Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2025, Vol. 51 ›› Issue (4): 1037-1049.doi: 10.3724/SP.J.1006.2025.44152

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Effects of nitrogen, phosphorus, and potassium fertilizer application on the yield increase of winter oilseed rape and the degree of yield reduction due to freezing stress

MENG Zi-Zhen1(), LIU Chen1, SHENG Qian-Nan1, XIONG Zhi-Hao1, FANG Ya-Ting1, ZHAO Jian1, YU Qiu-Hua2, WANG Kun-Kun1, LI Xiao-Kun1, REN Tao1, LU Jian-Wei1,*()   

  1. 1College of Resources and Environment, Huazhong Agricultural University / Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs / Microelement Research Center, Wuhan 430070, Hubei, China
    2Hubei Provincial Station for Soil Quality and Fertilizer Work, Wuhan 430070, Hubei, China
  • Received:2024-09-10 Accepted:2025-01-23 Online:2025-04-12 Published:2025-02-06
  • Contact: E-mail: lunm@mail.hzau.edu.cn
  • Supported by:
    National Key Research and Development Program of China “Comprehensive Model and Application of Obstacle Reduction and Productivity Improvement of Low-yield Fields in the Water-dry Rotation Area of the Middle and Lower Reaches of the Yangtze River”(2023YFD1901100);China Agriculture Research System of MOF and MARA(CARS-12);Fundamental Research Funds for the Central Universities(2662021ZH001)

Abstract:

In early 2024, the primary oilseed rape production areas in the Yangtze River Basin experienced low temperatures and cold wave events, which severely impacted winter oilseed rape production. To investigate the effects of combined nitrogen (N), phosphorus (P), and potassium (K) fertilizer application on winter rapeseed yield and to examine the differential responses of rapeseed to these nutrients under freezing stress, a multi-site field experiment was conducted during the 2022/2023 (control year) and 2023/2024 (freezing stress year) growing seasons. The experiment included five treatments: no fertilizer application (CK), balanced application of N, P, and K (NPK), and treatments omitting nitrogen (-N), phosphorus (-P), or potassium (-K) based on the NPK treatment. By integrating meteorological data from the two growing seasons, rapeseed yield, yield components, shoot biomass, and harvest index were compared across multiple sites to analyze the response of rapeseed to freezing stress under different nutrient application conditions. The results showed that, compared to the NPK treatment, rapeseed yields in the -N, -P, and -K treatments were reduced by an average of 71.8%, 76.6%, and 13.4%, respectively, across the two growing seasons. This indicates that nitrogen and phosphorus fertilizers significantly improved rapeseed yield, while the effect of potassium fertilizer was comparably smaller. When comparing the freezing stress year to the control year, rapeseed yields were significantly reduced across all experimental sites. Specifically, yields under the CK, -N, -P, -K, and NPK treatments decreased by an average of 43.6%, 30.7%, 48.9%, 43.2%, and 45.7%, respectively. A lower number of siliques per plant was identified as the primary cause of yield reduction, with average decreases of 37.6%, 44.3%, 32.3%, 22.3%, and 22.8% observed in the respective treatments. Additionally, the number of seeds per silique and shoot biomass were significantly reduced under freezing stress, while the harvest index showed a significant increase. Further correlation analyses between rapeseed yield, climatic variables, and basal soil nutrient content revealed that the number of days with extreme low temperatures during the freezing period was positively correlated with the severity of freezing stress. Moreover, the nutrient demands for phosphorus and potassium intensified under freezing stress. In conclusion, nitrogen and phosphorus fertilizers are the primary nutritional factors contributing to high yield, while phosphorus and potassium fertilizers play critical roles in stabilizing yield under freezing conditions. A balanced application of N, P, and K fertilizers is essential for maintaining relatively high and stable yields in winter oilseed rape production.

Key words: winter oilseed rape, nitrogen, phosphorus and potassium fertilizer, freezing stress, yield, yield components

Table 1

Physical and chemical properties of the top soil (0-20 cm) of the experiment fields"

试验地点
Experimental site
土壤类型
Soil type
pH 有机质
Organic matter
(g kg-1)
全氮
Total N
(g kg-1)
速效磷
Available P
(mg kg-1)
速效钾
Available K
(mg kg-1)
武汉 Wuhan 黄棕壤 Yellow-brown earth 7.04 5.01 0.48 1.26 123.40
沙洋 Shayang 黄棕壤 Yellow-brown earth 6.84 11.78 0.74 5.15 212.00
武穴 Wuxue 红壤 Red earth 5.96 25.20 1.60 10.50 26.30

Table 2

Fertilizer rates for each treatment in the experiment (kg hm-2)"

处理
Treatment
施肥量Fertilizer rate
N P2O5 K2O B
CK 0 0 0 0.97
-N 0 60 75 0.97
-P 180 0 75 0.97
-K 180 60 0 0.97
NPK 180 60 75 0.97

Fig. 1

Main meteorological factors in oilseed rape growing seasons in control year and freezing stress year"

Table 3

Basic growing information"

试验地点
Experimental site
品种
Variety
移栽密度
Planting density
(×104 plants hm-2)
年份
Year
育苗/播种时间Seedling/
sowing time
移栽时间
Planting
time
收获时间Harvesting
time
全生育期天数
Total growing day (d)
武汉
Wuhan
华油杂9号
Huayouza 9
10.0 对照年
Control year
2022/09/15 2022/10/22 2023/05/13 240
冻害年
Freezing stress year
2023/09/20 2023/11/11 2024/05/13 237
沙洋
Shayang
华油杂62R Huayouza 62R 11.3 对照年
Control year
2022/09/17 2022/10/25 2023/05/08 233
冻害年
Freezing stress year
2023/09/20 2023/10/27 2024/05/05 228
武穴
Wuxue
华油杂9号
Huayouza 9
11.3 对照年
Control year
2022/09/18 2022/11/07 2023/05/09 234
冻害年
Freezing stress year
2023/09/19 2023/11/03 2024/05/06 231

Table 4

Degree of freezing stress of oilseed rape in Wuhan"

处理
Treatment
冻害程度
Degree of freezing stress (%)
CK 32.8 bc
-N 43.9 a
-P 36.1 ab
-K 36.7 ab
NPK 25.6 c

Table 5

Effect of different fertilizer treatments on rapeseed yield (kg hm-2)"

试验地点
Experimental site
处理
Treatment
对照年
Control year
冻害年
Freezing stress year
冻害减产量
Yield reduction value
冻害减产率
Yield reduction rate (%)
武汉 Wuhan CK 183±17 d 114±22 d* 69 37.8
-N 954±21 c 629±35 c*** 325 34.1
-P 113±20 d 87±15 dns 26 23.0
-K 1996±205 b 1023±41 b** 973 48.8
NPK 2651±107 a 1141±65 a*** 1510 56.9
沙洋 Shayang CK 804±86 bc 201±65 c** 603 74.9
-N 1017±133 b 628±180 b* 389 38.3
-P 653±2 c 105±38 c*** 548 83.9
-K 3117±175 a 1321±14 a*** 1796 57.6
NPK 3321±367 a 1291±183 a** 2030 61.1
武穴 Wuxue CK 661±137 c 542±140 cns 119 18.0
-N 652±102 c 524±67 cns 128 19.7
-P 1978±470 b 1190±397 bns 788 39.9
-K 2180±8 ab 1674±210 ab* 506 23.2
NPK 2526±166 a 2045±238 a* 481 19.0
方差分析ANOVA FF-value
年份Year (Y) 356.484***
试验地点Experimental site (E) 68.682***
处理Treatment (T) 376.175***
Y×E 30.324***
Y×T 37.427***
E×T 26.993***
Y×E×T 8.887***

Table 6

Effect of different fertilizer treatments on yield components of oilseed rape"

试验地点
Experimental site
处理
Treatment
单株角果数
Pods per plant
每角粒数
Seeds per pod
千粒重
1000-seed weight (g)
对照年
Control year
冻害年
Freezing
stress year
对照年
Control year
冻害年
Freezing
stress year
对照年
Control year
冻害年
Freezing
stress year
武汉
Wuhan
CK 31.7±4.5 d 20.8±4.2 d* 20.7±1.2 b 18.8±1.7 cns 2.97±0.06 c 2.89±0.09 dns
-N 186.6±26.0 c 98.1±13.9 c** 21.3±1.5 b 20.6±1.4 bcns 3.20±0.13 b 3.14±0.03 cns
-P 23.2±4.9 d 18.4±4.5 dns 22.3±1.5 ab 15.3±2.4 d* 3.15±0.14 bc 2.96±0.08 cdns
-K 264.9±23.3 b 182.2±24.3 b* 24.0±1.0 a 23.2±0.3 abns 3.26±0.08 b 3.70±0.10 a**
NPK 329.2±61.5 a 223.2±19.3 a* 24.3±1.2 a 23.9±1.0 ans 3.56±0.17 a 3.38±0.13 bns
沙洋
Shayang
CK 110.4±20.9 bc 60.0±15.0 c* 18.9±0.9 bc 17.1±2.3 ans 3.99±0.12 bc 3.78±0.16 ans
-N 176.5±33.3 b 93.2±19.9 c* 22.8±4.7 ab 19.2±0.8 ans 4.23±0.05 b 3.55±0.05 a***
-P 60.2±3.2 c 40.0±6.9 c* 19.6±2.0 c 16.3±2.3 ans 3.28±0.45 c 3.83±0.06 ans
-K 394.5±97.7 a 365.2±66.3 ans 25.2±1.2 a 19.4±1.5 a** 4.99±0.42 a 3.53±0.55 a*
NPK 435.1±19.1 a 296.7±35.8 b** 21.0±1.1 abc 17.8±0.9 a* 4.13±0.06 bc 3.22±0.14 a***
武穴
Wuxue
CK 115.9±15.5 c 78.1±21.4 cns 19.9±1.3 a 15.5±1.0 a** 3.05±0.20 b 3.82±0.32 bc*
-N 129.7±4.3 c 80.1±17.7 c** 20.0±2.7 a 17.2±1.7 ans 3.10±0.05 b 3.87±0.40 bc*
-P 212.4±23.9 b 121.6±61.6 bcns 20.1±2.4 a 15.3±0.9 a* 3.71±0.62 a 3.70±0.19 cns
-K 272.6±36.2 a 195.6±23.1 ab* 19.3±1.3 a 16.2±2.6 ans 3.94±0.10 a 4.90±0.44 a*
NPK 297.1±16.0 a 283.8±91.5 ans 22.0±0.7 a 19.3±0.7 a** 4.10±0.03 a 4.47±0.52 abns
方差分析ANOVA FF-value
年份Year (Y) 59.714*** 62.832*** 0.087ns
试验地点
Experimental site (E)
24.999*** 21.132*** 60.975***
处理Treatment (T) 180.337*** 14.817*** 17.922***
Y×E 0.144ns 1.148ns 37.074***
Y×T 1.816ns 1.123ns 1.304ns
E×T 14.362*** 3.815** 4.640***
Y×E×T 2.307* 2.228* 5.991***

Table 7

Effect of different fertilizer treatments on shoot biomass and harvest index of oilseed rape"

试验地点Experimental site 处理Treatment 地上部生物量Shoot biomass (kg hm-2) 籽粒收获指数Harvest index (kg kg-1)
对照年
Control year
冻害年
Freezing stress year
对照年
Control year
冻害年
Freezing stress year
武汉
Wuhan
CK 632±41 d 390±48 c** 0.29±0.01 a 0.30±0.07 ans
-N 3461±465 c 1716±150 b** 0.28±0.03 a 0.37±0.03 a*
-P 631±45 d 283±23 c*** 0.18±0.03 b 0.31±0.05 a*
-K 7182±1402 b 2866±105 a** 0.28±0.03 a 0.36±0.02 a*
NPK 9321±883 a 2976±250 a*** 0.29±0.03 a 0.38±0.02 a**
沙洋
Shayang
CK 2578±323 d 580±164 c** 0.31±0.02 bc 0.34±0.02 abns
-N 3556±400 c 1716±417 b** 0.29±0.01 c 0.36±0.02 a**
-P 2815±272 cd 327±115 c** 0.23±0.02 d 0.32±0.02 bns
-K 8680±374 b 3571±68 a*** 0.36±0.03 a 0.37±0.01 ans
NPK 9533±762 a 3629±613 a*** 0.35±0.02 ab 0.36±0.01 ans
武穴
Wuxue
CK 1977±461 b 2295±386 cns 0.34±0.01 a 0.23±0.03 a**
-N 2140±375 b 2322±246 cns 0.31±0.01 b 0.23±0.01 a**
-P 7397±1435 a 3177±1664 bc* 0.27±0.01 c 0.35±0.23 ans
-K 6406±71 a 5024±1365 abns 0.34±0 a 0.34±0.06 ans
NPK 7814±465 a 6096±539 a* 0.32±0 ab 0.34±0.03 ans
方差分析ANOVA FF-value
年份Year (Y) 337.387*** 16.398***
试验地点
Experimental site (E)
42.309*** 2.268ns
处理Treatment (T) 222.137*** 3.849**
Y×E 20.495*** 4.454*
Y×T 30.801*** 5.898***
E×T 17.285*** 3.042**
Y×E×T 10.368*** 2.067ns

Fig. 2

Correlation analysis of relative yield reduction of oilseed rape with climatic resources and soil base nutrient during overwintering period (from December to February) (a), (b), and (c) respectively represent the analysis of the correlation between the yield reduction of rapeseed under -N, -P, and -K treatments during two growing seasons compared to the control year with NPK treatment, and the climatic resource indicators and soil basic nutrients during the overwintering period. In each subplot: (A) indicates the rape season in control year and (B) indicates the rape season in freezing stress year. *, **, and *** indicate significant differences at the 0.05, 0.01, and 0.001 levels, respectively. R > 0.8 indicates high correlation between variables and 0.5 < R < 0.8 indicates moderate correlation between variables. Treatments are the same as those given in Table 2."

[1] 傅廷栋. 油菜的品种改良. 作物研究, 2007, 21(3): 159-162.
Fu T D. Varietal improvement in oilseed rape. Crop Res, 2007, 21(3): 159-162 (in Chinese).
[2] Omidi H, Tahmasebi Z, Naghdi Badi H A, Torabi H, Miransari M. Fatty acid composition of canola (Brassica napus L.), as affected by agronomical, genotypic and environmental parameters. C R Biol, 2010, 333: 248-254.
[3] 冯海棠, 王汉中. 新形势下的我国食用植物油供给安全对策. 中国油料作物学报, 2024, 46: 221-227.
doi: 10.19802/j.issn.1007-9084.2024021
Feng H T, Wang H Z. Security strategy for the nation’s edible vegetable oil supplies under the new circumstances. Chin J Oil Crop Sci, 2024, 46: 221-227 (in Chinese with English abstract).
[4] Diepenbrock W. Yield analysis of winter oilseed rape (Brassica napus L.): a review. Field Crops Res, 2000, 67: 35-49.
[5] 王寅, 鲁剑巍, 李小坤, 任涛, 丛日环, 占丽平. 长江流域直播冬油菜氮磷钾硼肥施用效果. 作物学报, 2013, 39: 1491-1500.
doi: 10.3724/SP.J.1006.2013.01491
Wang Y, Lu J W, Li X K, Ren T, Cong R H, Zhan L P. Effects of nitrogen, phosphorus, potassium, and boron fertilizers on winter oilseed rape (Brassica napus L.) direct-sown in the Yangtze River Basin. Acta Agron Sin, 2013, 39: 1491-1500 (in Chinese with English abstract).
[6] Hou W F, Xue X X, Li X K, Khan M R, Yan J Y, Ren T, Cong R H, Lu J W. Interactive effects of nitrogen and potassium on: grain yield, nitrogen uptake and nitrogen use efficiency of rice in low potassium fertility soil in China. Field Crops Res, 2019, 236: 14-23.
[7] 李小勇, 顾炽明, 刘康, 廖星, 黄威, 杨志远, 秦璐. 施氮量对迟播油菜氮素利用和产量品质的影响. 中国农业科学, 2021, 54: 3726-3736.
doi: 10.3864/j.issn.0578-1752.2021.17.014
Li X Y, Gu C M, Liu K, Liao X, Huang W, Yang Z Y, Qin L. Effects of nitrogen application rate on nitrogen use efficiency, yield and quality of late sowing rapeseed. Sci Agric Sin, 2021, 54: 3726-3736 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2021.17.014
[8] Qadir M F, Naveed M, Khan K S, Mumtaz T, Raza T, Mohy-Ud-Din W, Mustafa A. Divergent responses of phosphorus solubilizing bacteria with P-laden biochar for enhancing nutrient recovery, growth, and yield of canola (Brassica napus L.). Chemosphere, 2024, 353: 141565.
[9] Lu Z F, Pan Y H, Hu W S, Cong R H, Ren T, Guo S W, Lu J W. The photosynthetic and structural differences between leaves and siliques of Brassica napus exposed to potassium deficiency. BMC Plant Biol, 2017, 17: 240.
[10] 崔宏亮, 张学超, 邹辉, 姚庆, 陈建伟. 氮磷钾施用量对华油杂62油菜产量的影响. 湖南农业科学, 2016, (8): 45-48.
Cui H L, Zhang X C, Zou H, Yao Q, Chen J W. Effect of fertilization of nitrogen, phosphorus and potassium on yield of rape HYZ62. Hunan Agric Sci, 2016, (8): 45-48 (in Chinese with English abstract).
[11] 艾劲松, 高金梅, 王新妩. 低温冻害对油菜产量的影响. 安徽农业科学, 2011, 39: 1405-1406.
Ai J S, Gao J M, Wang X W. Low temperature and freezing on the yield of rapeseed and countermeasure. J Anhui Agric Sci, 2011, 39: 1405-1406 (in Chinese with English abstract).
[12] 吴昊, 邵明阳, 沈福生, 段沙丽. 低温冻害对江西油菜产量的影响及其变化特征研究. 江西农业学报, 2021, 33(11): 14-19.
Wu H, Shao M Y, Shen F S, Duan S L. Effects of low temperature and freezing injury on rapeseed yield and its variation characteristics in Jiangxi Province. Acta Agric Jiangxi, 2021, 33(11): 14-19 (in Chinese with English abstract).
[13] Raza A, Su W, Hussain M A, Mehmood S S, Zhang X K, Cheng Y, Zou X L, Lyu Y. Integrated analysis of metabolome and transcriptome reveals insights for cold tolerance in rapeseed (Brassica napus L.). Front Plant Sci, 2021, 12: 721681.
[14] 张晓红, 冯梁杰, 杨特武, 徐正华, 胡立勇. 冬季低温胁迫对油菜抗寒生理特性的影响. 植物生理学报, 2015, 51: 737-746.
Zhang X H, Feng L J, Yang T W, Xu Z H, Hu L Y. Effects of chilling stress on physiological characteristics of rapeseed seedlings in winter. Plant Physiol J, 2015, 51: 737-746 (in Chinese with English abstract).
[15] 廉盛兴. 磷、钾肥运筹对油菜抗冻性和耕作方式对油菜抗渍性的影响. 南京农业大学硕士学位论文, 江苏南京, 2015.
Lian S X. Effect of Phosphorus, Potassium Fertilizer Application on Rapeseed Frost Resistance and Farming Methods on Rape Waterlogging Resistance. MS Thesis of Nanjing Agricultural University, Nanjing, Jiangsu, China, 2015 (in Chinese with English abstract).
[16] 董全, 陈博宇, 胡宁, 孔铃涵, 陈涛, 王佳, 张博. 2024年2月我国两次大范围雨雪冰冻天气对比. 应用气象学报, 2024, 35: 385-399.
Dong Q, Chen B Y, Hu N, Kong L H, Chen T, Wang J, Zhang B. Comparison of two ice and snow storm processes in China in February 2024. J Appl Meteorol Sci, 2024, 35: 385-399 (in Chinese with English abstract).
[17] 俞小鼎, 费海燕, 王秀明. 2024年2月17-23日中国大范围强寒潮雨雪冰冻强对流过程涉及的若干问题. 气象, 2024, 50: 1033-1042.
Yu X D, Fei H Y, Wang X M. Some issues concerning the large area rainstorm, snowstorm, sleet, freezing rain and severe convection event over China from 17 to 23 February 2024. Meteorol Mon, 2024, 50: 1033-1042 (in Chinese with English abstract).
[18] 鲍士旦. 土壤农化分析, 第3版. 北京: 中国农业出版社, 2000. pp 25-114.
Bao S D. Soil and Agricultural Chemistry Analysis, 3rd edn. Beijing: China Agriculture Press, 2000. pp 25-114 (in Chinese).
[19] 刘秋霞. 氮肥施用调控直播冬油菜产量构成因子的机制研究. 华中农业大学博士学位论文, 湖北武汉, 2020.
Liu Q X. Study on the Mechanism of Yield Components of Direct-sown Oilseed Rape (Brassica napus L.) under Regulation of Nitrogen Fertilizer. Chin J Oil Crop Sci, 2020 (in Chinese with English abstract).
[20] 张学昆, 张春雷, 廖星, 王汉中. 2008年长江流域油菜低温冻害调查分析. 中国油料作物学报, 2008, 30: 122-126.
Zhang X K, Zhang C L, Liao X, Wang H Z. Investigation on 2008’ low temperature and freeze injure on winter rape along Yangtze River. Chin J Oil Crop Sci, 2008, 30: 122-126 (in Chinese with English abstract).
[21] 张树杰, 王汉中. 我国油菜生产应对气候变化的对策和措施分析. 中国油料作物学报, 2012, 34: 114-122.
Zhang S J, Wang H Z. Policies and strategies analyses of rapeseed production response to climate change in China. Chin J Oil Crop Sci, 2012, 34: 114-122 (in Chinese with English abstract).
[22] 王毓洪, 孟秋峰, 郁勤飞, 王洁, 张怀杰, 周洁萍. 油菜冻害机理与抗寒机制研究. 中国果菜, 2021, 41(11): 57-61.
Wang Y H, Meng Q F, Yu Q F, Wang J, Zhang H J, Zhou J P. Research on mechanism of freezing injury and low-temperature resistance of rapeseed. China Fruit Veg, 2021, 41(11): 57-61 (in Chinese with English abstract).
[23] 荣松柏, 陈凤祥, 李强生, 吴新杰, 侯树敏, 费维新. 油菜品种(系)抗寒性筛选与关键栽培技术研究. 中国种业, 2012, (1): 54-55.
Rong S B, Chen F X, Li Q S, Wu X J, Hou S M, Fei W X. Cold resistance screening and key cultivation techniques of oilseed rape varieties (lines). China Seed Ind, 2012, (1): 54-55 (in Chinese).
[24] 黄虎兰, 曹钟洋, 汤彬, 宁祖良, 崔志斌, 周媛平. 17个甘蓝型油菜品种抗寒性的电导法测定. 湖南农业科学, 2014, (21): 1-3.
Huang H L, Cao Z Y, Tang B, Ning Z L, Cui Z B, Zhou Y P. Electrical conductivity analysis of 17 rapeseed (Brassica napus L.) varieties’ cold resistance. Hunan Agric Sci, 2014, (21): 1-3 (in Chinese with English abstract).
[25] 胡萍, 吴风雨, 冯敏玉. 气象条件对油菜物候期的影响分析. 世界生态学, 2021, 10(1): 41-48.
Hu P, Wu F Y, Feng M Y. Analysis of the effect of meteorological conditions on the phenology of rape. Int J Ecol, 2021, 10(1): 41-48 (in Chinese with English abstract).
[26] 刘晓亚, 张立峰, 张继宗, 石文宾, 张培月. 甘蓝型油菜对华北坝上冷凉环境的适应性. 作物杂志, 2019, (5): 97-103.
Liu X Y, Zhang L F, Zhang J Z, Shi W B, Zhang P Y. Adapt ability of Brassica napus to cold environment in Bashang of North China. Crops, 2019, (5): 97-103 (in Chinese with English abstract).
[27] 杜世州, 乔玉强, 李玮, 陈欢, 赵竹, 张向前, 曹承富. 低温冷害下不同播期和播量对冬小麦籽粒灌浆特征的影响. 中国生态农业学报, 2014, 22: 551-559.
Du S Z, Qiao Y Q, Li W, Chen H, Zhao Z, Zhang X Q, Cao C F. Effects of sowing date and rate on grain filling characteristics of winter wheat under chilling injury. Chin J Eco-Agric, 2014, 22: 551-559 (in Chinese with English abstract).
[28] 方娅婷, 任涛, 张顺涛, 周橡棋, 赵剑, 廖世鹏, 丛日环, 鲁剑巍. 氮磷钾肥对旱地和水田油菜产量及养分利用的影响差异. 作物学报, 2023, 49: 772-783.
doi: 10.3724/SP.J.1006.2023.24061
Fang Y T, Ren T, Zhang S T, Zhou X Q, Zhao J, Liao S P, Cong R H, Lu J W. Different effects of nitrogen, phosphorus and potassium fertilizers on oilseed rape yield and nutrient utilization between continuous upland and paddy-upland rotations. Acta Agron Sin, 2023, 49: 772-783 (in Chinese with English abstract).
[29] 邹娟, 鲁剑巍, 陈防, 李银水. 氮磷钾硼肥施用对长江流域油菜产量及经济效益的影响. 作物学报, 2009, 35: 87-92.
doi: 10.3724/SP.J.1006.2009.00087
Zou J, Lu J W, Chen F, Li Y S. Effect of nitrogen, phosphorus, potassium, and boron fertilizers on yield and profit of rapeseed (Brassica napus L.) in the Yangtze River Basin. Acta Agron Sin, 2009, 35: 87-92 (in Chinese with English abstract).
[30] 李民华, 帅细强, 谢佰承, 黄安凤, 张伟. 开花期气象因子对油菜结实的影响. 中国农学通报, 2022, 38(16): 91-96.
doi: 10.11924/j.issn.1000-6850.casb2021-0592
Li M H, Shuai X Q, Xie B C, Huang A F, Zhang W. The influence of meteorological factors at flowering stage on seed setting of rape. Chin Agric Sci Bull, 2022, 38(16): 91-96 (in Chinese with English abstract).
doi: 10.11924/j.issn.1000-6850.casb2021-0592
[31] 陈苇, 俎峰, 罗延青, 赵凯琴, 张建昆, 张国建, 刘亚俊, 董云松, 李劲峰, 王敬乔. 影响甘蓝型油菜每角粒数因素分析. 中国油料作物学报, 2019, 41: 331-339.
Chen W, Zu F, Luo Y Q, Zhao K Q, Zhang J K, Zhang G J, Liu Y J, Dong Y S, Li J F, Wang J Q. Factors affecting the number of single silique in Brassica napus. Chin J Oil Crop Sci, 2019, 41: 331-339 (in Chinese with English abstract).
[32] Fontaine S, Abbadie L, Aubert M, Barot S, Bloor J M G, Derrien D, Duchene O, Gross N, Henneron L, Le Roux X, et al. Plant-soil synchrony in nutrient cycles: learning from ecosystems to design sustainable agrosystems. Glob Chang Biol, 2024, 30: e17034.
[33] Bouchet A S, Laperche A, Bissuel-Belaygue C, Snowdon R, Nesi N, Stahl A. Nitrogen use efficiency in rapeseed: a review. Agron Sustain Dev, 2016, 36: 38.
[34] Hu Y F, Ye X S, Shi L, Duan H Y, Xu F S. Genotypic differences in root morphology and phosphorus uptake kinetics in Brassica napus under low phosphorus supply. J Plant Nutr, 2010, 33: 889-901.
[35] 左青松, 杨海燕, 冷锁虎, 曹石, 曾讲学, 吴江生, 周广生. 施氮量对油菜氮素积累和运转及氮素利用率的影响. 作物学报, 2014, 40: 511-518.
doi: 10.3724/SP.J.1006.2014.00511
Zuo Q S, Yang H Y, Leng S H, Cao S, Zeng J X, Wu J S, Zhou G S. Effects of nitrogen fertilizer on nitrogen accumulation, translocation and nitrogen use efficiency in rapeseed (Brassica napus L.). Acta Agron Sin, 2014, 40: 511-518 (in Chinese with English abstract).
[36] 昂叶菲, 郭悦, 陈慧颖, 刘若仪, 朱秋晴, 王龙, 朱毅勇, 易可可, 曾后清. 植物磷营养与非生物胁迫的互作机理及其在农业上的潜在应用. 植物营养与肥料学报, 2023, 29: 2345-2359.
Ang Y F, Guo Y, Chen H Y, Liu R Y, Zhu Q Q, Wang L, Zhu Y Y, Yi K K, Zeng H Q. Interaction between plant phosphorus nutrition and abiotic stress responses and its potential application in agricultural production. J Plant Nutr Fert, 2023, 29: 2345-2359 (in Chinese with English abstract).
[37] Mahiwal S, Pandey G K. Potassium: a vital nutrient mediating stress tolerance in plants. J Plant Biochem Biotechnol, 2022, 31: 705-719.
[1] LI Pei-Hua, LI Jie, MENG Xiang-Yu, SUN Yu-Chen, FENG Yong-Jia, LI Yun-Li, DIAO Deng-Chao, ZHAO Wen, WU Wei, HAN De-Jun, ZHANG Song-Wu, ZHENG Wei-Jun. Evaluation of stress tolerance and physiological response of cold-type wheat under heat stress [J]. Acta Agronomica Sinica, 2025, 51(4): 1118-1130.
[2] LI Qiao, YE Yang-Chun, CHANG Xu-Hong, WANG De-Mei, WANG Yan-Jie, YANG Yu-Shuang, MA Rui-Qi, ZHAO Guang-Cai, CAI Rui-Guo, ZHANG Min, LIU Xi-Wei. Effects of high temperature and drought stresses on photosynthetic characteristics and yield of winter wheat after anthesis [J]. Acta Agronomica Sinica, 2025, 51(4): 1077-1090.
[3] WANG Jiao, BAI Hai-Xia, HAN Yu-Yan, LIANG Hui, FENG Ya-Nan, ZHANG Dong-Sheng, LI Ping, ZONG Yu-Zheng, SHI Xin-Rui, HAO Xing-Yu. Effects of elevated CO2 concentration, increased temperature and their interaction on the carbon and nitrogen metabolism in Liangxing 99 winter wheat leaves [J]. Acta Agronomica Sinica, 2025, 51(4): 1061-1076.
[4] SONG Li, LIU Guang-Zhou, ZHANG Hua, LU Ting-Qi, QING Chun-Yan, YANG Yun-Shan, GUO Xiao-Xia, Hu Dan, LI Shao-Kun, HOU Peng. Effects of drip fertigation with dense planting on yield and soil bacterial community of summer maize in Southwest China [J]. Acta Agronomica Sinica, 2025, 51(4): 992-1004.
[5] ZHANG Xiao-Li, LIU Xiao-Yan, XIA Wen-Wen, LI Jin. Functional analysis of the plasma membrane intrinsic protein gene SiPIP1;3 from Saussurea involucrata in tomato [J]. Acta Agronomica Sinica, 2025, 51(4): 863-872.
[6] LI Hui-Min, XING Zhi-Peng, ZHANG Hai-Peng, WEI Hai-Yan, ZHANG Hong-Cheng, LI Guang-Yan. Application of chemical regulators and other cultivation measures in lodging resistance and high-yield cultivation of wheat [J]. Acta Agronomica Sinica, 2025, 51(4): 847-862.
[7] YANG Cui-Hua, LI Shi-Hao, YI Xu-Xu, ZHENG Fei-Xiong, DU Xue-Zhu, SHENG Feng. Effects of poly-γ-glutamic acid on rice yield, quality, and nutrient uptake [J]. Acta Agronomica Sinica, 2025, 51(3): 785-796.
[8] LIU Ya-Long, WANG Peng-Fei, YU Ai-Zhong, WANG Yu-Long, SHANG Yong-Pan, YANG Xue-Hui, YIN Bo, ZHANG Dong-Ling, WANG Feng. Effects of nitrogen reduction on maize yield and N2O emission under green manure returning in Hexi oasis irrigation area [J]. Acta Agronomica Sinica, 2025, 51(3): 771-784.
[9] WANG Yan, BAI Chun-Sheng, LI Bo, FAN Hong, HE Wei, YANG Li-Li, CAO Yue, ZHAO Cai. Effects of no-tillage with plastic film and the amount of irrigation water on yield and photosynthetic characteristics of maize in oasis irrigation area of Northwest China [J]. Acta Agronomica Sinica, 2025, 51(3): 755-770.
[10] YANG Xin-Yue, XIAO Ren-Hao, ZHANG Lin-Xi, TANG Ming-Jun, SUN Guang-Yan, DU Kang, LYU Chang-Wen, TANG Dao-Bin, WANG Ji-Chun. Effects of waterlogging at different growth stages on the stress-resistance physiological characteristics and yield formation of sweet potato [J]. Acta Agronomica Sinica, 2025, 51(3): 744-754.
[11] XIONG Qiang-Qiang, SUN Chang-Hui, GU Wen-Fei, LU Yan-Yao, ZHOU Nian-Bing, GUO Bao-Wei, LIU Guo-Dong, WEI Hai-Yan, ZHU Jin-Yan, ZHANG Hong-Cheng. Comprehensive evaluation of 70 japonica glutinous rice varieties (lines) based on growth period, yield, and quality [J]. Acta Agronomica Sinica, 2025, 51(3): 728-743.
[12] SU Ming, WU Jia-Rui, HONG Zi-Qiang, LI Fan-Guo, ZHOU Tian, WU Hong-Liang, KANG Jian-Hong. Response of potato tuber starch formation and yield to phosphorus fertilizer reduction in the semi-arid region of Northwest China [J]. Acta Agronomica Sinica, 2025, 51(3): 713-727.
[13] LI Xiang-Yu, JI Xin-Jie, WANG Xue-Lian, LONG An-Ran, WANG Zheng-Yu, YANG Zi-Hui, GONG Xiang-Wei, JIANG Ying, QI Hua. Effects of straw returning combined with nitrogen fertilizer on yield and grain quality of spring maize [J]. Acta Agronomica Sinica, 2025, 51(3): 696-712.
[14] HU Ya-Jie, GUO Jing-Hao, CONG Shu-Min, CAI Qin, XU Yi, SUN Liang, GUO Bao-Wei, XING Zhi-Peng, YANG Wen-Fei, ZHANG Hong-Cheng. Effect of low temperature and weak light stress during early grain filling on rice yield and quality [J]. Acta Agronomica Sinica, 2025, 51(2): 405-417.
[15] QIN Meng-Qian, HUANG Wei, CHEN Min, NING Ning, HE De-Zhi, HU Bing, XIA Qi-Xin, JIANG Bo, CHENG Tai, CHANG Hai-Bin, WANG Jing, ZHAO Jie, WANG Bo, KUAI Jie, XU Zheng-Hua, ZHOU Guang-Sheng. Effect of nitrogen fertilizer management on yield and resistance of late-seeded rapeseed [J]. Acta Agronomica Sinica, 2025, 51(2): 432-446.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!