Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2025, Vol. 51 ›› Issue (4): 847-862.doi: 10.3724/SP.J.1006.2025.41066

• REVIEW •     Next Articles

Application of chemical regulators and other cultivation measures in lodging resistance and high-yield cultivation of wheat

LI Hui-Min(), XING Zhi-Peng, ZHANG Hai-Peng, WEI Hai-Yan, ZHANG Hong-Cheng(), LI Guang-Yan()   

  1. Agricultural College of Yangzhou University / Research Institute of Rice Industry Engineering Technology / Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou 225009, Jiangsu, China
  • Received:2024-10-10 Accepted:2025-01-07 Online:2025-04-12 Published:2025-01-10
  • Contact: E-mail: hczhang@yzu.edu.cn; E-mail: gyli@yzu.edu.cn
  • Supported by:
    Jiangsu Key Research Program “Research and Demonstration on Key Technologies of Green Intelligent Production of Rice and Wheat in Jiangsu Province”(BE2022338);Jiangsu Agriculture Science and Technology Innovation Fund “Key Technology and Integrated Demonstration of High Yield Green Unmanned Cultivation of Wheat”(CX (24) 1026)

Abstract:

Lodging has always been a key factor limiting the high and stable yield of wheat. Chemical anti-lodging regulator is an effective strategy to reduce lodging risk. Chemical anti-lodging regulators (CARs) spraying can control wheat growth, improve stem strength, and prevent lodging. However, the research and application of chemical control and lodging resistance in wheat high-yield cultivation have not been comprehensively reviewed. Therefore, this paper collected and sorted out the wheat CARs registered in China, summarized the characteristics, efficacy and effects of different CARs on wheat stem structure and composition, root system, canopy structure, crop productivity and quality, and summarized the suitable application period of different CARs in realizing the synergistic improvement of wheat yield and lodging resistance with the goal of high yield and anti-lodging. In addition, the management measures of wheat lodging resistance (tillage mode, suitable density, nutrient level and water management), evaluation methods of wheat lodging resistance and the influence of CARs on key indicators were summarized. The research direction of CARs in wheat anti-lodging high-yield cultivation was prospected, aiming at providing precise control measures and theoretical support for promoting wheat high-yield and stable yield.

Key words: wheat, yield, lodging resistance, chemical anti-lodging regulators, growth and development, cultivation management measures

Table 1

Registration information of commonly used wheat CARs"

名称
Name
剂型
Dosage form
总有效成分含量
Total active ingredient content
防治目标
Control objective
用药量
Dosage
施用方法
Application method
矮壮素
CCC
水剂
AS
50% 调节生长
Regulated growth
300-500倍液
300-500 times liquid
喷雾Spraying
防止倒伏, 提高产量
Prevent lodging and increase yield
3%-5%药液, 100-400倍液
3%-5% liquid, 100-400 times liquid
拌种, 返青、拔节期喷雾
Seed soaking, greening and jointing stages spray
调节生长, 增产
Regulate growth and increase yield
200-400倍液
200-400 times liquid
喷雾
Spraying
可溶粉剂
SP
80% 调节生长
Regulated growth
400-533倍液
400-533 times liquid
茎叶喷雾
Foliar spray
多唑·甲哌鎓
PBZ·Pix
可湿性粉剂 WP 10% (甲哌鎓7.5%+多效唑2.5%)
10% (Pix 7.5%+ PBZ 2.5%)
调节生长
Regulated growth
333-500倍液, 300-500倍液
333-500 times liquid, 300-500 times liquid
喷雾
Spraying
微乳剂
ME
20% (甲哌鎓16.7%+多效唑3.3%)
20% (Pix 16.7%+ PBZ 3.3%)
450-600 mL hm-2
悬浮剂
SC
30% (甲哌鎓5%+多效唑25%)
30% (Pix 5%+ PBZ 25%)
225-375 mL hm-2, 2000-3000倍液
2000-3000 times liquid
烯效·甲哌鎓
S3307·Pix
微乳剂
ME
20.8% (甲哌鎓20%+烯效唑0.8%)
20.8% (Pix 20%+ S3307 0.8%)
调节生长
Regulated growth
450-600 mL hm-2 喷雾
Spraying
氯化胆碱
Cc
水剂
AS
60% 调节生长
Regulated growth
150-300 mL hm-2 茎叶喷雾
Foliar spray
多效唑
PBZ
可湿性粉剂
WP
15% 调节生长
Regulated growth
510-600 g hm-2 喷雾
Spraying
悬浮剂
SC
25% 1667-2500倍液, 1700-2000倍液
1667-2500 times liquid, 1700-2000 times liquid
悬浮剂
SC
30% 2000-3000倍液
2000-3000 times liquid
28-表芸·烯效唑
28-E·S3307
水剂
AS
0.751% (28-表高芸苔素内酯0.001%+烯效唑0.75%)
0.751% (28-E 0.001%+ S3307 0.75%)
增产
Increase yield
250-500倍液
250-500 times liquid
浸种
Seed soaking
苄氨基嘌呤·烯效唑
6-B·S3307
悬浮剂
SC
10% (苄氨基嘌呤5%+烯效唑5%)
10% (6-B 5%+ S3307 5%)
调节生长
Regulated growth
2500-4500倍液
2500-4500 times liquid
喷雾
Spraying
抗倒酯·烯效唑
TE·S3307
微乳剂 ME 10% (抗倒酯9.2%+烯效唑0.8%)
10% (TE 9.2%+ S3307 0.8%)
调节生长
Regulated growth
300-450 mL hm-2 喷雾
Spraying
调环酸钙
PC
悬浮剂
SC
10% 调节生长
Regulated growth
300-600 mL hm-2, 375-562.5 mL hm-2 喷雾
Spraying
水分散粒剂 WG 5% 750-1125 g hm-2
抗倒酯
TE
微乳剂
ME
25% 防止倒伏
Prevent lodging
300-450 mL hm-2, 225-375 mL hm-2, 420-495 mL hm-2 喷雾
Spraying
可湿性粉剂 WP 25% 300-450 g hm-2
乳油
EC
250 g L-1 300-495 mL hm-2, 300-499.5 mL hm-2

Fig. 1

Mode of action of different CARs on different stages of GA biosynthesis Abbreviations are the same as those given in Table 1. GGPP: pyrophosphate synthase; CPP: copalyl pyrophosphate synthase; GA12, GA53, GA19, GA20, GA1, and GA8: all of these are gibberellic acid, in which GA1 activity is the highest."

Fig. 2

Effects of chemical anti-lodging regulators on wheat growth and development Spraying CARs could increase wheat tillering number and grain weight, and change protein content and composition of wheat flour. It can shorten and thicken stems, increase lignin content, shorten, widen and thicken leaves, and increase SPAD value. It is conducive to root development."

Table 2

Effects of different doses of chemical control agents applied at different growth stages on wheat"

化控防倒剂
Chemical anti-lodging regulators
施用时期
Application period
用量
Dosage
产量
Yield
(kg hm-2)
对产量、株高和倒伏的影响
Effect on yield, plant height, and lodging
参考文献
References
CCC 拔节期
Jointing stage
300.0 mg L-1 8427.71 产量提高2.8%-8.2%
Yield increases by 2.8% to 8.2%
[55]
拔节期
Jointing stage
2.20 kg hm-2 8980.80 株高降低2.72 cm
Plant height decreased by 2.72 cm
[56]
5% PC泡腾粒剂+25% Pix AS
5% PC EG+25% Pix AS
拔节期, 17 d后第二次
Jointing stage, the second time 17 days later
150.0+150.0 g hm-2, 180.0+180.0 g hm-2 9042.40 矮化率达5.37%, 株高降低3.85 cm
Dwarfing rate was 5.37% and plant height was reduced by 3.85 cm
[63]
Cc 抽穗始期
The beginning of heading stage
1000.0 mg L-1 7056.10 分蘖穗粒数增加
Number of grains per tiller increased
[62]
25% PBZ SC 拔节初期
Initial jointing stage
375.0 mL hm-2 5709.00 倒伏率降低30.00%
Lodging rate decreased by 30.00%
[64]
PBZ 拔节初期
Initial jointing stage
150.0 mg L-1 6900.00 倒伏率降低10.03%
Lodging rate decreased by 10.03%
[28]
15% PBZ WP 倒五叶期
Inverted five-leaf stage
300.0 mg L-1 6381.76 抗倒伏指数最高10.50 g cm-1
Highest resistance lodging index 10.50 g cm-1
[1]
S3307 拌种
Seed soaking
30.0 mg L-1 6750.00 产量最高
Highest yield
[59]
5% S3307 WP 起身期
Erecting stage
750.0 g hm-2 10,668.00 株高降低5.4 cm
Plant height decreased by 5.4 cm
[65]
TE 第1节间伸长期与第2节间伸长期
First internode extension stage and second internode extension stage
57.7 g hm-2 5288.00 第2节间伸长期喷施更能够降低株高与倒伏风险
Spraying in the second internode extension stage can reduce more plant height and lodging risk
[53]

Table 3

Other cultivation and management measures to improve the lodging resistance of wheat"

栽培管理措施
Cultivation and management measures
具体做法
Specific approach
参考文献
References
保护性耕作
Conservation tillage
整秆还田、还田免耕及深松还田等方式。
The methods of whole straw returning to field, no-tillage returning to field and deep pine returning to field, etc.
[70,72]
适宜密度
Suitable density
适当增加种植密度。
Increase planting density appropriately.
[1,73]
营养水平
Nutrition level
180-300 kg hm-2范围内, 适当降低施氮量, 加大追肥的比例; 适量施用锰肥及钾肥。
In the range of 180-300 kg hm-2, the nitrogen application amount should be reduced appropriately and the proportion of topdressing should be increased; appropriate application of manganese fertilizer and potassium fertilizer.
[74-80]
水分管理
Water management
黄淮麦区, 小麦拔节、开花期补灌2次, 避免多次补灌; 南方麦区及时排水, 避免渍害。
In Huang-huai wheat region, the supplementary irrigation of wheat at jointing and flowering stage should be performed twice to avoid multiple supplementary irrigation. South wheat area drainage in time to avoid waterlogging.
[83,85 -86]

Table 4

Lodging index calculation formula"

序号
No.
倒伏指数公式
Lodging index formula
参考文献
References
1 地上部鲜重 × 重心高度/基部第2节间机械强度
Aboveground fresh weight × height of center of gravity/mechanical strength of second internode of base
[78,92,94]
2 茎秆基部弹性(离地20 cm的茎秆强度活体测量)
Stem base elasticity (in vivo measurement of stem strength at 20 cm above ground)
[93]
3 节间基部至穗顶长度 × 该节间基部至穗顶鲜重/抗折力× 100
Length from internode base to apex × fresh weight from internode base to apex/bending resistance × 100
[95]
4 重心高度/茎秆机械强度
Height of center of gravity/stem mechanical strength
[55,82]
5 平均倒伏级别 × 平均倒伏面积
Average lodging class × average lodging area
[96]

Fig. 3

Method for determination of plant height (a), center of gravity height (b), stem diameter and thickness (c), and internode strength (d) of wheat c and d are related indexes of wheat second internode."

[1] 邵庆勤. 叶面喷施多效唑提高小麦抗倒伏能力的生理机理研究. 南京农业大学博士学位论文, 江苏南京, 2017.
Shao Q Q. The Physiological Mechanism of Foliar-Spraying Paclobutrazol in Improving the Ability of Lodging-Resistance in Wheat. PhD Dissertation of Nanjing Agricultural University, Nanjing, Jiangsu, China, 2017 (in Chinese with English abstract).
[2] Wang F H, He Z H, Sayre K, Li S D, Si J S, Feng B, Kong L G. Wheat cropping systems and technologies in China. Field Crops Res, 2009, 111: 181-188.
[3] Tripathi S C, Sayre K D, Kaul J N, Narang R S. Lodging behavior and yield potential of spring wheat (Triticum aestivum L.): effects of ethephon and genotypes. Field Crops Res, 2004, 87: 207-220.
[4] Easson D L, White E M, Pickles S J. The effects of weather, seed rate and cultivar on lodging and yield in winter wheat. J Agric Sci, 1993, 121: 145-156.
[5] Acreche M M, Slafer G A. Lodging yield penalties as affected by breeding in Mediterranean wheats. Field Crops Res, 2011, 122: 40-48.
[6] Berry P M. Predicting Lodging in Winter Wheat (BL). PhD Dissertation of the University of Nottingham, Nottingham, United Kingdom, 1998.
[7] Niu L Y, Feng S W, Ding W H, Li G. Influence of speed and rainfall on large-scale wheat lodging from 2007 to 2014 in China. PLoS One, 2016, 11: e0157677.
[8] Navabi A, Iqbal M, Strenzke K, Spaner D. The relationship between lodging and plant height in a diverse wheat population. Can J Plant Sci, 2006, 86: 723-726.
[9] Berry P M, Berry S T. Understanding the genetic control of lodging-associated plant characters in winter wheat (Triticum aestivum L.). Euphytica, 2015, 205: 671-689.
[10] Berry P M, Sterling M, Spink J H, Baker C J, Sylvester-Bradley R, Mooney S J, Tams A R, Ennos A R. Understanding and reducing lodging in cereals. Adv Agron, 2004, 84: 217-271.
[11] Xu C L, Gao Y B, Tian B J, Ren J H, Meng Q F, Wang P. Effects of EDAH, a novel plant growth regulator, on mechanical strength, stalk vascular bundles and grain yield of summer maize at high densities. Field Crops Res, 2017, 200: 71-79.
[12] Warner R M, Erwin J E. Effect of plant growth retardants on stem elongation of Hibiscus species. HortTechnology, 13: 293-296.
[13] Mitchell J W, Wirwille J W, Weil L. Plant growth-regulating properties of some nicotinium compounds. Science, 1949, 110: 252-254.
pmid: 17752426
[14] Rademacher W. Growth retardants: effects on gibberellin biosynthesis and other metabolic pathways. Annu Rev Plant Physiol Plant Mol Biol, 2000, 51: 501-531.
[15] Oh K, Matsumoto T, Hoshi T, Yoshizawa Y. Discovery of a new lead compound for plant growth retardants through compound library screening. J Pestic Sci, 2014, 39: 159-161.
[16] Rademacher W. Chemical regulators of gibberellin status and their application in plant production. Annu Plant Rev, 2016, 49: 359-404.
[17] Qin R J, Noulas C, Wysocki D, Liang X, Wang G J, Lukas S. Application of plant growth regulators on soft white winter wheat under different nitrogen fertilizer scenarios in irrigated fields. Agriculture, 2020, 10: 305.
[18] 陶群. 新型植物生长调节剂对华北平原玉米生长与倒伏的调控机制. 中国农业大学博士学位论文, 北京, 2018.
Tao Q. Regulation Mechanism of Novel Plant Growth Regulators on Growth and Lodging of Maize in the North China Plain. PhD Dissertation of China Agricultural University, Beijing, China, 2018 (in Chinese with English abstract).
[19] 陆佩玲, 陈京都, 唐建鹏, 张明伟. 植物生长调节剂在小麦上的应用研究进展. 大麦与谷类科学, 2023, 40(1): 1-7.
Lu P L, Chen J D, Tang J P, Zhang M W. Research progress on the application of plant growth regulators in wheat production. Barley Cereal Sci, 2023, 40(1): 1-7 (in Chinese with English abstract).
[20] Griffin S, Hollis J. Plant growth regulators on winter wheat-yield benefits of variable rate application. Adv Anim Biosci, 2017, 8: 233-237.
[21] 农药登记数据. [2024-03-01]. http://www.chinapesticide.org.cn/zwb/dataCenter.
Pesticide Registration Data. [2024-03-01]. http://www.chinapesticide.org.cn/zwb/dataCenter (in Chinese).
[22] 薛艳. 植物生长延缓剂对不同作物的作用及其机理研究. 华中农业大学硕士学位论文, 湖北武汉, 2014.
Xue Y. Study on the Effect of Plant Growth Retardants on Different Crops and Its Mechanism. MS Thesis of Huazhong Agricultural University, Wuhan, Hubei, China, 2014 (in Chinese with English abstract).
[23] Papafotiou P, Chronopoulos J. Comparative effects of four plant growth retardants on growth of Epidendrum radicans. J Hortic Sci Biotechnol, 2004, 79: 303-307.
[24] Orozco-Melendez L R, Hernandez-Rodriguez O A, Cruz-Alvarez O, Robles-Hernandez L, Avila-Quezada G D, Chavez E S, Porras-Flores D A, Ojeda-Barrios D L. Paclobutrazol and its use in fruit production: a review. Phyton-Int J Exp Bot, 2022, 91: 1-12.
[25] Li H M, Cui G G, Li G Y, Lu H, Wei H Y, Zhang H C, Zhang H P. Assessing the efficacy and residual impact of plant growth retardants on crop lodging and overgrowth: a review. Eur J Agron, 2024, 159: 127276.
[26] Okuno A, Hirano K, Asano K, Takase W, Masuda R, Morinaka Y, Ueguchi-Tanaka M, Kitano H, Matsuoka M. New approach to increasing rice lodging resistance and biomass yield through the use of high gibberellin producing varieties. PLoS One, 2014, 9: e86870.
[27] Zuber U, Winzeler H, Messmer M M, Keller M, Keller B, Schmid J E, Stamp P. Morphological traits associated with lodging resistance of spring wheat (Triticum aestivum L.). J Agron Crop Sci, 1999, 182: 17-24.
[28] Peng D L, Chen X G, Yin Y P, Lu K L, Yang W B, Tang Y H, Wang Z L. Lodging resistance of winter wheat (Triticum aestivum L.): lignin accumulation and its related enzymes activities due to the application of paclobutrazol or gibberellin acid. Field Crops Res, 2014, 157: 1-7.
[29] Ghuman L, Ram H. Enhancing wheat (Triticum aestivum L.) grain yield and quality by managing lodging with growth regulators under different nutrition levels. J Plant Nutr, 2021, 44: 1916-1929.
[30] Knapp J S, Harms C L, Volenec J J. Growth regulator effects on wheat culm nonstructural and structural carbohydrates and lignin. Crop Sci, 1987, 27: 1201-1205.
[31] 邵云, 张黛静, 冯荣成, 王言景, 姜丽娜, 李春喜. 3种化学调控剂对西农979抗倒伏性的影响. 西北农业学报, 2011, 20: 53-57.
Shao Y, Zhang D J, Feng R C, Wang Y J, Jiang L N, Li C X. Effect of three chemical control agents on lodging resistance of Xinong 979. Acta Agric Boreal-Occident Sin, 2011, 20: 53-57 (in Chinese with English abstract).
[32] 陈晓光, 史春余, 尹燕枰, 王振林, 石玉华, 彭佃亮, 倪英丽, 蔡铁. 小麦茎秆木质素代谢及其与抗倒性的关系. 作物学报, 2011, 37: 1616-1622.
doi: 10.3724/SP.J.1006.2011.01616
Chen X G, Shi C Y, Yin Y P, Wang Z L, Shi Y H, Peng D L, Ni Y L, Cai T. Relationship between lignin metabolism and lodging resistance in wheat. Acta Agron Sin, 2011, 37: 1616-1622 (in Chinese with English abstract).
[33] del Río J C, Rencoret J, Prinsen P, Martínez Á T, Ralph J, Gutiérrez A. Structural characterization of wheat straw lignin as revealed by analytical pyrolysis, 2D-NMR, and reductive cleavage methods. J Agric Food Chem, 2012, 60: 5922-5935.
[34] Hyles J, Vautrin S, Pettolino F, MacMillan C, Stachurski Z, Breen J, Berges H, Wicker T, Spielmeyer W. Repeat-length variation in a wheat cellulose synthase-like gene is associated with altered tiller number and stem cell wall composition. J Exp Bot, 2017, 68: 1519-1529.
doi: 10.1093/jxb/erx051 pmid: 28369427
[35] Zheng M J, Chen J, Shi Y H, Li Y X, Yin Y P, Yang D Q, Luo Y L, Pang D W, Xu X, Li W Q, et al. Manipulation of lignin metabolism by plant densities and its relationship with lodging resistance in wheat. Sci Rep, 2017, 7: 41805.
doi: 10.1038/srep41805 pmid: 28150816
[36] Berry P M, Spink J H, Gay A P, Craigon J. A comparison of root and stem lodging risks among winter wheat cultivars. J Agric Sci, 2003, 141: 191-202.
[37] Kamran M, Ahmad I, Wu X R, Liu T N, Ding R X, Han Q F. Application of paclobutrazol: a strategy for inducing lodging resistance of wheat through mediation of plant height, stem physical strength, and lignin biosynthesis. Environ Sci Pollut Res Int, 2018, 25: 29366-29378.
[38] Sreeja R, Balaji S, Arul L, Nirmala Kumari A, Kannan Bapu J R, Subramanian A. Association of lignin and FLEXIBLE CULM 1 (FC1) ortholog in imparting culm strength and lodging resistance in kodo millet (Paspalum scrobiculatum L.). Mol Breed, 2016, 36: 149.
[39] Wang C, Ruan R W, Yuan X H, Hu D, Yang H, Li Y, Yi Z L. Relationship between lignin metabolism and lodging resistance of culm in buckwheat. J Agric Sci, 2014, 6: 29-36.
[40] Gowda V R P, Henry A, Yamauchi A, Shashidhar H E, Serraj R. Root biology and genetic improvement for drought avoidance in rice. Field Crops Res, 2011, 122: 1-13.
[41] Crook M J, Ennos A R. Stem and root characteristics associated with lodging resistance in four winter wheat cultivars. J Agric Sci, 1994, 123: 167-174.
[42] Shah L, Yahya M, Shah S M A, Nadeem M, Ali A, Ali A, Wang J, Riaz M W, Rehman S, Wu W X, et al. Improving lodging resistance: using wheat and rice as classical examples. Int J Mol Sci, 2019, 20: 4211.
[43] 彭静. 喷施组合型生长调节剂对不同品种冬小麦抗寒生理、产量及籽粒品质的影响. 西北农林科技大学硕士学位论文, 陕西杨凌, 2018.
Peng J. Effects of Spraying a Combined Plant Growth Regulator on the Tillering, Cold-resistance, Yield and Grain Quality of Different Wheat Varieties. MS Thesis of Northwest A&F University, Yangling, Shaanxi, China, 2018 (in Chinese with English abstract).
[44] 冯一俭. 不同植物生长调节剂对大穗型小麦生长发育的影响. 河南农业大学硕士学位论文, 河南郑州, 2015.
Feng Y J. Effects of Different Plant Growth Regulators on Growth and Development of Large-Spike Wheat. MS Thesis of Henan Agricultural University, Zhengzhou, Henan, China, 2015 (in Chinese with English abstract).
[45] 张军, 方锦旗, 邵梦丽, 杜雪梅, 张梅娟. 不同浓度矮壮素对小麦幼苗生理特性的影响. 陕西农业科学, 2020, 66(4): 22-24.
Zhang J, Fang J Q, Shao M L, Du X M, Zhang M J. Effects of different concentrations of CCC on physiological characteristics of wheat seedlings. J Shaanxi Agric Sci, 2020, 66(4): 22-24 (in Chinese).
[46] 安呈峰. 高产小麦发育后期基部节间与倒伏的关系. 山东农业大学硕士学位论文, 山东泰安, 2008.
An C F. Relationship between Basal Internode and Lodging of High-yield Wheat during Its Later Growth Period. MS Thesis of Shandong Agricultural University, Tai’an, Shandong, China, 2008 (in Chinese with English abstract).
[47] Chavarria G, Rosa W P D, Hoffmann L, Durigon M R. Growth regulator in wheat plants: reflexes on vegetative development, yield and grain quality. Revista Ceres, 2015, 62: 583-588.
[48] Setter T L, Laureles E V, Mazaredo A M. Lodging reduces yield of rice by self-shading and reductions in canopy photosynthesis. Field Crops Res, 1997, 49: 95-106.
[49] 张立明, 梁振兴, 梅楠. 多效唑和表油菜素内酯对小麦形态、生理和产量的影响. 北京农业大学学报, 1991, 17(增刊1): 115-123.
Zhang L M, Liang Z X, Mei N. The effects of multiple-effect Triazole (MET) and Epibrassinolide (BR) on morphology, physiology and yield of wheat. Acta Agric Univ Pekinensis, 1991, 17(S1): 115-123 (in Chinese with English abstract).
[50] Mizuta K, Araki H, Takahashi T. Relationship between canopy coverage at the initiation of stem elongation and lodging in wheat. Eur J Agron, 2023, 148: 126855.
[51] 鱼彩彦, 周建斌, 拓秀丽, 郑险峰, 汤海军. 不同氮水平下化学调控对旱地冬小麦生长及产量的影响. 干旱地区农业研究, 2007, 25(1): 58-62.
Yu C Y, Zhou J B, Tuo X L, Zheng X F, Tang H J. Effects of plant growth regulators on the growth and yield of winter wheat at different N-application rates on dry land. Agric Res Arid Areas, 2007, 25(1): 58-62 (in Chinese with English abstract).
[52] Zagonel J, Fernandes E C. Rates and application times of growth reducer affecting wheat cultivars at two nitrogen rates. Plant Daninha, 2007, 25: 331-339.
[53] Espindula M C, Rocha V S, Grossi J A S, Souza M A, Souza L T, Favarato L F. Use of growth retardants in wheat. Planta Daninha, 2009, 27: 379-387.
[54] 王长年, 孙成亮. 喷施“吨田宝”对高产田块小麦生长及产量的影响. 耕作与栽培, 2015, 35(1): 11-12.
Wang C N, Sun C L. Effects of Duntianbao on growth and yield of wheat in high-yielding field. Tillage Cultiv, 2015, 35(1): 11-12 (in Chinese with English abstract).
[55] 王志鑫. 春季追氮和矮壮素对冬小麦抗倒的影响及增产机理研究. 山西农业大学硕士学位论文, 山西太谷, 2022.
Wang Z X. Effects of Nitrogen Topdressing in Spring and Cycocel on Lodging Resistance of Winter Wheat and Study on Yield-Increasing Mechanism. MS Thesis of Shanxi Agricultural University, Taigu, Shanxi, China, 2022 (in Chinese with English abstract).
[56] Shekoofa A, Emam Y. Effects of nitrogen fertilization and plant growth regulators (PGRs) on yield of wheat (Triticum aestivum L.) cv. Shiraz. J Agric Sci Technol, 2019, 10: 101-108.
[57] 李春喜, 尚玉磊, 姜丽娜, 刘萍, 邱宗波, 张霞. 不同植物生长调节剂对小麦衰老及产量构成的调节效应. 西北植物学报, 2001, 21: 931-936.
Li C X, Shang Y L, Jiang L N, Liu P, Qiu Z B, Zhang X. Regulation of plant growth regulator on leaves senescence and yield constitutions of wheat. Acta Bot Boreali-Occident Sin, 2001, 21: 931-936 (in Chinese with English abstract).
[58] 梁雪莲, 杨文钰, 王引斌. 植物生长延缓剂在小麦生产中控制旺长和抗(避)冷害的作用. 耕作与栽培, 2005, 25(1): 12-14.
Liang X L, Yang W Y, Wang Y B. Effects of plant growth retardants on controlling growth and resisting (avoiding) cold injury in wheat production. Tillage Cultiv, 2005, 25(1): 12-14 (in Chinese).
[59] Han H, Yang W. Influence of uniconazole and plant density on nitrogen content and grain quality in winter wheat in South China. Plant Soil Environ, 2009, 55: 159-166.
[60] 吴九林, 刘蓉蓉, 刘文广. 多效唑对弱筋小麦宁麦9号产量和品质的影响. 安徽农业科学, 2007, 35: 468-470.
Wu J L, Liu R R, Liu W G. Study on effect of PP333 on grain yield and quality of weak gluten wheat Ningmai 9. J Anhui Agric Sci, 2007, 35: 468-470 (in Chinese with English abstract).
[61] John F M, Slafer G A, Davies W J, Berry P M, Sylvester-Bradley R, Martre P, Calderini D F, Griffiths S, Reynolds M P. Raising yield potential of wheat: III. Optimizing partitioning to grain while maintaining lodging resistance. J Exp Bot, 2011, 62: 469-486.
[62] 许为黎, 张志高, 倪向群. 氯化胆碱对小麦茎蘖穗发育的调控及产量的影响. 麦类作物学报, 1997, 17(1): 49-50.
Xu W L, Zhang Z G, Ni X Q. Effects of choline chloride on stem and tiller development and yield of wheat. J Triticeae Crops, 1997, 17(1): 49-50 (in Chinese).
[63] 陈志, 王山虎, 阿布都艾尼, 张晓晖, 蔡涛, 齐士发. 5%调环酸钙用于春小麦调控技术试验报告. 农业开发与装备, 2022, (12): 188-189.
Chen Z, Wang S H, A B D A N, Zhang X H, Cai T, Qi S F, Experimental report on the application of 5% Prohexadione-calcium to spring wheat regulation technology. Agric Dev Equip, 2022, (12): 188-189 (in Chinese).
[64] 石文军, 孙妍, 刘强, 徐妍, 何应霞, 徐博涵. 抗倒剂对小麦抗倒伏能力、长势及产量的影响. 农业科技通讯, 2021, (9): 108-110.
Shi W J, Sun Y, Liu Q, Xu Y, He Y X, Xu B H. Effect of anti-lodging agent on lodging resistance, growth and yield of wheat. Bull Agric Sci Technol, 2021, (9): 108-110 (in Chinese).
[65] 赵冬霞, 焦国安, 王璐, 王凯涛. 不同化控剂两种剂量对小麦农艺性状及产量的影响初探. 农业科技通讯, 2021, (1): 112-114.
Zhao D X, Jiao G A, Wang L, Wang K T. Effects of two doses of different chemical control agents on agronomic characters and yield of wheat. Bull Agric Sci Technol, 2021, (1): 112-114 (in Chinese).
[66] Mooney S J, Morris C, Berry P M. Visualization and quantification of the effects of cereal root lodging on three-dimensional soil macrostructure using X-ray computed tomography. Soil Sci, 2006, 171: 706-718.
[67] Berry P M, Sterling M, Baker C J, Spink J, Sparkes D L. A calibrated model of wheat lodging compared with field measurements. Agric For Meteorol, 2003, 119: 167-180.
[68] 谢瑞芝, 李少昆, 李小君, 金亚征, 王克如, 初震东, 高世菊. 中国保护性耕作研究分析: 保护性耕作与作物生产. 中国农业科学, 2007, 40: 1914-1924.
doi: 10.3864/j.issn.0578-1752.at-2006-8060
Xie R Z, Li S K, Li X J, Jin Y Z, Wang K R, Chu Z D, Gao S J. The analysis of conservation tillage in China: conservation tillage and crop production: reviewing the evidence. Sci Agric Sin, 2007, 40: 1914-1924 (in Chinese with English abstract).
[69] 石长春, 刘雅娟, 牛钰平, 赵峰, 封斌. 保护性耕作技术研究进展及存在的问题. 陕西农业科学, 2009, 55: 206-209.
Shi C C, Liu Y J, Niu Y P, Zhao F, Feng B. Research progress and existing problems of conservation tillage technology. Shaanxi J Agric Sci, 2009, 55: 206-209 (in Chinese).
[70] 管大海, 张明才, 谭伟明, 李召虎. 不同耕作方式下冬小麦根系特征与水分利用关系及其化学调控. 中国作物学会50周年庆祝会暨2011年学术年会论文集. 四川成都, 2011. p 156.
Guan D H, Zhang C M, Tan W M, Li Z H. Relationship between Root Characteristics and Water Use of Winter Wheat under Different Tillage Methods and Its Chemical Regulation. Proceedings of the 50th Anniversary Celebration of China Crop Society and 2011 Annual Conference. Chengdu, Sichuan, China, 2011. p 156 (in Chinese).
[71] 聂艳丽. 保护性耕作措施对土壤理化性质及旱地冬小麦茎秆生理特性的影响. 青岛农业大学硕士学位论文, 山东青岛, 2010.
Nie Y L. Effect on Soil Physical-Chemical Properties and Stem Physiological Character of Winter Wheat in Dryland under Conservation Tillage Measures. MS Thesis of Qingdao Agricultural University, Qingdao, Shandong, China, 2010 (in Chinese with English abstract).
[72] 齐文晶. 不同密度下化控措施对水稻抗倒伏能力和产质量的影响. 东北农业大学硕士学位论文, 黑龙江哈尔滨, 2023.
Qi W J. Effects of Chemical Control Measures at Different Densities on Lodging Resistance, Yield and Quality of Rice. MS Thesis of Northeast Agricultural University, Harbin, Heilongjiang, China, 2023 (in Chinese with English abstract).
[73] 张秋霞. 遮荫和密度对冬小麦茎秆抗倒伏性能的影响. 山东农业大学硕士学位论文, 山东泰安, 2021.
Zhang Q X. Effect of Shading and Plant Density on Lodging Resistance of Culm in Winter Wheat. MS Thesis of Shandong Agricultural University, Tai’an, Shandong, China, 2021 (in Chinese with English abstract).
[74] Espindula M C, Rocha V S, Fontes P C R, da Silva R C C, de Souza L T. Effect of nitrogen and trinexapac-ethyl rates on the SPAD index of wheat leaves. J Plant Nutr, 2009, 32: 1956-1964.
[75] 魏凤珍, 李金才, 屈会娟, 沈学善. 施氮模式对冬小麦越冬期冻害和茎秆抗倒伏性能的影响. 江苏农业学报, 2010, 26: 696-699.
Wei F Z, Li J C, Qu H J, Shen X S. Effects of nitrogenous fertilizer application pattern on freeze injury and culm lodging resistance of winter wheat. Jiangsu J Agric Sci, 2010, 26: 696-699 (in Chinese with English abstract).
[76] 周洁, 王旭, 朱玉磊, 刘惠惠, 陈翔, 魏凤珍, 孙建强, 宋有洪, 李金才. 氮肥运筹模式对小麦茎秆抗倒性能与产量的影响. 麦类作物学报, 2019, 39: 979-987.
Zhou J, Wang X, Zhu Y L, Liu H H, Chen X, Wei F Z, Sun J Q, Song Y H, Li J C. Effects of nitrogen fertilizer management on stem lodging resistance and yield of wheat. J Triticeae Crops, 2019, 39: 979-987 (in Chinese with English abstract).
[77] 程瑞婷, 李振丽, 李瑞奇, 李雁鸣. 追氮与化控组合对超高产冬小麦产量形成和抗倒性的影响. 河北农业大学学报, 2014, 37(2): 1-7.
doi: 10.13320/j.cnki.jauh.2014.0028
Cheng R T, Li Z L, Li R Q, Li Y M. Effect of the combination of nitrogen fertilizer and chemical control on the yield formation and lodging resistance of super high-yielding winter wheat. J Hebei Agric Univ, 2014, 37(2): 1-7 (in Chinese with English abstract).
[78] Chen X G, Wang J, Wang Z L, Li W Y, Wang C Y, Yan S H, Li H M, Zhang A J, Tang Z H, Wei M. Optimized nitrogen fertilizer application mode increased culms lignin accumulation and lodging resistance in culms of winter wheat. Field Crops Res, 2018, 228: 31-38.
[79] Ahmad I, Meng X P, Kamran M, Ali S, Ahmad S, Liu T N, Cai T, Han Q F. Effects of uniconazole with or without micronutrient on the lignin biosynthesis, lodging resistance, and winter wheat production in semiarid regions. J Integr Agric, 2020, 19: 62-77.
doi: 10.1016/S2095-3119(19)62632-8
[80] 周青, 潘国庆, 施作家. 硅肥对小麦群体质量和产量的影响. 江苏农业科学, 2001, 29(3): 47-52.
Zhou Q, Pan G Q, Shi Z J. Effects of silicon fertilizer on population quality and yield of wheat. Jiangsu Agric Sci, 2001, 29(3): 47-52 (in Chinese).
[81] 茹振钢, 牛立元, 范文秀, 冯素伟, 孔德川, 丁位华. 高产抗倒伏小麦品种选育及评价方法. 北京: 科学出版社, 2020.
Ru Z G, Niu L Y, Fan W X, Feng S W, Kong D C, Ding W H. Breeding and Evaluation Methods of High-yield Lodging Resistant Wheat Varieties. Beijing: Science Press, 2020 (in Chinese).
[82] 李金才, 尹钧, 魏凤珍. 播种密度对冬小麦茎秆形态特征和抗倒指数的影响. 作物学报, 2005, 31: 662-666.
Li J C, Yin J, Wei F Z. Effects of planting density on characters of culm and culm lodging resistant index in winter wheat. Acta Agron Sin, 2005, 31: 662-666 (in Chinese with English abstract).
[83] 张志强, 付晶, 王奉芝, 王联朋, 赵松山, 王伟伟, 张焕英, 于亮, 钮力亚. 小麦抗倒性研究进展. 安徽农业科学, 2013, 41: 2020-2022.
Zhang Z Q, Fu J, Wang F Z, Wang L P, Zhao S S, Wang W W, Zhang H Y, Yu L, Niu L Y. Research progress in wheat lodging. J Anhui Agric Sci, 2013, 41: 2020-2022 (in Chinese with English abstract).
[84] Wang C, Zhao J C, Feng Y P, Shang M F, Bo X Z, Gao Z Z, Chen F, Chu Q Q. Optimizing tillage method and irrigation schedule for greenhouse gas mitigation, yield improvement, and water conservation in wheat-maize cropping systems. Agric Water Manag, 2021, 248: 106762.
[85] Feng S W, Shi C C, Wang P Y, Ding W H, Hu T Z, Ru Z G. Improving stem lodging resistance, yield, and water efficiency of wheat by adjusting supplemental irrigation frequency. Agronomy, 2023, 13: 2208.
[86] 熊乐, 马富裕, 樊华, 张伟, 崔静, 郑重. 冬灌与化学调控互作对滴灌春小麦抗倒伏能力和产量的影响. 麦类作物学报, 2012, 32: 932-936.
Xiong L, Ma F Y, Fan H, Zhang W, Cui J, Zheng Z. Interaction effects of winter irrigation and chemical regulation on lodging-resistance and yield of drip irrigated spring wheat. J Triticeae Crops, 2012, 32: 932-936 (in Chinese with English abstract).
[87] Ma S C, Duan A W, Ma S T, Yang S J. Effect of early-stage regulated deficit irrigation on stem lodging resistance, leaf photosynthesis, root respiration and yield stability of winter wheat under post-anthesis water stress conditions. Irrig Drain, 2016, 65: 673-681.
[88] Saint Pierre C, Trethowan R, Reynolds M. Stem solidness and its relationship to water-soluble carbohydrates: association with wheat yield under water deficit. Funct Plant Biol, 2010, 37: 166.
[89] 姜东, 陶勤南, 张国平. 渍水对小麦扬麦5号旗叶和根系衰老的影响. 应用生态学报, 2002, 13: 1519-1521.
pmid: 12625022
Jiang D, Tao Q N, Zhang G P. Effect of waterlogging on senescence of flag leaf and root of wheat Yangmai 5. Chin J Appl Ecol, 2002, 13: 1519-1521 (in Chinese with English abstract).
pmid: 12625022
[90] 吴进东, 李金才, 魏凤珍, 王成雨, 张一, 武文明. 花后渍水高温交互效应对冬小麦旗叶光合特性及产量的影响. 作物学报, 2012, 38: 1071-1079.
doi: 10.3724/SP.J.1006.2012.01071
Wu J D, Li J C, Wei F Z, Wang C Y, Zhang Y, Wu W M. Effect of interaction of waterlogging and high temperature after anthesis on photosynthetic characteristics of flag leaf and yield in winter wheat. Acta Agron Sin, 2012, 38: 1071-1079 (in Chinese with English abstract).
[91] Feng S W, Ru Z G, Ding W H, Hu T Z, Li G. Study of the relationship between field lodging and stem quality traits of winter wheat in the north China plain. Crop Pasture Sci, 2019, 70: 772.
[92] 王勇, 李朝恒, 李安飞, 李晴祺. 小麦品种茎秆质量的初步研究. 麦类作物学报, 1997, 17(3): 28-31.
Wang Y, Li C H, Li A F, Li Q Q. A preliminary study on stem quality of wheat varieties. J Triticeae Crops, 1997, 17(3): 28-31 (in Chinese).
[93] 胡卫国, 张玉娥, 赵虹, 王西成, 曹廷杰, 曹颖妮, 陈渝, 杨剑. 小麦抗倒性评价方法的比较分析. 西北农业学报, 2018, 27: 1780-1788.
Hu W G, Zhang Y E, Zhao H, Wang X C, Cao T J, Cao Y N, Chen Y, Yang J. Comparison and analysis of the methods for evaluating wheat lodging resistance. Acta Agric Boreal-Occident Sin, 2018, 27: 1780-1788 (in Chinese with English abstract).
[94] 华智锐, 李小玲. 矮壮素对小麦抗倒伏性能的诱导效应研究. 河北农业科学, 2017, 21(2): 47-51.
Hua Z R, Li X L. Researches of CCC in induction lodging resistance of wheat. J Hebei Agric Sci, 2017, 21(2): 47-51 (in Chinese with English abstract).
[95] 文廷刚. 植物生长调节剂对小麦抗倒伏能力、产量和品质的影响及其生理机理. 南京农业大学硕士学位论文, 江苏南京, 2012.
Wen T G. The Effects of Plant Growth Regulators on the Ability of Lodging-Resistance, Yield and Quality in Wheat and Its Physiological Mechanism. MS Thesis of Nanjing Agricultural University, Nanjing, Jiangsu, China, 2012 (in Chinese with English abstract).
[96] 乔春贵. 作物抗倒伏性的综合指标: 倒伏指数. 吉林农业大学学报, 1988, 10(1): 7-10.
Qiao C G. Lodging index: a synthetic indication of lodging- resistance. J Jilin Agric Univ, 1988, 10(1): 7-10 (in Chinese with English abstract).
[97] 闵东红, 王辉, 孟超敏, 翟耀锋, 李学军, 曹宁, 于新智. 不同株高小麦品种抗倒伏性与其亚性状及产量相关性研究. 麦类作物学报, 2001, 21(4): 76-79.
Min D H, Wang H, Meng C M, Zhai Y F, Li X J, Cao N, Yu X Z. Studies on the lodging resistance with its subtraits of different height wheat varieties and correlation between plant height and yield. J Triticeae Crops, 2001, 21(4): 76-79 (in Chinese with English abstract).
[98] Ahmad I, Kamran M, Guo Z Y, Meng X P, Ali S, Zhang P, Liu T N, Cai T, Han Q F. Effects of uniconazole or ethephon foliar application on culm mechanical strength and lignin metabolism, and their relationship with lodging resistance in winter wheat. Crop Pasture Sci, 2020, 71: 12.
[99] Zhang G P, Chen J X, Bull D A. The effects of timing of N application and plant growth regulators on morphogenesis and yield formation in wheat. Plant Growth Regul, 2001, 35: 239-245.
[100] 安志超, 黄玉芳, 赵亚南, 汪洋, 刘小宁, 叶优良. 植株氮营养状况与冬小麦倒伏的关系. 植物营养与肥料学报, 2018, 24: 751-757.
An Z C, Huang Y F, Zhao Y N, Wang Y, Liu X N, Ye Y L. Relationship between plant nitrogen nutrition and lodging of winter wheat. J Plant Nutr Fert, 2018, 24: 751-757 (in Chinese with English abstract).
[101] Tian B H, Luan S R, Zhang L X, Liu Y L, Zhang L, Li H J. Penalties in yield and yield associated traits caused by stem lodging at different developmental stages in summer and spring foxtail millet cultivars. Field Crops Res, 2018, 217: 104-112.
[102] 郭维俊, 王芬娥, 黄高宝, 张锋伟, 魏时来. 小麦茎秆力学性能与化学组分试验. 农业机械学报, 2009, 40(2): 110-114.
Guo W J, Wang F E, Huang G B, Zhang F W, Wei S L. Experiment on mechanical properties and chemical compositions of wheat stems. Trans CSAM, 2009, 40(2): 110-114 (in Chinese with English abstract).
[103] Sasaki A, Ashikari M, Ueguchi-Tanaka M, Itoh H, Nishimura A, Swapan D, Ishiyama K, Saito T, Kobayashi M, Khush G S, et al. A mutant gibberellin-synthesis gene in rice. Nature, 2002, 416: 701-702.
[104] Peters R J. Two rings in them all: the labdane-related diterpenoids. Nat Prod Rep, 2010, 27: 1521-1530.
doi: 10.1039/c0np00019a pmid: 20890488
[105] Schmelz E A, Huffaker A, Sims J W, Christensen S A, Lu X, Okada K, Peters R J. Biosynthesis, elicitation and roles of monocot terpenoid phytoalexins. Plant J, 2014, 79: 659-678.
[1] LI Pei-Hua, LI Jie, MENG Xiang-Yu, SUN Yu-Chen, FENG Yong-Jia, LI Yun-Li, DIAO Deng-Chao, ZHAO Wen, WU Wei, HAN De-Jun, ZHANG Song-Wu, ZHENG Wei-Jun. Evaluation of stress tolerance and physiological response of cold-type wheat under heat stress [J]. Acta Agronomica Sinica, 2025, 51(4): 1118-1130.
[2] LI Qiao, YE Yang-Chun, CHANG Xu-Hong, WANG De-Mei, WANG Yan-Jie, YANG Yu-Shuang, MA Rui-Qi, ZHAO Guang-Cai, CAI Rui-Guo, ZHANG Min, LIU Xi-Wei. Effects of high temperature and drought stresses on photosynthetic characteristics and yield of winter wheat after anthesis [J]. Acta Agronomica Sinica, 2025, 51(4): 1077-1090.
[3] WANG Jiao, BAI Hai-Xia, HAN Yu-Yan, LIANG Hui, FENG Ya-Nan, ZHANG Dong-Sheng, LI Ping, ZONG Yu-Zheng, SHI Xin-Rui, HAO Xing-Yu. Effects of elevated CO2 concentration, increased temperature and their interaction on the carbon and nitrogen metabolism in Liangxing 99 winter wheat leaves [J]. Acta Agronomica Sinica, 2025, 51(4): 1061-1076.
[4] MENG Zi-Zhen, LIU Chen, SHENG Qian-Nan, XIONG Zhi-Hao, FANG Ya-Ting, ZHAO Jian, YU Qiu-Hua, WANG Kun-Kun, LI Xiao-Kun, REN Tao, LU Jian-Wei. Effects of nitrogen, phosphorus, and potassium fertilizer application on the yield increase of winter oilseed rape and the degree of yield reduction due to freezing stress [J]. Acta Agronomica Sinica, 2025, 51(4): 1037-1049.
[5] SONG Li, LIU Guang-Zhou, ZHANG Hua, LU Ting-Qi, QING Chun-Yan, YANG Yun-Shan, GUO Xiao-Xia, Hu Dan, LI Shao-Kun, HOU Peng. Effects of drip fertigation with dense planting on yield and soil bacterial community of summer maize in Southwest China [J]. Acta Agronomica Sinica, 2025, 51(4): 992-1004.
[6] CHENG Hong-Na, QIN Dan-Dan, XU Fu-Chao, XU Qing, PENG Yan-Chun, SUN Long-Qing, XU Le, GUO Ying, YANG Xin-Quan, XU De-Ze, DONG Jing. Comparative analysis of metabolomics of colored hulless barley and colored wheat grains [J]. Acta Agronomica Sinica, 2025, 51(4): 932-942.
[7] ZHANG Xiao-Li, LIU Xiao-Yan, XIA Wen-Wen, LI Jin. Functional analysis of the plasma membrane intrinsic protein gene SiPIP1;3 from Saussurea involucrata in tomato [J]. Acta Agronomica Sinica, 2025, 51(4): 863-872.
[8] YANG Cui-Hua, LI Shi-Hao, YI Xu-Xu, ZHENG Fei-Xiong, DU Xue-Zhu, SHENG Feng. Effects of poly-γ-glutamic acid on rice yield, quality, and nutrient uptake [J]. Acta Agronomica Sinica, 2025, 51(3): 785-796.
[9] LIU Ya-Long, WANG Peng-Fei, YU Ai-Zhong, WANG Yu-Long, SHANG Yong-Pan, YANG Xue-Hui, YIN Bo, ZHANG Dong-Ling, WANG Feng. Effects of nitrogen reduction on maize yield and N2O emission under green manure returning in Hexi oasis irrigation area [J]. Acta Agronomica Sinica, 2025, 51(3): 771-784.
[10] WANG Yan, BAI Chun-Sheng, LI Bo, FAN Hong, HE Wei, YANG Li-Li, CAO Yue, ZHAO Cai. Effects of no-tillage with plastic film and the amount of irrigation water on yield and photosynthetic characteristics of maize in oasis irrigation area of Northwest China [J]. Acta Agronomica Sinica, 2025, 51(3): 755-770.
[11] YANG Xin-Yue, XIAO Ren-Hao, ZHANG Lin-Xi, TANG Ming-Jun, SUN Guang-Yan, DU Kang, LYU Chang-Wen, TANG Dao-Bin, WANG Ji-Chun. Effects of waterlogging at different growth stages on the stress-resistance physiological characteristics and yield formation of sweet potato [J]. Acta Agronomica Sinica, 2025, 51(3): 744-754.
[12] XIONG Qiang-Qiang, SUN Chang-Hui, GU Wen-Fei, LU Yan-Yao, ZHOU Nian-Bing, GUO Bao-Wei, LIU Guo-Dong, WEI Hai-Yan, ZHU Jin-Yan, ZHANG Hong-Cheng. Comprehensive evaluation of 70 japonica glutinous rice varieties (lines) based on growth period, yield, and quality [J]. Acta Agronomica Sinica, 2025, 51(3): 728-743.
[13] SU Ming, WU Jia-Rui, HONG Zi-Qiang, LI Fan-Guo, ZHOU Tian, WU Hong-Liang, KANG Jian-Hong. Response of potato tuber starch formation and yield to phosphorus fertilizer reduction in the semi-arid region of Northwest China [J]. Acta Agronomica Sinica, 2025, 51(3): 713-727.
[14] LI Xiang-Yu, JI Xin-Jie, WANG Xue-Lian, LONG An-Ran, WANG Zheng-Yu, YANG Zi-Hui, GONG Xiang-Wei, JIANG Ying, QI Hua. Effects of straw returning combined with nitrogen fertilizer on yield and grain quality of spring maize [J]. Acta Agronomica Sinica, 2025, 51(3): 696-712.
[15] ZHANG Heng, FENG Ya-Lan, TIAN Wen-Zhong, GUO Bin-Bin, ZHANG Jun, MA Chao. Identification of TaSnRK gene family and expression analysis under localized root zone drought in wheat [J]. Acta Agronomica Sinica, 2025, 51(3): 632-649.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!