 146.43** 6775.65 19.48* 10.51
热处理HT 3.90 35.49 36.54 6063.75
暖资58
Nuanzi 58
对照CK 4.00 1.00 36.48 0.03 41.80 107.01** 7184.40 10.10* 7.11
热处理HT 3.93 35.70 39.60 6673.50
冷资863
Lengzi 863
对照CK 4.12 0.02 37.17 0.05 48.01 61.03** 8809.65 0.99 3.90
热处理HT 4.09 37.00 46.59 8466.30

Table 5

The heat susceptibility index of different thermotypes of wheat varieties over two years"

年份
Year
品种
Variety
热处理
Heat treatment
对照
CK
热敏感指数
HSI
评价
Evaluation
2022 冷资857 Lengzi 857 47.15 49.36 0.71 中等耐热 Moderate heat resistant
百农207 Bainong 207 39.28 42.45 1.19 中等热敏感 Moderate heat sensitivity
暖资979 Nuanzi 979 38.20 42.15 1.49 中等热敏感 Moderate heat sensitivity
暖资58 Nuanzi 58 41.26 44.50 1.16 中等热敏感 Moderate heat sensitivity
冷资863 Lengzi 863 48.60 50.44 0.58 中等耐热 Moderate heat resistant
2023 冷资857 Lengzi 857 44.65 46.46 0.80 中等耐热 Moderate heat resistant
百农207 Bainong 207 37.02 39.31 1.19 中等热敏感 Moderate heat sensitivity
暖资979 Nuanzi 979 36.54 39.30 1.44 中等热敏感 Moderate heat sensitivity
暖资58 Nuanzi 58 39.60 41.80 1.08 中等热敏感 Moderate heat sensitivity
冷资863 Lengzi 863 46.59 48.01 0.61 中等耐热 Moderate heat resistant

Fig. 6

Correlation analysis between flag leaf physiological characteristics and grain yield of wheat under high temperature stress A: result in 2022; B: result in 2023. SOD: superoxide dismutase; POD: peroxidase; CAT: catalase; Pn: net photosynthetic rate; Cd: stomatal conductance; Tr: transpiration rate; Ci: intercellular CO2 concentration. * indicates a significant difference (P ≤ 0.05)."

[1] 蒋赟, 王秀东. 我国小麦产业发展现状问题及对策浅析. 南方农业, 2020, 14(31): 31-34.
Jiang Y, Wang X D. Analysis on the current problems and countermeasures of wheat industry. South China Agric, 2020, 14(31): 31-34 (in Chinese with English abstract).
[2] Mishra D, Shekhar S, Chakraborty S, Chakraborty N. High temperature stress responses and wheat: impacts and alleviation strategies. Environ Exp Bot, 2021, 190: 104589.
[3] Yu Y Y, Yang X H, Guan Z Y, Zhang Q, Li X C, Gul C, Xia X. The impacts of temperature averages, variabilities and extremes on China’s winter wheat yield and its changing rate. Environ Res Commun, 2023, 5: 071002.
[4] Fan Y H, Lyu Z Y, Li Y X, Qin B Y, Song Q Y, Ma L L, Wu Q Q, Zhang W J, Ma S Y, Ma C X, et al. Salicylic acid reduces wheat yield loss caused by high temperature stress by enhancing the photosynthetic performance of the flag leaves. Agronomy, 2022, 12: 1386.
[5] Li Y B, Tao F L, Hao Y F, Tong J Y, Xiao Y G, He Z H, Reynolds M. Traits and the associated loci in wheat favoring extreme high temperature tolerance. Eur J Agron, 2023, 145: 126776.
[6] Sihag P, Kumar U, Sagwal V, Kapoor P, Singh Y, Mehla S, Balyan P, Mir R R, Varshney R K, Singh K P, Dhankher O P. Effect of terminal heat stress on osmolyte accumulation and gene expression during grain filling in bread wheat (Triticum aestivum L.). Plant Genome, 2024, 17: e20307.
[7] Scotti-Campos P, Oliveira K, Pais I P, Bagulho A S, Semedo J N, Serra O, Simões F, Lidon F C, Coutinho J, Maçãs B. Grain composition and quality in Portuguese Triticum aestivum germplasm subjected to heat stress after anthesis. Plants (Basel), 2022, 11: 365.
[8] 张宾, 贺明荣, 吴翠平, 王珊珊, 刘永环, 张洪华. 灌浆期短暂高温下减库对小麦籽粒品质的影响. 中国农学通报, 2006, 22(10): 108-110.
Zhang B, He M R, Wu C P, Wang S S, Liu Y H, Zhang H H. Effects of halving spikelet on the wheat grain quality under short period of heat shock at the middle stage of grain filling. Chin Agric Sci Bull, 2006, 22(10): 108-110 (in Chinese with English abstract).
doi: 10.11924/j.issn.1000-6850.0610108
[9] 张嵩午, 王长发. 冷型小麦及其生物学特征. 作物学报, 1999, 25: 608-615.
Zhang S W, Wang C F. Cold type wheat and its biological characteristics. Acta Agron Sin, 1999, 25: 608-615 (in Chinese with English abstract).
[10] 张嵩午. 冷型小麦理论概述. 中国科学基金, 2022, 36: 468-476.
Zhang S W. A theoretical profile on cold-type wheat. Bull Natl Nat Sci Found China, 2022, 36: 468-476 (in Chinese with English abstract).
[11] 王长发, 张嵩午. 冷型小麦旗叶衰老和活性氧代谢特性研究. 西北植物学报, 2000, 20: 727-732.
Wang C F, Zhang S W. Characteristics of flag leaf senescence and activated oxygen metabolism for cold type wheat. Acta Bot Boreali-Occident Sin, 2000, 20: 727-732 (in Chinese with English abstract).
[12] 严菊芳, 张嵩午. 不同温型小麦灌浆结实期农田热量平衡及其气象效应. 西北农林科技大学学报(自然科学版), 2007, 35(9): 49-52.
Yan J F, Zhang S W. Study on the heat balance and the meteorological effect during milk-filling and burliness stage of the different type wheat. J Northwest A&F Univ (Nat Sci Edn), 2007, 35(9): 49-52 (in Chinese with English abstract).
[13] 冯佰利, 高小丽, 赵琳, 高金峰, 王长发, 张嵩午. 干旱条件下小麦冠层温度及其性状的关联研究. 生态学杂志, 2005, 24: 508-512.
Feng B L, Gao X L, Zhao L, Gao J F, Wang C F, Zhang S W. Relationships between canopy temperature and biological characters of wheat under drought conditions. Chin J Ecol, 2005, 24: 508-512 (in Chinese with English abstract).
[14] 拉巴扎西. 干旱条件下不同温度型小麦叶片衰老的表观性状研究. 西藏农业科技, 2006, 28(1): 26-30.
Labazhaxi. The research about the exhibition and character on the leaf effete of different temperature-type wheat in the drouthy condition. Tibet J Agric Sci, 2006, 28(1): 26-30 (in Chinese with English abstract).
[15] Cakmak I, Marschner H. Magnesium deficiency and high light intensity enhance activities of superoxide dismutase, ascorbate peroxidase, and glutathione reductase in bean leaves. Plant Physiol, 1992, 98: 1222-1227.
doi: 10.1104/pp.98.4.1222 pmid: 16668779
[16] 王小波, 关攀锋, 辛明明, 汪永法, 陈希勇, 赵爱菊, 刘曼双, 李红霞, 张明义, 逯腊虎, 等. 小麦种质资源耐热性评价. 中国农业科学, 2019, 52: 4191-4200.
doi: 10.3864/j.issn.0578-1752.2019.23.001
Wang X B, Guan P F, Xin M M, Wang Y F, Chen X Y, Zhao A J, Liu M S, Li H X, Zhang M Y, Lu L H, et al. Evaluation of heat tolerance in wheat germplasm resources. Sci Agric Sin, 2019, 52: 4191-4200 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2019.23.001
[17] Feng B L, Yu H, Hu Y G, Gao X L, Gao J F, Gao D L, Zhang S W. The physiological characteristics of the low canopy temperature wheat (Triticum aestivum L.) genotypes under simulated drought condition. Acta Physiol Plant, 2009, 31: 1229-1235.
[18] Saint Pierre C, Crossa J, Manes Y, Reynolds M P. Gene action of canopy temperature in bread wheat under diverse environments. Theor Appl Genet, 2010, 120: 1107-1117.
doi: 10.1007/s00122-009-1238-4 pmid: 20044743
[19] Farooq M, Bramley H, Palta J A, Siddique K H M. Heat stress in wheat during reproductive and grain-filling phases. Crit Rev Plant Sci, 2011, 30: 491-507.
[20] Parry M A J, Andralojc P J, Mitchell R A C, Madgwick P J, Keys A J. Manipulation of Rubisco: the amount, activity, function and regulation. J Exp Bot, 2003, 54: 1321-1333.
doi: 10.1093/jxb/erg141 pmid: 12709478
[21] da Silva J M, da Silva A B, P´dua M´. Modulated chlorophyll a fluorescence: a tool for teaching photosynthesis. J Biol Educ, 2007, 41: 178-183.
[22] Gao C H, Sun M, Anwar S, Feng B, Ren A X, Lin W, Gao Z Q. Response of physiological characteristics and grain yield of winter wheat varieties to long-term heat stress at anthesis. Photosynthetica, 2021, 59: 640-651.
doi: 10.32615/ps.2021.060
[23] 张会玲, Marian Brestic, Katarina Olsovska, 李刚, 孟庆伟, 杨兴洪. 高温胁迫下不同热敏感性小麦光化学活性和能量分配差异. 植物生理学报, 2015, 51: 1142-1150.
Zhang H L, Brestic M, Olsovska K, Li G, Meng Q W, Yang X H. Photochemical activity and energy distribution on wheat varieties with different heat-sensitivity under high temperature stress. Plant Physiol J, 2015, 51: 1142-1150 (in Chinese with English abstract).
[24] Alscher R G, Erturk N, Heath L S. Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J Exp Bot, 2002, 53: 1331-1341.
pmid: 11997379
[25] Quan L J, Zhang B, Shi W W, Li H Y. Hydrogen peroxide in plants: a versatile molecule of the reactive oxygen species network. J Integr Plant Biol, 2008, 50: 2-18.
doi: 10.1111/j.1744-7909.2007.00599.x
[26] Gill S S, Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem, 2010, 48: 909-930.
[1] LI Qiao, YE Yang-Chun, CHANG Xu-Hong, WANG De-Mei, WANG Yan-Jie, YANG Yu-Shuang, MA Rui-Qi, ZHAO Guang-Cai, CAI Rui-Guo, ZHANG Min, LIU Xi-Wei. Effects of high temperature and drought stresses on photosynthetic characteristics and yield of winter wheat after anthesis [J]. Acta Agronomica Sinica, 2025, 51(4): 1077-1090.
[2] WANG Jiao, BAI Hai-Xia, HAN Yu-Yan, LIANG Hui, FENG Ya-Nan, ZHANG Dong-Sheng, LI Ping, ZONG Yu-Zheng, SHI Xin-Rui, HAO Xing-Yu. Effects of elevated CO2 concentration, increased temperature and their interaction on the carbon and nitrogen metabolism in Liangxing 99 winter wheat leaves [J]. Acta Agronomica Sinica, 2025, 51(4): 1061-1076.
[3] MENG Zi-Zhen, LIU Chen, SHENG Qian-Nan, XIONG Zhi-Hao, FANG Ya-Ting, ZHAO Jian, YU Qiu-Hua, WANG Kun-Kun, LI Xiao-Kun, REN Tao, LU Jian-Wei. Effects of nitrogen, phosphorus, and potassium fertilizer application on the yield increase of winter oilseed rape and the degree of yield reduction due to freezing stress [J]. Acta Agronomica Sinica, 2025, 51(4): 1037-1049.
[4] SONG Li, LIU Guang-Zhou, ZHANG Hua, LU Ting-Qi, QING Chun-Yan, YANG Yun-Shan, GUO Xiao-Xia, Hu Dan, LI Shao-Kun, HOU Peng. Effects of drip fertigation with dense planting on yield and soil bacterial community of summer maize in Southwest China [J]. Acta Agronomica Sinica, 2025, 51(4): 992-1004.
[5] ZHANG Xiao-Li, LIU Xiao-Yan, XIA Wen-Wen, LI Jin. Functional analysis of the plasma membrane intrinsic protein gene SiPIP1;3 from Saussurea involucrata in tomato [J]. Acta Agronomica Sinica, 2025, 51(4): 863-872.
[6] LI Hui-Min, XING Zhi-Peng, ZHANG Hai-Peng, WEI Hai-Yan, ZHANG Hong-Cheng, LI Guang-Yan. Application of chemical regulators and other cultivation measures in lodging resistance and high-yield cultivation of wheat [J]. Acta Agronomica Sinica, 2025, 51(4): 847-862.
[7] YANG Cui-Hua, LI Shi-Hao, YI Xu-Xu, ZHENG Fei-Xiong, DU Xue-Zhu, SHENG Feng. Effects of poly-γ-glutamic acid on rice yield, quality, and nutrient uptake [J]. Acta Agronomica Sinica, 2025, 51(3): 785-796.
[8] LIU Ya-Long, WANG Peng-Fei, YU Ai-Zhong, WANG Yu-Long, SHANG Yong-Pan, YANG Xue-Hui, YIN Bo, ZHANG Dong-Ling, WANG Feng. Effects of nitrogen reduction on maize yield and N2O emission under green manure returning in Hexi oasis irrigation area [J]. Acta Agronomica Sinica, 2025, 51(3): 771-784.
[9] WANG Yan, BAI Chun-Sheng, LI Bo, FAN Hong, HE Wei, YANG Li-Li, CAO Yue, ZHAO Cai. Effects of no-tillage with plastic film and the amount of irrigation water on yield and photosynthetic characteristics of maize in oasis irrigation area of Northwest China [J]. Acta Agronomica Sinica, 2025, 51(3): 755-770.
[10] YANG Xin-Yue, XIAO Ren-Hao, ZHANG Lin-Xi, TANG Ming-Jun, SUN Guang-Yan, DU Kang, LYU Chang-Wen, TANG Dao-Bin, WANG Ji-Chun. Effects of waterlogging at different growth stages on the stress-resistance physiological characteristics and yield formation of sweet potato [J]. Acta Agronomica Sinica, 2025, 51(3): 744-754.
[11] XIONG Qiang-Qiang, SUN Chang-Hui, GU Wen-Fei, LU Yan-Yao, ZHOU Nian-Bing, GUO Bao-Wei, LIU Guo-Dong, WEI Hai-Yan, ZHU Jin-Yan, ZHANG Hong-Cheng. Comprehensive evaluation of 70 japonica glutinous rice varieties (lines) based on growth period, yield, and quality [J]. Acta Agronomica Sinica, 2025, 51(3): 728-743.
[12] SU Ming, WU Jia-Rui, HONG Zi-Qiang, LI Fan-Guo, ZHOU Tian, WU Hong-Liang, KANG Jian-Hong. Response of potato tuber starch formation and yield to phosphorus fertilizer reduction in the semi-arid region of Northwest China [J]. Acta Agronomica Sinica, 2025, 51(3): 713-727.
[13] LI Xiang-Yu, JI Xin-Jie, WANG Xue-Lian, LONG An-Ran, WANG Zheng-Yu, YANG Zi-Hui, GONG Xiang-Wei, JIANG Ying, QI Hua. Effects of straw returning combined with nitrogen fertilizer on yield and grain quality of spring maize [J]. Acta Agronomica Sinica, 2025, 51(3): 696-712.
[14] HU Ya-Jie, GUO Jing-Hao, CONG Shu-Min, CAI Qin, XU Yi, SUN Liang, GUO Bao-Wei, XING Zhi-Peng, YANG Wen-Fei, ZHANG Hong-Cheng. Effect of low temperature and weak light stress during early grain filling on rice yield and quality [J]. Acta Agronomica Sinica, 2025, 51(2): 405-417.
[15] QIN Meng-Qian, HUANG Wei, CHEN Min, NING Ning, HE De-Zhi, HU Bing, XIA Qi-Xin, JIANG Bo, CHENG Tai, CHANG Hai-Bin, WANG Jing, ZHAO Jie, WANG Bo, KUAI Jie, XU Zheng-Hua, ZHOU Guang-Sheng. Effect of nitrogen fertilizer management on yield and resistance of late-seeded rapeseed [J]. Acta Agronomica Sinica, 2025, 51(2): 432-446.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!