Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2025, Vol. 51 ›› Issue (4): 863-872.doi: 10.3724/SP.J.1006.2025.44134

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Functional analysis of the plasma membrane intrinsic protein gene SiPIP1;3 from Saussurea involucrata in tomato

ZHANG Xiao-Li(), LIU Xiao-Yan, XIA Wen-Wen(), LI Jin()   

  1. Key Laboratory of Agricultural Biotechnology, College of Life Sciences, Shihezi University, Shihezi 832000, Xinjiang, China
  • Received:2024-08-21 Accepted:2024-12-12 Online:2025-04-12 Published:2024-12-19
  • Contact: E-mail: 365689825@qq.com; E-mail: lijin@shzu.edu.cn
  • Supported by:
    National Natural Science Foundation of China(32260726);Tianchiyingcai Foundation(CZ001617);Shihezi University High Level Talent Research Launch Project(RCZK202470)

Abstract:

Aquaporins (AQPs), as key facilitators of water transport across cellular membranes, play an essential role in plant growth and adaptation to environmental stresses. Previously, the plasma membrane intrinsic protein gene SiPIP1;3 was cloned from a low-temperature expression library of Saussurea involucrata, a cold-tolerant herbaceous plant. To investigate the function of SiPIP1;3 under low-temperature stress, a plant expression vector containing SiPIP1;3 was constructed and transformed into cold-sensitive tomato plants. The results demonstrated that SiPIP1;3 expression significantly enhanced tomato tolerance to low-temperature treatment by promoting the accumulation of soluble proteins, soluble sugars, and proline, while reducing membrane lipid peroxidation. Moreover, field cultivation results revealed that SiPIP1;3 expression improved intercellular CO2 concentration by increasing stomatal conductance in tomato leaves. This led to a marked improvement in net photosynthetic efficiency and water use efficiency, ultimately resulting in a significant increase in both the average fruit size and fruit number per plant. In conclusion, the expression of SiPIP1;3 significantly enhances low-temperature tolerance and fruit yield in tomato plants. This study provides a valuable genetic resource and establishes a theoretical foundation for breeding cold-resistant tomato varieties.

Key words: SiPIP1, 3 gene, cold resistance, photosynthetic efficiency, fruit yield

Fig. 1

SiPIP1; 3 gene clone"

Fig. 2

Sequence analysis of the hydroporin SiPIP1;3 protein A: SiPIP1;3 multi-sequence alignment; B: SiPIP1;3 secondary structure analysis; C: SiPIP1;3 hydrophilicity analysis; D: hylogenetic tree of SiPIP1;3."

Fig. 3

Identification of tomato lines transgenic for the SiPIP1;3 gene A: DNA PCR identification of transgenic tomato lines; B: identification of transgenic tomato lines by RT-PCR; M: MARK III; WT: wild-type tomato strains."

Fig. 4

Phenotypic and physiological data of wild-type and transgenic tomatoes under low temperature stress A: growth of wild-type and transgenic tomatoes after 8 h at 4℃ and 2 h at -2℃; B: relative water content; C: relative electrical conductivity content; D: MDA content; E: soluble protein content; F: soluble sugar content; G: proline content. Data are means ± SD of three replicates. *, **, ***, and **** mean significant difference at the 0.05, 0.01, 0.001, and 0.0001 probability levels, respectively. ns: no significant difference."

Fig. 5

Analysis of agronomic traits in wild-type and transgenic tomatoes A: overall growth of the tomato plant during fruit ripening; B: comparison of wild-type and transgenic tomato yields; C: number of wild-type and transgenic tomato fruits per plant in 2020 and 2021; D: transverse and longitudinal traverses of wild-type and transgenic tomato fruits in 2020 and 2021; E: fruit weight per plant of wild-type and transgenic tomatoes in 2020 and 2021. Data are means ± SD of twenty-one replicates. *, **, ***, and **** mean significant difference at the 0.05, 0.01, 0.001, and 0.0001 probability levels, respectively. ns: no significant difference."

Fig. 6

Photosynthetic indicators of wild-type and transgenic tomatoes Data are means ± SD of twenty-one replicates. *, **, ***, and **** mean significant difference at the 0.05, 0.01, 0.001, and 0.0001 probability levels, respectively. ns: no significant difference."

[1] Guy C. Cold acclimation and freezing stress tolerance: role of protein metabolism. Annu Rev Plant Physiol Plant Mol Biol, 1990, 41: 187-223.
[2] Pearce R. Plant freezing and damage. Ann Bot, 2001, 87: 417-424.
[3] Ou-Yang Q Q, Zhang Y W, Yang X Y, Yang C, Hou D Y, Liu H, Xu H W. Overexpression of OsPIN9 impairs chilling tolerance via disturbing ROS homeostasis in rice. Plants (Basel), 2023, 12: 2809.
[4] 刘文英, 张永芳, 张东旭. 植物抗寒基因研究进展. 山西大同大学学报(自然科学版), 2012, 28(6): 52-55.
Liu W Y, Zhang Y F, Zhang D X. Study on cold resistant genes in plants. J Shanxi Datong Univ (Nat Sci Edn), 2012, 28(6): 52-55 (in Chinese with English abstract).
[5] Wang G D, Liu Q, Shang X T, Chen C, Xu N, Guan J, Meng Q W. Overexpression of transcription factor SlNAC35 enhances the chilling tolerance of transgenic tomato. Biol Plant, 2018, 62: 479-488.
[6] 王冬梅, 李晓蓉, 李静, 张帅, 黄乐平. 转blti2抗寒基因棉花的抗寒性分析. 分子植物育种, 2011, 9: 1632-1636.
Wang D M, Li X R, Li J, Zhang S, Huang L P. Analysis of freezing resistance on transgenic cotton carrying blti2 gene. Mol Plant Breed, 2011, 9: 1632-1636 (in Chinese with English abstract).
[7] Wolter F P, Schmidt R, Heinz E. Chilling sensitivity of Arabidopsis thaliana with genetically engineered membrane lipids. EMBO J, 1992, 11: 4685-4692.
doi: 10.1002/j.1460-2075.1992.tb05573.x pmid: 1464304
[8] Artus N N, Uemura M, Steponkus P L, Gilmour S J, Lin C, Thomashow M F. Constitutive expression of the cold-regulated Arabidopsis thaliana COR15a gene affects both chloroplast and protoplast freezing tolerance. Proc Natl Acad Sci USA, 1996, 93: 13404-13409.
doi: 10.1073/pnas.93.23.13404 pmid: 11038526
[9] Fraysse L C, Wells B, McCann M C, Kjellbom P. Specific plasma membrane aquaporins of the PIP1 subfamily are expressed in sieve elements and guard cells. Biol Cell, 2005, 97: 519-534.
doi: 10.1042/BC20040122 pmid: 15898953
[10] Preston G M, Carroll T P, Guggino W B, Agre P. Appearance of water channels in Xenopus oocytes expressing red cell CHIP28 protein. Science, 1992, 256: 385-387.
doi: 10.1126/science.256.5055.385 pmid: 1373524
[11] Johanson U, Karlsson M, Johansson I, Gustavsson S, Sjövall S, Fraysse L, Weig A R, Kjellbom P. The complete set of genes encoding major intrinsic proteins in Arabidopsis provides a framework for a new nomenclature for major intrinsic proteins in plants. Plant Physiol, 2001, 126: 1358-1369.
doi: 10.1104/pp.126.4.1358 pmid: 11500536
[12] Maurel C, Boursiac Y, Luu D T, Santoni V, Shahzad Z, Verdoucq L. Aquaporins in plants. Physiol Rev, 2015, 95: 1321-1358.
doi: 10.1152/physrev.00008.2015 pmid: 26336033
[13] 尚珂含, 杨舒婷, 卞诗村, 刘梦婷, 安亚虹, 王广龙, 熊爱生. 芹菜水孔蛋白基因AgPIP2;1的克隆及其对非生物胁迫的响应. 核农学报, 2020, 34: 231-239.
doi: 10.11869/j.issn.100-8551.2020.02.0231
Shang K H, Yang S T, Bian S C, Liu M T, An Y H, Wang G L, Xiong A S. Cloning of an aquaporin gene AgPIP2;1 from celery and its response to abiotic stresses. J Nucl Agric Sci, 2020, 34: 231-239 (in Chinese with English abstract).
[14] Lee S H, Chung G C, Jang J Y, Ahn S J, Zwiazek J J. Overexpression of PIP2;5 aquaporin alleviates effects of low root temperature on cell hydraulic conductivity and growth in Arabidopsis. Plant Physiol, 2012, 159: 479-488.
[15] Jang J Y, Lee S H, Rhee J Y, Chung G C, Ahn S J, Kang H. Transgenic Arabidopsis and tobacco plants overexpressing an aquaporin respond differently to various abiotic stresses. Plant Mol Biol, 2007, 64: 621-632.
[16] Li G W, Zhang M H, Cai W M, Sun W N, Su W A. Characterization of OsPIP2;7, a water channel protein in rice. Plant Cell Physiol, 2008, 49: 1851-1858.
[17] Peng Y H, Lin W L, Cai W M, Arora R. Overexpression of a Panax ginseng tonoplast aquaporin alters salt tolerance, drought tolerance and cold acclimation ability in transgenic Arabidopsis plants. Planta, 2007, 226: 729-740.
[18] 李晨, 沈海涛, 张煜星, 王爱英, 祝建波. 利用Gateway技术构建天山雪莲cDNA表达文库. 石河子大学学报(自然科学版), 2010, 28: 534-536.
Li C, Shen H T, Zhang Y X, Wang A Y, Zhu J B. Construction of a cDNA library of Saussurea involucrata Kar. et kir using Gateway technology. J Shihezi Univ (Nat Sci), 2010, 28: 534-536 (in Chinese with English abstract).
[19] 焦天奇, 孙辉, 刘瑞娜, 王爱英, 祝建波. 转天山雪莲sikPIP3基因烟草的获得及抗逆性鉴定. 西北植物学报, 2012, 32: 431-438.
Jiao T Q, Sun H, Liu R N, Wang A Y, Zhu J B. Transformation of Saussurea involucrata sikPIP3 gene into tobacco and evaluation of transgenic plant stress-resistance. Acta Bot Boreali-Occident Sin, 2012, 32: 431-438 (in Chinese with English abstract).
[20] 黎玉顺, 刘逸泠, 刘步仓, 穆建强, 祝建波. 新疆雪莲水孔蛋白sikPIP1基因的克隆与功能分析. 生物技术通报, 2015, 31(9): 97-105.
doi: 10.13560/j.cnki.biotech.bull.1985.2015.09.013
Li Y S, Liu Y L, Liu B C, Mu J Q, Zhu J B. Cloning and function analysis of aquaporin protein gene sikPIP1 from Saussurea involucrata Kar. et Kir. Biotechnol Bull, 2015, 31(9): 97-105 (in Chinese with English abstract).
[21] Li J, Xia W W, Zang H X, Dai B, Zhang Y, Feng Y J, Wang A Y, Lin Z P, Liu H L, Zhu J B. Expression analysis of aquaporin genes in Saussurea involucrata rosette leaves and functional analysis of upregulated SiPIP1;5A under low-temperature stress. Environ Exp Bot, 2020, 171: 103958.
[22] Li J, Liu H L, Xia W W, Mu J Q, Feng Y J, Liu R N, Yan P Y, Wang A Y, Lin Z P, Guo Y, Zhu J B, Chen X F. De novo transcriptome sequencing and the hypothetical cold response mode of Saussurea involucrata in extreme cold environments. Int J Mol Sci, 2017, 18: 1155.
[23] Liu X Y, Xia W W, Zhang X L, Li A W, Qin J W, Sun H L, Li J, Zhu J B. Overexpression of the SiLEA5gene in Saussurea involucrata increases the low-temperature tolerance of transgenic tomatoes. Horticulturae, 2022, 8: 1023.
[24] Dong S K, Jiang Y Z, Dong Y C, Wang L B, Wang W J, Ma Z Z, Yan C, Ma C M, Liu L J. A study on soybean responses to drought stress and rehydration. Saudi J Biol Sci, 2019, 26: 2006-2017.
doi: 10.1016/j.sjbs.2019.08.005 pmid: 31889786
[25] Dai L L, Feng Z Z, Pan X D, Xu Y S, Li P, Lefohn A S, Harmens H, Kobayashi K. Increase of apoplastic ascorbate induced by ozone is insufficient to remove the negative effects in tobacco, soybean and poplar. Environ Pollut, 2019, 245: 380-388.
doi: S0269-7491(18)34199-X pmid: 30448508
[26] Cheng L Q, Li X X, Huang X, Ma T, Liang Y, Ma X Y, Peng X J, Jia J T, Chen S Y, Chen Y, et al. Overexpression of sheepgrass R1-MYB transcription factor LcMYB1 confers salt tolerance in transgenic Arabidopsis. Plant Physiol Biochem, 2013, 70: 252-260.
[27] 谢聪颖, 钟雪峰, 乌兰, 张馨予, 田霖, 杜国英. 低温胁迫下条斑紫菜的生长和光合生理生化响应. 中国海洋大学学报, 2024, 54(8): 33-42.
Xie C Y, Zhong X F, Wu L, Zhang X Y, Tian L, Du G Y. Growth performance and photosynthetic physiological and biochemical responses of Neopyropia yezoensis under low temperature stress. Period Ocean Univ China, 2024, 54(8): 33-42 (in Chinese with English abstract).
[28] Gilmour S J, Sebolt A M, Salazar M P, Everard J D, Thomashow M F. Overexpression of the Arabidopsis CBF3 transcriptional activator mimics multiple biochemical changes associated with cold acclimation. Plant Physiol, 2000, 124: 1854-1865.
doi: 10.1104/pp.124.4.1854 pmid: 11115899
[29] Gilmour S J, Zarka D G, Stockinger E J, Salazar M P, Houghton J M, Thomashow M F. Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression. Plant J, 1998, 16: 433-442.
doi: 10.1046/j.1365-313x.1998.00310.x pmid: 9881163
[30] He Y K, Tang R H, Hao Y, Stevens R D, Cook C W, Ahn S M, Jing L F, Yang Z G, Chen L E, Guo F Q, et al. Nitric oxide represses the Arabidopsis floral transition. Science, 2004, 305: 1968-1971.
[31] Hooijmaijers C, Rhee J Y, Kwak K J, Chung G C, Horie T, Katsuhara M, Kang H. Hydrogen peroxide permeability of plasma membrane aquaporins of Arabidopsis thaliana. J Plant Res, 2012, 125: 147-153.
doi: 10.1007/s10265-011-0413-2 pmid: 21390558
[32] Yaneff A, Sigaut L, Marquez M, Alleva K, Pietrasanta L I, Amodeo G. Heteromerization of PIP aquaporins affects their intrinsic permeability. Proc Natl Acad Sci USA, 2014, 111: 231-236.
doi: 10.1073/pnas.1316537111 pmid: 24367080
[33] Xia W W, Liu X Y, Xin H L, Wu X Y, Liu R N, Li J, Zhu J B. Saussurea involucrata PIP2;7 improves photosynthesis and drought resistance by decreasing the stomatal density and increasing intracellular osmotic pressure. Environ Exp Bot, 2021, 191: 104605.
[34] Xin H L, Li Q Q, Wang S S, Zhang Z X, Wu X Y, Liu R N, Zhu J B, Li J. Saussurea involucrata PIP2;4improves growth and drought tolerance in Nicotiana tabacum by increasing stomatal density and sensitivity. Plant Sci, 2023, 326: 111526.
[1] LIU Yuan-Yuan, DONG Jian-Ke, YING Jing-Wen, MEI Wen-Xiang, CHENG Gang, GUO Jing-Jing, JIAO Wen-Biao, SONG Bo-Tao. Creating cold resistant germplasm of potato using Solanum boliviense [J]. Acta Agronomica Sinica, 2024, 50(6): 1384-1393.
[2] WANG Xian-Ling, JIANG Yue, LEI Yi-Zhong, XIAO Sheng-Nan, SHE Hui-Jie, DUAN Sheng-Xing, HUANG Ming, KUAI Jie, WANG Bo, WANG Jing, ZHAO Jie, XU Zheng-Hua, ZHOU Guang-Sheng. Effects of seed soaking with exogenous substances on late-seeded rapeseed cold resistance of during overwintering period and yield [J]. Acta Agronomica Sinica, 2024, 50(5): 1271-1286.
[3] DONG Jian-Ke, TU Wei, WANG Hai-Bo, YING Jing-Wen, DU Juan, ZHAO Xi-Juan, ZHAO Qing-Hao, HUANG Wei, CAI Xing-Kui, SONG Bo-Tao. Establishment of a high efficient method for chromosome doubling and exploration of cold-resistant resources in potato [J]. Acta Agronomica Sinica, 2020, 46(11): 1659-1666.
[4] Yong-Fu REN,Guo-Peng CHEN,Tian PU,Cheng CHEN,Jin-Xi ZENG,Xiao PENG,Yan-Wei MA,Wen-Yu YANG,Xiao-Chun WANG. Responses of photosynthetic characteristics to low light stress in ear leaves of high photosynthetic efficiency maize at narrow row of maize-soybean strip intercropping system [J]. Acta Agronomica Sinica, 2019, 45(5): 728-739.
[5] Rui-Xia WANG, Chang-Sheng YAN, Xiu-Ying ZHANG, Guo-Zhong SUN, Zhao-Guo QIAN, Xiao-Lei QI, Qiu-Huan MOU, Shi-He XIAO. Effect of Low Temperature in Spring on Yield and Photosynthetic Characteristics of Wheat [J]. Acta Agronomica Sinica, 2018, 44(02): 288-296.
[6] ZHANG Gui-He,GUO Hua-Chun. Comparison of Photosynthetic Characteristics and Cluster Analysis in Potato Varieties (Lines) [J]. Acta Agron Sin, 2017, 43(07): 1067-1076.
[7] XU Yao-Zhao,ZENG Xiu-Cun,ZHANG Fen-Qin,SUN Jia,SUN Wan-Cang,WU Jun-Yan,FANG Yan,LIU Zi-Gang,SUN Bo-Lin. Response of Leaf Anatomical Structure and Photosynthetic Characteristics of Winter Turnip Rape (B. rapa L.) to Low Temperature before Winter [J]. Acta Agron Sin, 2017, 43(03): 432-441.
[8] GU Jun-Fei*,ZHOU Zhen-Xiang,LI Zhi-Kang,DAI Qi-Xing,KONG Xiang-Sheng,WANG Zhi-Qin,YANG Jian-Chang. Effects of the Mutant with Low Chlorophyll Content onPhotosynthesis and Yield in Rice [J]. Acta Agron Sin, 2016, 42(04): 551-560.
[9] ZHANG Gui-Fang,DING Zai-Song,ZHAO Ming. Transformation of Barnyardgrass (Echinochloa crusgalli) Root Type Phosphoenolpyruvate Carboxylase Gene into Rice (Oryza sativa) Plants and Their Effects on Photosynthesitic Gas Exchange [J]. Acta Agron Sin, 2015, 41(03): 507-514.
[10] JU Wei, YANG Cai-Feng, ZHANG Shu-Hua, TIAN Ji-Chun, HAI Yan, and YANG Xue-Ju. Mapping QTL for Cell Membrane Permeability of Leaf Treated by Low Temperature in Winter Wheat [J]. Acta Agron Sin, 2012, 38(07): 1247-1252.
[11] MAO Yong-Chao, CUI Gong, XU Jing, CENG Yan, MENG Jian-Nan, CANG Jing. Expression Analysis of Three Genes from SSH Library Constructed Using Tillering Nodes of Dongnongdongmai 1 under Low Temperature [J]. Acta Agron Sin, 2011, 37(05): 918-923.
[12] CHENG Jian-Feng, CHEN Yun-Gang. My Humble Opinions on High Photosynthetic Efficiency of Crop [J]. Acta Agron Sin, 2010, 36(08): 1235-1247.
[13] WANG Xiao-Nan,FU Lian-Shuang,LI Zhuo-Fu,SUN Yan-Li,WANG Yu-Bo et al.. Morphogenesis and Physiological Basis in Wheat Cultivars with Different Levels of Cold-Resistance during Cold Acclimation and Freezing Period [J]. Acta Agron Sin, 2009, 35(7): 1313-1319.
[14] CHENG Jian-Feng,MA Wei-Min,CHEN Gen-Yun,HU Mei-Jun,SHEN Yun-Gang,et al.. Dynamic Changes of Photosynthetic Characteristics in Xiaoyan 54,Jing 411 and the Stable Selected Superior Strains of Their Hybrid Progenies [J]. Acta Agron Sin, 2009, 35(6): 1051-1058.
[15] YU Jing;ZHANG Lin;CUI Hong;ZHANG Yong-Xia;CANG Jing;HAO Zai-Bin;LI Zhuo-Fu. Physiological and Biochemical Characteristics of Dongnongdongmai 1 before Wintering in High-Cold Area [J]. Acta Agron Sin, 2008, 34(11): 2019-2025.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!